TY - JOUR A1 - Markert, Sebastian Matthias A1 - Britz, Sebastian A1 - Proppert, Sven A1 - Lang, Marietta A1 - Witvliet, Daniel A1 - Mulcahy, Ben A1 - Sauer, Markus A1 - Zhen, Mei A1 - Bessereau, Jean-Louis A1 - Stigloher, Christian T1 - Filling the gap: adding super-resolution to array tomography for correlated ultrastructural and molecular identification of electrical synapses at the C. elegans connectome JF - Neurophotonics N2 - Correlating molecular labeling at the ultrastructural level with high confidence remains challenging. Array tomography (AT) allows for a combination of fluorescence and electron microscopy (EM) to visualize subcellular protein localization on serial EM sections. Here, we describe an application for AT that combines near-native tissue preservation via high-pressure freezing and freeze substitution with super-resolution light microscopy and high-resolution scanning electron microscopy (SEM) analysis on the same section. We established protocols that combine SEM with structured illumination microscopy (SIM) and direct stochastic optical reconstruction microscopy (dSTORM). We devised a method for easy, precise, and unbiased correlation of EM images and super-resolution imaging data using endogenous cellular landmarks and freely available image processing software. We demonstrate that these methods allow us to identify and label gap junctions in Caenorhabditis elegans with precision and confidence, and imaging of even smaller structures is feasible. With the emergence of connectomics, these methods will allow us to fill in the gap-acquiring the correlated ultrastructural and molecular identity of electrical synapses. KW - caenorhabditis elegans KW - localization micoscopy KW - fluorescent-probes KW - junction proteins KW - resolution limit KW - direct stochasticoptical reconstruction microscopy KW - structured illumination microscopy KW - correlative light and electron microscopy KW - gap junction KW - neural circuits KW - nervous-system KW - image data KW - reconstruction KW - innexins KW - super-resolution microscopy Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-187292 VL - 3 IS - 4 ER - TY - JOUR A1 - Proppert, Sven A1 - Wolter, Steve A1 - Holm, Thorge A1 - Klein, Theresa A1 - van de Linde, Sebastian A1 - Sauer, Markus T1 - Cubic B-spline calibration for 3D super-resolution measurements using astigmatic imaging JF - Optics Express N2 - In recent years three-dimensional (3D) super-resolution fluorescence imaging by single-molecule localization (localization microscopy) has gained considerable interest because of its simple implementation and high optical resolution. Astigmatic and biplane imaging are experimentally simple methods to engineer a 3D-specific point spread function (PSF), but existing evaluation methods have proven problematic in practical application. Here we introduce the use of cubic B-splines to model the relationship of axial position and PSF width in the above mentioned approaches and compare the performance with existing methods. We show that cubic B-splines are the first method that can combine precision, accuracy and simplicity. KW - three-dimensional microscopy KW - fluorescence microscopy KW - medical and biological imaging KW - superresolution Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119730 SN - 1094-4087 VL - 22 IS - 9 ER - TY - THES A1 - Proppert, Sven Martin T1 - Design, implementation and characterization of a microscope capable of three-dimensional two color super-resolution fluorescence imaging T1 - Design, Implementierung und Charakterisierung eines Mikroskops für dreidimensionale zwei Farben superhochauflösende Fluoreszenz-Bildgebung N2 - This thesis reviews the fundamentals of three-dimensional super-resolution localization imaging. In order to infer the axial coordinate of the emission of single fluorophores, the point spread function is engineered following a technique usually referred to as astigmatic imaging by the introduction of a cylindrical lens to the detection path of a microscope. After giving a short introduction to optics and localization microscopy, I outline sources of aberrations as frequently encountered in 3D-localization microscopy and will discuss their respective impact on the precision and accuracy of the localization process. With the knowledge from these considerations, experiments were designed and conducted to verify the validity of the conclusions and to demonstrate the abilities of the proposed microscope to resolve biological structures in the three spatial dimensions. Additionally, it is demonstrated that