TY - JOUR A1 - Kuhtz, Juliane A1 - Schneider, Eberhard A1 - El Hajj, Nady A1 - Zimmermann, Lena A1 - Fust, Olga A1 - Linek, Bartosz A1 - Seufert, Rudolf A1 - Hahn, Thomas A1 - Schorsch, Martin A1 - Haaf, Thomas T1 - Epigenetic heterogeneity of developmentally important genes in human sperm: Implications for assisted reproduction outcome JF - Epigenetics N2 - The molecular basis of male infertility is poorly understood, the majority of cases remaining unsolved. The association of aberrant sperm DNA methylation patterns and compromised semen parameters suggests that disturbances in male germline epigenetic reprogramming contribute to this problem. So far there are only few data on the epigenetic heterogeneity of sperm within a given sample and how to select the best sperm for successful infertility treatment. Limiting dilution bisulfite sequencing of small pools of sperm from fertile donors did not reveal significant differences in the occurrence of abnormal methylation imprints between sperm with and without morphological abnormalities. Intracytoplasmic morphologically selected sperm injection was not associated with an improved epigenetic quality, compared to standard intracytoplasmatic sperm injection. Deep bisulfite sequencing (DBS) of 2 imprinted and 2 pluripotency genes in sperm from men attending a fertility center showed that in both samples with normozoospermia and oligoasthenoteratozoospermia (OAT) the vast majority of sperm alleles was normally (de)methylated and the percentage of epimutations (allele methylation errors) was generally low (<1%). However, DBS allowed one to identify and quantify these rare epimutations with high accuracy. Sperm samples not leading to a pregnancy, in particular in the OAT group, had significantly more epimutations in the paternally methylated GTL2 gene than samples leading to a live birth. All 13 normozoospermic and 13 OAT samples leading to a child had <1% GTL2 epimutations, whereas one (7%) of 14 normozoospermic and 7 (50%) of 14 OAT samples without pregnancy displayed 1–14% GTL2 epimutations. KW - ART outcome KW - deep bisulfite sequencing KW - epigenetic heterogeneity KW - GTL2 KW - sperm DNA methylation KW - IMSI KW - ICSI Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-150261 VL - 9 IS - 12 ER - TY - JOUR A1 - Schneider, Eberhard A1 - Pliushch, Galyna A1 - El Hajj, Nady A1 - Galetzka, Danuta A1 - Puhl, Alexander A1 - Schorsch, Martin A1 - Frauenknecht, Katrin A1 - Riepert, Thomas A1 - Tresch, Achim A1 - Mueller, Annette M. A1 - Coerdt, Wiltrud A1 - Zechner, Ulrich A1 - Haaf, Thomas T1 - Spatial, temporal and interindividual epigenetic variation of functionally important DNA methylation patterns N2 - DNA methylation is an epigenetic modification that plays an important role in gene regulation. It can be influenced by stochastic events, environmental factors and developmental programs. However, little is known about the natural variation of genespecific methylation patterns. In this study, we performed quantitative methylation analyses of six differentially methylated imprinted genes (H19, MEG3, LIT1, NESP55, PEG3 and SNRPN), one hypermethylated pluripotency gene (OCT4) and one hypomethylated tumor suppressor gene (APC) in chorionic villus, fetal and adult cortex, and adult blood samples. Both average methylation level and range of methylation variation depended on the gene locus, tissue type and/or developmental stage. We found considerable variability of functionally important methylation patterns among unrelated healthy individuals and a trend toward more similar methylation levels in monozygotic twins than in dizygotic twins. Imprinted genes showed relatively little methylation changes associated with aging in individuals who are >25 years. The relative differences in methylation among neighboring CpGs in the generally hypomethylated APC promoter may not only reflect stochastic fluctuations but also depend on the tissue type. Our results are consistent with the view that most methylation variation may arise after fertilization, leading to epigenetic mosaicism. KW - Medizin Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-68371 ER - TY - JOUR A1 - Prell, Andreas A1 - Sen, Mustafa Orkun A1 - Potabattula, Ramya A1 - Bernhardt, Laura A1 - Dittrich, Marcus A1 - Hahn, Thomas A1 - Schorsch, Martin A1 - Zacchini, Federica A1 - Ptak, Grazyna Ewa A1 - Niemann, Heiner A1 - Haaf, Thomas T1 - Species-specific paternal age effects and sperm methylation levels of developmentally important genes JF - Cells N2 - A growing number of sperm methylome analyses have identified genomic loci that are susceptible to paternal age effects in a variety of mammalian species, including human, bovine, and mouse. However, there is little overlap between different data sets. Here, we studied whether or not paternal age effects on the sperm epigenome have been conserved in mammalian evolution and compared methylation patterns of orthologous regulatory regions (mainly gene promoters) containing