TY - JOUR A1 - Reinhard, Nils A1 - Bertolini, Enrico A1 - Saito, Aika A1 - Sekiguchi, Manabu A1 - Yoshii, Taishi A1 - Rieger, Dirk A1 - Helfrich‐Förster, Charlotte T1 - The lateral posterior clock neurons of Drosophila melanogaster express three neuropeptides and have multiple connections within the circadian clock network and beyond JF - Journal of Comparative Neurology N2 - Drosophila’s lateral posterior neurons (LPNs) belong to a small group of circadian clock neurons that is so far not characterized in detail. Thanks to a new highly specific split‐Gal4 line, here we describe LPNs’ morphology in fine detail, their synaptic connections, daily bimodal expression of neuropeptides, and propose a putative role of this cluster in controlling daily activity and sleep patterns. We found that the three LPNs are heterogeneous. Two of the neurons with similar morphology arborize in the superior medial and lateral protocerebrum and most likely promote sleep. One unique, possibly wakefulness‐promoting, neuron with wider arborizations extends from the superior lateral protocerebrum toward the anterior optic tubercle. Both LPN types exhibit manifold connections with the other circadian clock neurons, especially with those that control the flies’ morning and evening activity (M‐ and E‐neurons, respectively). In addition, they form synaptic connections with neurons of the mushroom bodies, the fan‐shaped body, and with many additional still unidentified neurons. We found that both LPN types rhythmically express three neuropeptides, Allostatin A, Allostatin C, and Diuretic Hormone 31 with maxima in the morning and the evening. The three LPN neuropeptides may, furthermore, signal to the insect hormonal center in the pars intercerebralis and contribute to rhythmic modulation of metabolism, feeding, and reproduction. We discuss our findings in the light of anatomical details gained by the recently published hemibrain of a single female fly on the electron microscopic level and of previous functional studies concerning the LPN. KW - activity KW - circadian clock neurons KW - insect brain KW - neuropeptides KW - sleep KW - trans‐Tango Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-276456 VL - 530 IS - 9 SP - 1507 EP - 1529 ER - TY - JOUR A1 - Reinhard, Nils A1 - Schubert, Frank K. A1 - Bertolini, Enrico A1 - Hagedorn, Nicolas A1 - Manoli, Giulia A1 - Sekiguchi, Manabu A1 - Yoshii, Taishi A1 - Rieger, Dirk A1 - Helfrich-Förster, Charlotte T1 - The neuronal circuit of the dorsal circadian clock neurons in Drosophila melanogaster JF - Frontiers in Physiology N2 - Drosophila’s dorsal clock neurons (DNs) consist of four clusters (DN1as, DN1ps, DN2s, and DN3s) that largely differ in size. While the DN1as and the DN2s encompass only two neurons, the DN1ps consist of ∼15 neurons, and the DN3s comprise ∼40 neurons per brain hemisphere. In comparison to the well-characterized lateral clock neurons (LNs), the neuroanatomy and function of the DNs are still not clear. Over the past decade, numerous studies have addressed their role in the fly’s circadian system, leading to several sometimes divergent results. Nonetheless, these studies agreed that the DNs are important to fine-tune activity under light and temperature cycles and play essential roles in linking the output from the LNs to downstream neurons that control sleep and metabolism. Here, we used the Flybow system, specific split-GAL4 lines, trans-Tango, and the recently published fly connectome (called hemibrain) to describe the morphology of the DNs in greater detail, including their synaptic connections to other clock and non-clock neurons. We show that some DN groups are largely heterogenous. While certain DNs are strongly connected with the LNs, others are mainly output neurons that signal to circuits downstream of the clock. Among the latter are mushroom body neurons, central complex neurons, tubercle bulb neurons, neurosecretory cells in the pars intercerebralis, and other still unidentified partners. This heterogeneity of the DNs may explain some of the conflicting results previously found about their functionality. Most importantly, we identify two putative novel communication centers of the clock network: one fiber bundle in the superior lateral protocerebrum running toward the anterior optic tubercle and one fiber hub in the posterior lateral protocerebrum. Both are invaded by several DNs and LNs and might play an instrumental role in the clock network. KW - circadian clock KW - dorsal clock neurons KW - trans-tango KW - flybow KW - neuroanatomy KW - hemibrain KW - clock network Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-272527 SN - 1664-042X VL - 13 ER - TY - JOUR A1 - Horn, Melanie A1 - Mitesser, Oliver A1 - Hovestadt, Thomas A1 - Yoshii, Taishi A1 - Rieger, Dirk A1 - Helfrich-Förster, Charlotte T1 - The circadian clock improves fitness in the fruit fly, Drosophila melanogaster JF - Frontiers in Physiology N2 - It is assumed that a properly timed circadian clock enhances fitness, but only few studies have truly demonstrated this in animals. We raised each of the three classical Drosophila period mutants for >50 generations in the laboratory in competition with wildtype flies. The populations were either kept under a conventional 24-h day or under cycles that matched the mutant’s natural cycle, i.e., a 19-h day in the case of pers mutants and a 29-h day for perl mutants. The arrhythmic per0 mutants were grown together with wildtype flies under constant light that renders wildtype flies similar arrhythmic as the mutants. In addition, the mutants had to compete with wildtype flies for two summers in two consecutive years under outdoor conditions. We found that wildtype flies quickly outcompeted the mutant flies under the 24-h laboratory day and under outdoor conditions, but perl mutants persisted and even outnumbered the wildtype flies under the 29-h day in the laboratory. In contrast, pers and per0 mutants did not win against wildtype flies under the 19-h day and constant light, respectively. Our results demonstrate that wildtype flies have a clear fitness advantage in terms of fertility and offspring survival over the period mutants and – as revealed for perl mutants – this advantage appears maximal when the endogenous period resonates with the period of the environment. However, the experiments indicate that perl and pers persist at low frequencies in the population even under the 24-h day. This may be a consequence of a certain mating preference of wildtype and heterozygous females for mutant males and time differences in activity patterns between wildtype and mutants. KW - competition KW - mutants KW - resonance theory KW - mating preference KW - fertility Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-195738 SN - 1664-042X VL - 10 IS - 1374 ER -