TY - JOUR A1 - Dornelas, Maria A1 - Antão, Laura H. A1 - Moyes, Faye A1 - Bates, Amanda E. A1 - Magurran, Anne E. A1 - Adam, Dušan A1 - Akhmetzhanova, Asem A. A1 - Appeltans, Ward A1 - Arcos, José Manuel A1 - Arnold, Haley A1 - Ayyappan, Narayanan A1 - Badihi, Gal A1 - Baird, Andrew H. A1 - Barbosa, Miguel A1 - Barreto, Tiago Egydio A1 - Bässler, Claus A1 - Bellgrove, Alecia A1 - Belmaker, Jonathan A1 - Benedetti-Cecchi, Lisandro A1 - Bett, Brian J. A1 - Bjorkman, Anne D. A1 - Błażewicz, Magdalena A1 - Blowes, Shane A. A1 - Bloch, Christopher P. Bloch A1 - Bonebrake, Timothy C. A1 - Boyd, Susan A1 - Bradford, Matt A1 - Brooks, Andrew J. A1 - Brown, James H. A1 - Bruelheide, Helge A1 - Budy, Phaedra A1 - Carvalho, Fernando A1 - Castañeda-Moya, Edward A1 - Chen, Chaolun Allen A1 - Chamblee, John F. A1 - Chase, Tory J. A1 - Siegwart Collier, Laura A1 - Collinge, Sharon K. A1 - Condit, Richard A1 - Cooper, Elisabeth J. A1 - Cornelissen, J. Hans C. A1 - Cotano, Unai A1 - Crow, Shannan Kyle A1 - Damasceno, Gabriella A1 - Davies, Claire H. A1 - Davis, Robert A. A1 - Day, Frank P. A1 - Degraer, Steven A1 - Doherty, Tim S. A1 - Dunn, Timothy E. A1 - Durigan, Giselda A1 - Duffy, J. Emmett A1 - Edelist, Dor A1 - Edgar, Graham J. A1 - Elahi, Robin A1 - Elmendorf, Sarah C. A1 - Enemar, Anders A1 - Ernest, S. K. Morgan A1 - Escribano, Rubén A1 - Estiarte, Marc A1 - Evans, Brian S. A1 - Fan, Tung-Yung A1 - Turini Farah, Fabiano A1 - Loureiro Fernandes, Luiz A1 - Farneda, Fábio Z. A1 - Fidelis, Alessandra A1 - Fitt, Robert A1 - Fosaa, Anna Maria A1 - Franco, Geraldo Antonio Daher Correa A1 - Frank, Grace E. A1 - Fraser, William R. A1 - García, Hernando A1 - Cazzolla Gatti, Roberto A1 - Givan, Or A1 - Gorgone-Barbosa, Elizabeth A1 - Gould, William A. A1 - Gries, Corinna A1 - Grossman, Gary D. A1 - Gutierréz, Julio R. A1 - Hale, Stephen A1 - Harmon, Mark E. A1 - Harte, John A1 - Haskins, Gary A1 - Henshaw, Donald L. A1 - Hermanutz, Luise A1 - Hidalgo, Pamela A1 - Higuchi, Pedro A1 - Hoey, Andrew A1 - Van Hoey, Gert A1 - Hofgaard, Annika A1 - Holeck, Kristen A1 - Hollister, Robert D. A1 - Holmes, Richard A1 - Hoogenboom, Mia A1 - Hsieh, Chih-hao A1 - Hubbell, Stephen P. A1 - Huettmann, Falk A1 - Huffard, Christine L. A1 - Hurlbert, Allen H. A1 - Ivanauskas, Natália Macedo A1 - Janík, David A1 - Jandt, Ute A1 - Jażdżewska, Anna A1 - Johannessen, Tore A1 - Johnstone, Jill A1 - Jones, Julia A1 - Jones, Faith A. M. A1 - Kang, Jungwon A1 - Kartawijaya, Tasrif A1 - Keeley, Erin C. A1 - Kelt, Douglas A. A1 - Kinnear, Rebecca A1 - Klanderud, Kari A1 - Knutsen, Halvor A1 - Koenig, Christopher C. A1 - Kortz, Alessandra R. A1 - Král, Kamil A1 - Kuhnz, Linda A. A1 - Kuo, Chao-Yang A1 - Kushner, David J. A1 - Laguionie-Marchais, Claire A1 - Lancaster, Lesley T. A1 - Lee, Cheol Min A1 - Lefcheck, Jonathan S. A1 - Lévesque, Esther A1 - Lightfoot, David A1 - Lloret, Francisco A1 - Lloyd, John D. A1 - López-Baucells, Adrià A1 - Louzao, Maite A1 - Madin, Joshua S. A1 - Magnússon, Borgþór A1 - Malamud, Shahar A1 - Matthews, Iain A1 - McFarland, Kent P. A1 - McGill, Brian A1 - McKnight, Diane A1 - McLarney, William O. A1 - Meador, Jason A1 - Meserve, Peter L. A1 - Metcalfe, Daniel J. A1 - Meyer, Christoph F. J. A1 - Michelsen, Anders A1 - Milchakova, Nataliya A1 - Moens, Tom A1 - Moland, Even A1 - Moore, Jon A1 - Moreira, Carolina Mathias A1 - Müller, Jörg A1 - Murphy, Grace A1 - Myers-Smith, Isla H. A1 - Myster, Randall W. A1 - Naumov, Andrew A1 - Neat, Francis A1 - Nelson, James A. A1 - Nelson, Michael Paul A1 - Newton, Stephen F. A1 - Norden, Natalia A1 - Oliver, Jeffrey C. A1 - Olsen, Esben M. A1 - Onipchenko, Vladimir G. A1 - Pabis, Krzysztof A1 - Pabst, Robert J. A1 - Paquette, Alain A1 - Pardede, Sinta A1 - Paterson, David M. A1 - Pélissier, Raphaël A1 - Peñuelas, Josep A1 - Pérez-Matus, Alejandro A1 - Pizarro, Oscar A1 - Pomati, Francesco A1 - Post, Eric A1 - Prins, Herbert H. T. A1 - Priscu, John C. A1 - Provoost, Pieter A1 - Prudic, Kathleen L. A1 - Pulliainen, Erkki A1 - Ramesh, B. R. A1 - Ramos, Olivia Mendivil A1 - Rassweiler, Andrew A1 - Rebelo, Jose Eduardo A1 - Reed, Daniel C. A1 - Reich, Peter B. A1 - Remillard, Suzanne M. A1 - Richardson, Anthony J. A1 - Richardson, J. Paul A1 - van Rijn, Itai A1 - Rocha, Ricardo A1 - Rivera-Monroy, Victor H. A1 - Rixen, Christian A1 - Robinson, Kevin P. A1 - Rodrigues, Ricardo Ribeiro A1 - de Cerqueira Rossa-Feres, Denise A1 - Rudstam, Lars A1 - Ruhl, Henry A1 - Ruz, Catalina S. A1 - Sampaio, Erica M. A1 - Rybicki, Nancy A1 - Rypel, Andrew A1 - Sal, Sofia A1 - Salgado, Beatriz A1 - Santos, Flavio A. M. A1 - Savassi-Coutinho, Ana Paula A1 - Scanga, Sara A1 - Schmidt, Jochen A1 - Schooley, Robert A1 - Setiawan, Fakhrizal A1 - Shao, Kwang-Tsao A1 - Shaver, Gaius R. A1 - Sherman, Sally A1 - Sherry, Thomas W. A1 - Siciński, Jacek A1 - Sievers, Caya A1 - da Silva, Ana Carolina A1 - da Silva, Fernando Rodrigues A1 - Silveira, Fabio L. A1 - Slingsby, Jasper A1 - Smart, Tracey A1 - Snell, Sara J. A1 - Soudzilovskaia, Nadejda A. A1 - Souza, Gabriel B. G. A1 - Souza, Flaviana Maluf A1 - Souza, Vinícius Castro A1 - Stallings, Christopher D. A1 - Stanforth, Rowan A1 - Stanley, Emily H. A1 - Sterza, José Mauro A1 - Stevens, Maarten A1 - Stuart-Smith, Rick A1 - Suarez, Yzel Rondon A1 - Supp, Sarah A1 - Tamashiro, Jorge Yoshio A1 - Tarigan, Sukmaraharja A1 - Thiede, Gary P. A1 - Thorn, Simon A1 - Tolvanen, Anne A1 - Toniato, Maria Teresa Zugliani A1 - Totland, Ørjan A1 - Twilley, Robert R. A1 - Vaitkus, Gediminas A1 - Valdivia, Nelson A1 - Vallejo, Martha Isabel A1 - Valone, Thomas J. A1 - Van Colen, Carl A1 - Vanaverbeke, Jan A1 - Venturoli, Fabio A1 - Verheye, Hans M. A1 - Vianna, Marcelo A1 - Vieira, Rui P. A1 - Vrška, Tomáš A1 - Vu, Con Quang A1 - Vu, Lien Van A1 - Waide, Robert B. A1 - Waldock, Conor A1 - Watts, Dave A1 - Webb, Sara A1 - Wesołowski, Tomasz A1 - White, Ethan P. A1 - Widdicombe, Claire E. A1 - Wilgers, Dustin A1 - Williams, Richard A1 - Williams, Stefan B. A1 - Williamson, Mark A1 - Willig, Michael R. A1 - Willis, Trevor J. A1 - Wipf, Sonja A1 - Woods, Kerry D. A1 - Woehler, Eric J. A1 - Zawada, Kyle A1 - Zettler, Michael L. T1 - BioTIME: A database of biodiversity time series for the Anthropocene JF - Global Ecology and Biogeography N2 - Motivation The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene. Main types of variables included The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record. Spatial location and grain BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km2 (158 cm2) to 100 km2 (1,000,000,000,000 cm2). Time period and grain BioTIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year. Major taxa and level of measurement BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates. Software format .csv and .SQL. KW - biodiversity KW - global KW - spatial KW - species richness KW - temporal KW - turnover Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-222846 VL - 27 ER - TY - JOUR A1 - Waszak, Sebastian M A1 - Northcott, Paul A A1 - Buchhalter, Ivo A1 - Robinson, Giles W A1 - Sutter, Christian A1 - Groebner, Susanne A1 - Grund, Kerstin B A1 - Brugières, Laurence A1 - Jones, David T W A1 - Pajtler, Kristian W A1 - Morrissy, A Sorana A1 - Kool, Marcel A1 - Sturm, Dominik A1 - Chavez, Lukas A1 - Ernst, Aurelie A1 - Brabetz, Sebastian A1 - Hain, Michael A1 - Zichner, Thomas A1 - Segura-Wang, Maia A1 - Weischenfeldt, Joachim