both conserved and non-conserved CpG sites in 94 human, 36 bovine, and 94 mouse sperm samples, using bisulfite pyrosequencing. We discovered three (NFKB2, RASGEF1C, and RPL6) age-related differentially methylated regions (ageDMRs) in humans, four (CHD7, HDAC11, PAK1, and PTK2B) in bovines, and three (Def6, Nrxn2, and Tbx19) in mice. Remarkably, the identified sperm ageDMRs were all species-specific. Most ageDMRs were in genomic regions with medium methylation levels and large methylation variation. Orthologous regions in species not showing this age effect were either hypermethylated (>80%) or hypomethylated (<20%). In humans and mice, ageDMRs lost methylation, whereas bovine ageDMRs gained methylation with age. Our results are in line with the hypothesis that sperm ageDMRs are in regions under epigenomic evolution and may be part of an epigenetic mechanism(s) for lineage-specific environmental adaptations and provide a solid basis for studies on downstream effects in the genes analyzed here. KW - age-related differentially methylated regions (ageDMRs) KW - bisulfite pyrosequencing KW - mammalian male germline KW - paternal age effect KW - species-specific epigenetic marks KW - sperm DNA methylation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-262301 SN - 2073-4409 VL - 11 IS - 4 ER - TY - JOUR A1 - Fiedler, David A1 - Hirsch, Daniela A1 - El Hajj, Nady A1 - Yang, Howard H. A1 - Hu, Yue A1 - Sticht, Carsten A1 - Nanda, Indrajit A1 - Belle, Sebastian A1 - Rueschoff, Josef A1 - Lee, Maxwell P. A1 - Ried, Thomas A1 - Haaf, Thomas A1 - Gaiser, Timo T1 - Genome‐wide DNA methylation analysis of colorectal adenomas with and without recurrence reveals an association between cytosine‐phosphate‐guanine methylation and histological subtypes JF - Genes, Chromosomes and Cancer N2 - Aberrant methylation of DNA is supposed to be a major and early driver of colonic adenoma development, which may result in colorectal cancer (CRC). Although gene methylation assays are used already for CRC screening, differential epigenetic alterations of recurring and nonrecurring colorectal adenomas have yet not been systematically investigated. Here, we collected a sample set of formalin‐fixed paraffin‐embedded colorectal low‐grade adenomas (n = 72) consisting of primary adenomas without and with recurrence (n = 59), recurrent adenomas (n = 10), and normal mucosa specimens (n = 3). We aimed to unveil differentially methylated CpG positions (DMPs) across the methylome comparing not only primary adenomas without recurrence vs primary adenomas with recurrence but also primary adenomas vs recurrent adenomas using the Illumina Human Methylation 450K BeadChip array. Unsupervised hierarchical clustering exhibited a significant association of methylation patterns with histological adenoma subtypes. No significant DMPs were identified comparing primary adenomas with and without recurrence. Despite that, a total of 5094 DMPs (false discovery rate <0.05; fold change >10%) were identified in the comparisons of recurrent adenomas vs primary adenomas with recurrence (674; 98% hypermethylated), recurrent adenomas vs primary adenomas with and without recurrence (241; 99% hypermethylated) and colorectal adenomas vs normal mucosa (4179; 46% hypermethylated). DMPs in cytosine‐phosphate‐guanine (CpG) islands were frequently hypermethylated, whereas open sea‐ and shelf‐regions exhibited hypomethylation. Gene ontology analysis revealed enrichment of genes associated with the immune system, inflammatory processes, and cancer pathways. In conclusion, our methylation data could assist in establishing a more robust and reproducible histological adenoma classification, which is a prerequisite for improving surveillance guidelines. KW - adenoma KW - DNA methylation KW - epigenetics KW - histological subtype KW - recurrence Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-212676 VL - 58 IS - 11 SP - 783 EP - 797 ER - TY - JOUR A1 - Schneider, Eberhard A1 - El Hajj, Nady A1 - Müller, Fabian A1 - Navarro, Bianca A1 - Haaf, Thomas T1 - Epigenetic Dysregulation in the Prefrontal Cortex of Suicide Completers JF - Cytogenetic and Genome Research N2 - The epigenome is thought to mediate between genes and the environment, particularly in response to adverse life experiences. Similar to other psychiatric diseases, the suicide liability of an individual appears to be influenced by many genetic factors of small effect size as well as by environmental stressors. To identify epigenetic marks associated with suicide, which is considered the endpoint of complex gene-environment interactions, we compared the cortex DNA methylation patterns of 6 suicide completers versus 6 non-psychiatric sudden-death controls, using Illumina 450K methylation arrays. Consistent with a multifactorial disease model, we found DNA methylation changes in a large number of genes, but no changes with large effects reaching genome-wide significance. Global methylation of all analyzed CpG sites was