measurements of huge volumes with virtually no aberrations is in principle feasible. During the course of this thesis, a new method was introduced for inferring axial coordinates. This interpolation method based on cubic B-splines shows superior performance in the calibration of a microscope and the evaluation of subsequent measurement and will therefore be used and explained in this work. Finally, this work is also meant to give future students some guidance for entering the field of 3D localization microscopy and therefore, detailed protocols are provided covering the specific aspects of two color 3D localization imaging. N2 - In dieser Arbeit werden die Grundlagen der dreidimensionalen hochauflösenden Lokalisationsmikroskopie erarbeitet und daraus Spezifikationen für ein geeignetes Mikroskop abgeleitet. Zur Gewinnung der axialen Koordinate der Emission einzelner Farbstoffe wird die Punktspreizfunktion in der Detektion astigmatisch mithilfe einer zylindrischen Linse verändert. Nach einer kurzen Einleitung in die Grundzüge der Optik und der Lokalisationsmikroskopie werden die Ursachen für typische Aberrationen besprochen, wie sie in der 3D-Lokalisationsmikroskopie häufig auftreten. Weiterhin wird der Einfluss dieser Aberrationen auf die erreichbare Präzision und Exaktheit des Lokalisationsprozesses behandelt. Mit dem Wissen aus diesen Überlegungen wurden Experimente entworfen und durchgeführt um die getroffenen Schlussfolgerungen zu validieren und zu demonstrieren, dass das vorgeschlagene Mikroskop dazu in der Lage ist, biologische Strukturen in den drei räumlichen Dimensionen aufzulösen. Weiterhin wird gezeigt, dass beinahe aberrationsfreie Mikroskopie großer Volumina prinzipiell möglich ist. Während der Arbeit an dieser Promotion wurde eine neue Methode zur Gewinnung der axialen Koordinaten eingeführt. Diese auf kubischen B-splines basierende Interpolationsmethode stellte sich als anderen Routinen überlegen in der Kalibration eines Mikroskops und der anschließenden Auswertung von Messungen heraus. Deshalb wird dieses Verfahren in der vorliegenden Arbeit verwendet und erklärt. Da diese Doktorarbeit auch den Anspruch hat, zukünftigen Studenten den Einstieg in die hochauflösende 3D Mikroskopie zu erleichtern, werden abschließend detaillierte Protokolle für spezifische Aspekte der zwei Farben 3D Lokalisationsmikroskopie zur Verfügung gestellt. KW - Dimension 3 KW - aberration KW - Einzelmolekülmikroskopie KW - single molecule microscopy KW - 3D KW - super-resolution KW - Mikroskopie KW - Hochauflösendes Verfahren KW - Aberration Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-107905 ER - TY - JOUR A1 - Pauli, Martin A1 - Paul, Mila M. A1 - Proppert, Sven A1 - Mrestani, Achmed A1 - Sharifi, Marzieh A1 - Repp, Felix A1 - Kürzinger, Lydia A1 - Kollmannsberger, Philip A1 - Sauer, Markus A1 - Heckmann, Manfred A1 - Sirén, Anna-Leena T1 - Targeted volumetric single-molecule localization microscopy of defined presynaptic structures in brain sections JF - Communications Biology N2 - Revealing the molecular organization of anatomically precisely defined brain regions is necessary for refined understanding of synaptic plasticity. Although three-dimensional (3D) single-molecule localization microscopy can provide the required resolution, imaging more than a few micrometers deep into tissue remains challenging. To quantify presynaptic active zones (AZ) of entire, large, conditional detonator hippocampal mossy fiber (MF) boutons with diameters as large as 10 mu m, we developed a method for targeted volumetric direct stochastic optical reconstruction microscopy (dSTORM). An optimized protocol for fast repeated axial scanning and efficient sequential labeling of the AZ scaffold Bassoon and membrane bound GFP with Alexa Fluor 647 enabled 3D-dSTORM imaging of 25 mu m thick mouse brain sections and assignment of AZs to specific neuronal substructures. Quantitative data analysis revealed large differences in Bassoon cluster size and density for distinct hippocampal regions with largest clusters in MF boutons. Pauli et al. develop targeted volumetric dSTORM in order to image large hippocampal mossy fiber boutons (MFBs) in brain slices. They can identify synaptic targets of individual MFBs and measured size and density of Bassoon clusters within individual untruncated MFBs at nanoscopic resolution. KW - mossy fiber synapses KW - CA3 pyrimidal cells KW - CA2+ channels KW - active zone KW - hippocampal KW - release KW - plasticity KW - proteins KW - platform KW - reveals Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259830 VL - 4 ER -