A1 - Rausch, Tobias A1 - Mardin, Balca R A1 - Zhou, Xin A1 - Baciu, Cristina A1 - Lawerenz, Christian A1 - Chan, Jennifer A A1 - Varlet, Pascale A1 - Guerrini-Rousseau, Lea A1 - Fults, Daniel W A1 - Grajkowska, Wiesława A1 - Hauser, Peter A1 - Jabado, Nada A1 - Ra, Young-Shin A1 - Zitterbart, Karel A1 - Shringarpure, Suyash S A1 - De La Vega, Francisco M A1 - Bustamante, Carlos D A1 - Ng, Ho-Keung A1 - Perry, Arie A1 - MacDonald, Tobey J A1 - Driever, Pablo Hernáiz A1 - Bendel, Anne E A1 - Bowers, Daniel C A1 - McCowage, Geoffrey A1 - Chintagumpala, Murali M A1 - Cohn, Richard A1 - Hassall, Timothy A1 - Fleischhack, Gudrun A1 - Eggen, Tone A1 - Wesenberg, Finn A1 - Feychting, Maria A1 - Lannering, Birgitta A1 - Schüz, Joachim A1 - Johansen, Christoffer A1 - Andersen, Tina V A1 - Röösli, Martin A1 - Kuehni, Claudia E A1 - Grotzer, Michael A1 - Kjaerheim, Kristina A1 - Monoranu, Camelia M A1 - Archer, Tenley C A1 - Duke, Elizabeth A1 - Pomeroy, Scott L A1 - Shelagh, Redmond A1 - Frank, Stephan A1 - Sumerauer, David A1 - Scheurlen, Wolfram A1 - Ryzhova, Marina V A1 - Milde, Till A1 - Kratz, Christian P A1 - Samuel, David A1 - Zhang, Jinghui A1 - Solomon, David A A1 - Marra, Marco A1 - Eils, Roland A1 - Bartram, Claus R A1 - von Hoff, Katja A1 - Rutkowksi, Stefan A1 - Ramaswamy, Vijay A1 - Gilbertson, Richard J A1 - Korshunov, Andrey A1 - Taylor, Michael D A1 - Lichter, Peter A1 - Malkin, David A1 - Gajjar, Amar A1 - Korbel, Jan O A1 - Pfister, Stefan M T1 - Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort JF - The Lancet Oncology N2 - Background Medulloblastoma is associated with rare hereditary cancer predisposition syndromes; however, consensus medulloblastoma predisposition genes have not been defined and screening guidelines for genetic counselling and testing for paediatric patients are not available. We aimed to assess and define these genes to provide evidence for future screening guidelines. Methods In this international, multicentre study, we analysed patients with medulloblastoma from retrospective cohorts (International Cancer Genome Consortium [ICGC] PedBrain, Medulloblastoma Advanced Genomics International Consortium [MAGIC], and the CEFALO series) and from prospective cohorts from four clinical studies (SJMB03, SJMB12, SJYC07, and I-HIT-MED). Whole-genome sequences and exome sequences from blood and tumour samples were analysed for rare damaging germline mutations in cancer predisposition genes. DNA methylation profiling was done to determine consensus molecular subgroups: WNT (MBWNT), SHH (MBSHH), group 3 (MBGroup3), and group 4 (MBGroup4). Medulloblastoma predisposition genes were predicted on the basis of rare variant burden tests against controls without a cancer diagnosis from the Exome Aggregation Consortium (ExAC). Previously defined somatic mutational signatures were used to further classify medulloblastoma genomes into two groups, a clock-like group (signatures 1 and 5) and a homologous recombination repair deficiency-like group (signatures 3 and 8), and chromothripsis was investigated using previously established criteria. Progression-free survival and overall survival were modelled for patients with a genetic predisposition to medulloblastoma. Findings We included a total of 1022 patients with medulloblastoma from the retrospective cohorts (n=673) and the four prospective studies (n=349), from whom blood samples (n=1022) and tumour samples (n=800) were analysed for germline mutations in 110 cancer predisposition genes. In our rare variant burden analysis, we compared these against 53 105 sequenced controls from ExAC and identified APC, BRCA2, PALB2, PTCH1, SUFU, and TP53 as consensus medulloblastoma