significantly (0.25 percentage point) lower in suicide than in control brains, whereas the vast majority (97%) of the top 1,000 differentially methylated regions (DMRs) were higher methylated (0.6 percentage point) in suicide brains. Annotation analysis of the top 1,000 DMRs revealed an enrichment of differentially methylated promoters in functional categories associated with transcription and expression in the brain. In addition, we performed a comprehensive literature research to identify suicide genes that have been replicated in independent genetic association, brain methylation and/or expression studies. Although, in general, there was no significant overlap between different published data sets or between our top 1,000 DMRs and published data sets, our methylation screen strengthens a number of candidate genes (APLP2, BDNF, HTR1A, NUAK1, PHACTR3, MSMP, SLC6A4, SYN2, and SYNE2) and supports a role for epigenetics in the pathophysiology of suicide. KW - Cortex KW - DNA methylation KW - Suicidal behavior KW - Transcription regulation Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-199032 SN - 1424-8581 SN - 1424-859X VL - 146 IS - 1 ER - TY - JOUR A1 - Schmid, Michael A1 - Steinlein, Claus A1 - Haaf, Thomas A1 - Mijares-Urrutia, Abraham T1 - Nascent ZW Sex Chromosomes in Thecadactylus rapicauda (Reptilia, Squamata, Phyllodactylidae) JF - Cytogenetic and Genome Research N2 - The chromosomes of the turnip-tailed gecko Thecadactylus rapicauda from the Falcón State in northern Venezuela were examined by means of conventional staining, a variety of banding techniques and in situ hybridization with an 18S + 28S rDNA probe. In female specimens, C-banding analyses detected a cryptic W sex chromosome-associated interstitial heterochromatic segment which is absent in the Z sex chromosome. These ZW sex chromosomes are considered to be in a nascent stage of morphological differentiation and are absent in T. rapicauda collected in Guatemala. The amount, location and fluorochrome affinities of constitutive heterochromatin, the position of the nucleolus organizer region, and the genome sizes of female and male individuals were determined. The previously published cytogenetic data on T. rapicauda are discussed. KW - ZW sex chromosomes KW - Gecko Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-199041 SN - 1424-8581 SN - 1424-859X N1 - This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. VL - 143 IS - 4 ER - TY - JOUR A1 - Schneider, Eberhard A1 - El Hajj, Nady A1 - Haaf, Thomas T1 - Epigenetic Information from Ancient DNA Provides New Insights into Human Evolution BT - Commentary on Gokhman D et al. (2014): Reconstructing the DNA Methylation Maps of the Neanderthal and the Denisovan. Science 344:523–527 JF - Brain, Behavior and Evolution N2 - No abstract available. KW - human evolution KW - Neanderthal Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196800 SN - 0006-8977 SN - 1421-9743 N1 - This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. VL - 84 IS - 3 ER - TY - JOUR A1 - Poot, Martin A1 - Haaf, Thomas T1 - Mechanisms of Origin, Phenotypic Effects and Diagnostic Implications of Complex Chromosome Rearrangements JF - Molecular Syndromology N2 - Complex chromosome rearrangements (CCRs) are currently defined as structural genome variations that involve more than 2 chromosome breaks and result in exchanges of chromosomal segments. They are thought to be extremely rare, but their detection rate is rising because of improvements in molecular cytogenetic technology. Their population frequency is also underestimated, since many CCRs may not elicit a phenotypic effect. CCRs may be the result of fork stalling and template switching, microhomology-mediated break-induced repair, breakage-fusion-bridge cycles, or chromothripsis. Patients with chromosomal instability syndromes show elevated rates of CCRs due to impaired DNA double-strand break responses during meiosis. Therefore, the putative functions of the proteins encoded by ATM, BLM, WRN, ATR, MRE11, NBS1, and RAD51 in preventing CCRs are discussed. CCRs may exert a pathogenic effect by either (1) gene dosage-dependent mechanisms, e.g. haploinsufficiency, (2) mechanisms based on disruption of the genomic architecture, such that genes, parts of genes or regulatory elements are truncated, fused or relocated and thus their interactions disturbed - these mechanisms will predominantly affect gene expression - or (3) mixed mutation mechanisms in which a CCR on one chromosome is combined with a different type of mutation on the other chromosome. Such inferred mechanisms of pathogenicity need corroboration by mRNA sequencing. Also, future studies with in vitro models, such as inducible pluripotent stem cells from patients with CCRs, and transgenic model organisms should substantiate current inferences regarding putative pathogenic effects of CCRs. The ramifications of the growing body of information on CCRs for clinical and experimental genetics and future treatment