TY - JOUR A1 - Mihatsch, Patrick W. A1 - Beissert, Matthias A1 - Pomper, Martin G. A1 - Bley, Thorsten A. A1 - Seitz, Anna K. A1 - Kübler, Hubert A1 - Buck, Andreas K. A1 - Rowe, Steven P. A1 - Serfling, Sebastian E. A1 - Hartrampf, Philipp E. A1 - Werner, Rudolf A. T1 - Changing threshold-based segmentation has no relevant impact on semi-quantification in the context of structured reporting for PSMA-PET/CT JF - Cancers N2 - Prostate-specific membrane antigen (PSMA)-directed positron emission tomography/computed tomography (PET/CT) is increasingly utilized for staging of men with prostate cancer (PC). To increase interpretive certainty, the standardized PSMA reporting and data system (RADS) has been proposed. Using PSMA-RADS, we characterized lesions in 18 patients imaged with \(^{18}\)F-PSMA-1007 PET/CT for primary staging and determined the stability of semi-quantitative parameters. Six hundred twenty-three lesions were categorized according to PSMA-RADS and manually segmented. In this context, PSMA-RADS-3A (soft-tissue) or -3B (bone) lesions are defined as being indeterminate for the presence of PC. For PMSA-RADS-4 and -5 lesions; however, PC is highly likely or almost certainly present [with further distinction based on absence (PSMA-RADS-4) or presence (PSMA-RADS-5) of correlative findings on CT]. Standardized uptake values (SUV\(_{max}\), SUV\(_{peak}\), SUV\(_{mean}\)) were recorded, and volumetric parameters [PSMA-derived tumor volume (PSMA-TV); total lesion PSMA (TL-PSMA)] were determined using different maximum intensity thresholds (MIT) (40 vs. 45 vs. 50%). SUV\(_{max}\) was significantly higher in PSMA-RADS-5 lesions compared to all other PSMA-RADS categories (p ≤ 0.0322). In particular, the clinically challenging PSMA-RADS-3A lesions showed significantly lower SUV\(_{max}\) and SUV\(_{peak}\) compared to the entire PSMA-RADS-4 or -5 cohort (p < 0.0001), while for PSMA-RADS-3B this only applies when compared to the entire PSMA-RADS-5 cohort (p < 0.0001), but not to the PSMA-RADS-4 cohort (SUV\(_{max}\), p = 0.07; SUV\(_{peak}\), p = 0.08). SUV\(_{mean}\) (p = 0.30) and TL-PSMA (p = 0.16) in PSMA-RADS-5 lesions were not influenced by changing the MIT, while PSMA-TV showed significant differences when comparing 40 vs. 50% MIT (p = 0.0066), which was driven by lymph nodes (p = 0.0239), but not bone lesions (p = 0.15). SUV\(_{max}\) was significantly higher in PSMA-RADS-5 lesions compared to all other PSMA-RADS categories in \(^{18}\)F-PSMA-1007 PET/CT. As such, the latter parameter may assist the interpreting molecular imaging specialist in assigning the correct PSMA-RADS score to sites of disease, thereby increasing diagnostic certainty. In addition, changes of the MIT in PSMA-RADS-5 lesions had no significant impact on SUV\(_{mean}\) and TL-PSMA in contrast to PSMA-TV. KW - \(^{18}\)F-PSMA-1007 KW - PET/CT KW - staging KW - prostate cancer KW - standardized reporting system KW - PSMA-RADS Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-254782 SN - 2072-6694 VL - 14 IS - 2 ER - TY - JOUR A1 - Guggenberger, Konstanze V. A1 - Bley, Thorsten A. A1 - Vogt, Marius L. A1 - Urbach, Horst A1 - Meckel, Stephan T1 - High-Resolution Black Blood Vessel Wall Imaging in COVID-19 Encephalopathy-Is it Really Endotheliitis? JF - Clinical Neuroradiology N2 - No abstract available. KW - Covid-19 KW - encephalopathy KW - endotheliitis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-264794 VL - 32 IS - 1 ER - TY - JOUR A1 - Herz, Stefan A1 - Stefanescu, Maria R. A1 - Lohr, David A1 - Vogel, Patrick A1 - Kosmala, Aleksander A1 - Terekhov, Maxim A1 - Weng, Andreas M. A1 - Grunz, Jan-Peter A1 - Bley, Thorsten A. A1 - Schreiber, Laura M. T1 - Effects of image homogeneity on stenosis visualization at 7 T in a coronary artery phantom study: With and without B1-shimming and parallel transmission JF - PloS One N2 - Background To investigate the effects of B\(_1\)-shimming and radiofrequency (RF) parallel transmission (pTX) on the visualization and quantification of the degree of stenosis in a coronary artery phantom using 7 Tesla (7 T) magnetic resonance imaging (MRI). Methods Stenosis phantoms with different grades of stenosis (0%, 20%, 40%, 60%, 80%, and 100%; 5 mm inner vessel diameter) were produced using 3D printing (clear resin). Phantoms were imaged with four different concentrations of diluted Gd-DOTA representing established arterial concentrations after intravenous injection in humans. Samples were centrally positioned in a thorax phantom of 30 cm diameter filled with a custom-made liquid featuring dielectric properties of muscle tissue. MRI was performed on a 7 T whole-body system. 2D-gradient-echo sequences were acquired with an 8-channel transmit 16-channel receive (8 Tx / 16 Rx) cardiac array prototype coil with and without pTX mode. Measurements were compared to those obtained with identical scan parameters using a commercially available 1 Tx / 16 Rx single transmit coil (sTX). To assess reproducibility, measurements (n = 15) were repeated at different horizontal angles with respect to the B0-field. Results B\(_1\)-shimming and pTX markedly improved flip angle homogeneity across the thorax phantom yielding a distinctly increased signal-to-noise ratio (SNR) averaged over a whole slice relative to non-manipulated RF fields. Images without B\(_1\)-shimming showed shading artifacts due to local B\(_1\)\(^+\)-field inhomogeneities, which hampered stenosis quantification in severe cases. In contrast, B\(_1\)-shimming and pTX provided superior image homogeneity. Compared with a conventional sTX coil higher grade stenoses (60% and 80%) were graded significantly (p<0.01) more precise. Mild to moderate grade stenoses did not show significant differences. Overall, SNR was distinctly higher with B\(_1\)-shimming and pTX than with the conventional sTX coil (inside the stenosis phantoms 14%, outside the phantoms 32%). Both full and half concentration (10.2 mM and 5.1 mM) of a conventional Gd-DOTA dose for humans were equally suitable for stenosis evaluation in this phantom study. Conclusions B\(_1\)-shimming and pTX at 7 T can distinctly improve image homogeneity and therefore provide considerably more accurate MR image analysis, which is beneficial for imaging of small vessel structures. KW - stenosis KW - magnetic resonance imaging KW - thorax KW - in vivo imaging KW - coronary arteries KW - image processing KW - 3D printing KW - signal to noise ratio Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300129 VL - 17 IS - 6 ER -