predisposition genes according to our rare variant burden analysis and estimated that germline mutations accounted for 6% of medulloblastoma diagnoses in the retrospective cohort. The prevalence of genetic predispositions differed between molecular subgroups in the retrospective cohort and was highest for patients in the MBSHH subgroup (20% in the retrospective cohort). These estimates were replicated in the prospective clinical cohort (germline mutations accounted for 5% of medulloblastoma diagnoses, with the highest prevalence [14%] in the MBSHH subgroup). Patients with germline APC mutations developed MBWNT and accounted for most (five [71%] of seven) cases of MBWNT that had no somatic CTNNB1 exon 3 mutations. Patients with germline mutations in SUFU and PTCH1 mostly developed infant MBSHH. Germline TP53 mutations presented only in childhood patients in the MBSHH subgroup and explained more than half (eight [57%] of 14) of all chromothripsis events in this subgroup. Germline mutations in PALB2 and BRCA2 were observed across the MBSHH, MBGroup3, and MBGroup4 molecular subgroups and were associated with mutational signatures typical of homologous recombination repair deficiency. In patients with a genetic predisposition to medulloblastoma, 5-year progression-free survival was 52% (95% CI 40–69) and 5-year overall survival was 65% (95% CI 52–81); these survival estimates differed significantly across patients with germline mutations in different medulloblastoma predisposition genes. Interpretation Genetic counselling and testing should be used as a standard-of-care procedure in patients with MBWNT and MBSHH because these patients have the highest prevalence of damaging germline mutations in known cancer predisposition genes. We propose criteria for routine genetic screening for patients with medulloblastoma based on clinical and molecular tumour characteristics. Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-233425 VL - 19 ER - TY - JOUR A1 - Mieszczanek, Pawel A1 - Robinson, Thomas M. A1 - Dalton, Paul D. A1 - Hutmacher, Dietmar W. T1 - Convergence of Machine Vision and Melt Electrowriting JF - Advanced Materials N2 - Melt electrowriting (MEW) is a high-resolution additive manufacturing technology that balances multiple parametric variables to arrive at a stable fabrication process. The better understanding of this balance is underscored here using high-resolution camera vision of jet stability profiles in different electrical fields. Complementing this visual information are fiber-diameter measurements obtained at precise points, allowing the correlation to electrified jet properties. Two process signatures—the jet angle and for the first time, the Taylor cone area—are monitored and analyzed with a machine vision system, while SEM imaging for diameter measurement correlates real-time information. This information, in turn, allows the detection and correction of fiber pulsing for accurate jet placement on the collector, and the in-process assessment of the fiber diameter. Improved process control is used to successfully fabricate collapsible MEW tubes; structures that require exceptional accuracy and printing stability. Using a precise winding angle of 60° and 300 layers, the resulting 12 mm-thick tubular structures have elastic snap-through instabilities associated with mechanical metamaterials. This study provides a detailed analysis of the fiber pulsing occurrence in MEW and highlights the importance of real-time monitoring of the Taylor cone volume to better understand, control, and predict printing instabilities. KW - polycaprolactone KW - 3D printing KW - digitization KW - electrohydrodynamic KW - melt electrospinning