modalities are briefly illustrated with 2 cases, one of which suggests KDM4C(JMJD2C) as a novel candidate gene for mental retardation. KW - triplosufficiency KW - complex chromosome rearrangements KW - DNA double-strand break KW - haploinsufficiency KW - mixed mutation mechanisms KW - structural genome variations Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196524 SN - 1661-8769 SN - 1661-8777 N1 - This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. VL - 6 IS - 3 ER - TY - JOUR A1 - Almanzar, Giovanni A1 - Klein, Matthias A1 - Schmalzing, Marc A1 - Hilligardt, Deborah A1 - El Hajj, Nady A1 - Kneitz, Hermann A1 - Wild, Vanessa A1 - Rosenwald, Andreas A1 - Benoit, Sandrine A1 - Hamm, Henning A1 - Tony, Hans-Peter A1 - Haaf, Thomas A1 - Goebeler, Matthias A1 - Prelog, Martina T1 - Disease Manifestation and Inflammatory Activity as Modulators of Th17/Treg Balance and RORC/FoxP3 Methylation in Systemic Sclerosis JF - International Archives of Allergy and Immunology N2 - Background: There is much evidence that T cells are strongly involved in the pathogenesis of localized and systemic forms of scleroderma (SSc). A dysbalance between FoxP3+ regulatory CD4+ T cells (Tregs) and inflammatory T-helper (Th) 17 cells has been suggested. Methods: The study aimed (1) to investigate the phenotypical and functional characteristics of Th17 and Tregs in SSc patients depending on disease manifestation (limited vs. diffuse cutaneous SSc, dcSSc) and activity, and (2) the transcriptional level and methylation status of Th17- and Treg-specific transcription factors. Results: There was a concurrent accumulation of circulating peripheral IL-17-producing CCR6+ Th cells and FoxP3+ Tregs in patients with dcSSc. At the transcriptional level, Th17- and Treg-associated transcription factors were elevated in SSc. A strong association with high circulating Th17 and Tregs was seen with early, active, and severe disease presentation. However, a diminished suppressive function on autologous lymphocytes was found in SSc-derived Tregs. Significant relative hypermethylation was seen at the gene level for RORC1 and RORC2 in SSc, particularly in patients with high inflammatory activity. Conclusions: Besides the high transcriptional activity of T cells, attributed to Treg or Th17 phenotype, in active SSc disease, Tregs may be insufficient to produce high amounts of IL-10 or to control proliferative activity of effector T cells in SSc. Our results suggest a high plasticity of Tregs strongly associated with the Th17 phenotype. Future directions may focus on enhancing Treg functions and stabilization of the Treg phenotype. KW - methylation KW - systemic sclerosis KW - suppression KW - Tregs KW - Th17 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196577 SN - 1018-2438 SN - 1423-0097 N1 - This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. VL - 171 IS - 2 ER - TY - JOUR A1 - Schmid, Michael A1 - Steinlein, Claus A1 - Feichtinger, Wolfgang A1 - Haaf, Thomas A1 - Mijares-Urrutia, Abraham A1 - Schargel, Walter E. A1 - Hedges, S. Blair T1 - Cytogenetic Studies on Gonatodes (Reptilia, Squamata, Sphaerodactylidae) JF - Cytogenetic and Genome Research N2 - Mitotic and meiotic chromosomes of 5 species of the reptile genus Gonatodes are described by means of conventional staining, banding analyses and in situ hybridization using a synthetic telomeric DNA probe. The amount, location and fluorochrome affinities of constitutive heterochromatin, the number and positions of nucleolus organizer regions, and the patterns of telomeric DNA sequences were determined for most of the species. The karyotypes of G. falconensis and G. taniae from northern Venezuela are distinguished by their extraordinarily reduced diploid chromosome number of 2n = 16, which is the lowest value found so far in reptiles. In contrast to most other reptiles, both species have exclusively large biarmed (meta- and submetacentric) chromosomes. Comparison of the karyotypes of G. falconensis and G. taniae with those of other Gonatodes species indicates that the exceptional 2n = 16 karyotype originated by a series of 8 centric fusions. The karyotypes of G. falconensis and G. taniae are further characterized by the presence of considerable amounts of (TTAGGG)n telomeric sequences in the centromeric regions of all chromosomes. These are probably not only relics of the centric fusion events, but a component of the highly repetitive DNA in the constitutive heterochromatin of the chromosomes. The genome sizes of 4 Gonatodes species were determined using flow cytometry. For comparative purposes, all previously published cytogenetic data on Gonatodes and other sphaerodactylids are included and discussed. KW - banding analyses KW - FISH KW - geckos KW - karyotype evolution KW - meiotic chromosomes KW - mitotic chromosomes Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196753 SN - 1424-8581 SN - 1424-859X N1 - This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. VL - 144 IS - 1 ER -