writing Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256365 VL - 33 IS - 29 ER - TY - JOUR A1 - Robinson, Thomas M. A1 - Hutmacher, Dietmar W. A1 - Dalton, Paul D. T1 - The next frontier in melt electrospinning: taming the jet JF - Advanced Functional Materials N2 - There is a specialized niche for the electrohydrodynamic jetting of melts, from biomedical products to filtration and soft matter applications. The next frontier includes optics, microfluidics, flexible electronic devices, and soft network composites in biomaterial science and soft robotics. The recent emphasis on reproducibly direct‐writing continual molten jets has enabled a spectrum of contemporary microscale 3D objects to be fabricated. One strong suit of melt processing is the capacity for the jet to solidify rapidly into a fiber, thus fixing a particular structure into position. The ability to direct‐write complex and multiscaled architectures and structures has greatly contributed to a large number of recent studies, explicitly, toward fiber–hydrogel composites and fugitive inks, and has expanded into several biomedical applications such as cartilage, skin, periosteum, and cardiovascular tissue engineering. Following the footsteps of a publication that summarized melt electrowriting literature up to 2015, the most recent literature from then until now is reviewed to provide a continuous and comprehensive timeline that demonstrates the latest advances as well as new perspectives for this emerging technology. KW - 3D printing KW - additive manufacturing KW - eletrhydrodynamic KW - melt electrospinning writing Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-204819 VL - 29 ER - TY - JOUR A1 - Knop, Janin A1 - Spilgies, Lisanne M. A1 - Rufli, Stefanie A1 - Reinhart, Ramona A1 - Vasilikos, Lazaros A1 - Yabal, Monica A1 - Owsley, Erika A1 - Jost, Philipp J. A1 - Marsh, Rebecca A. A1 - Wajant, Harald A1 - Robinson, Mark D. A1 - Kaufmann, Thomas A1 - W. Wei-Lynn, Wong T1 - TNFR2 induced priming of the inflammasome leads to a RIPK1-dependent cell death in the absence of XIAP JF - Cell Death & Disease N2 - The pediatric immune deficiency X-linked proliferative disease-2 (XLP-2) is a unique disease, with patients presenting with either hemophagocytic lymphohistiocytosis (HLH) or intestinal bowel disease (IBD). Interestingly, XLP-2 patients display high levels of IL-18 in the serum even while in stable condition, presumably through spontaneous inflammasome activation. Recent data suggests that LPS stimulation can trigger inflammasome activation through a TNFR2/TNF/TNFR1 mediated loop in xiap−/− macrophages. Yet, the direct role TNFR2-specific activation plays in the absence of XIAP is unknown. We found TNFR2-specific activation leads to cell death in xiap−/− myeloid cells, particularly in the absence of the RING domain. RIPK1 kinase activity downstream of TNFR2 resulted in a TNF/TNFR1 cell death, independent of necroptosis. TNFR2-specific activation leads to a similar inflammatory NF-kB driven transcriptional profile as TNFR1 activation with the exception of upregulation of NLRP3 and caspase-11. Activation and upregulation of the canonical inflammasome upon loss of XIAP was mediated by RIPK1 kinase activity and ROS production. While both the inhibition of RIPK1 kinase activity and ROS production reduced cell death, as well as release of IL-1β, the release of IL-18 was not reduced to basal levels. This study supports targeting TNFR2 specifically to reduce IL-18 release in XLP-2 patients and to reduce priming of the inflammasome components. KW - cell death and immune response KW - inflammation Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-325946 VL - 10 ER -