TY - JOUR A1 - Kaluza, Benjamin F. A1 - Wallace, Helen A1 - Keller, Alexander A1 - Heard, Tim A. A1 - Jeffers, Bradley A1 - Drescher, Nora A1 - Blüthgen, Nico A1 - Leonhardt, Sara D. T1 - Generalist social bees maximize diversity intake in plant species-rich and resource-abundant environments JF - Ecosphere N2 - Numerous studies revealed a positive relationship between biodiversity and ecosystem functioning, suggesting that biodiverse environments may not only enhance ecosystem processes, but also benefit individual ecosystem members by, for example, providing a higher diversity of resources. Whether and how the number of available resources affects resource collection and subsequently consumers (e.g., through impacting functions associated with resources) have, however, been little investigated, although a better understanding of this relationship may help explain why the abundance and richness of many animal species typically decline with decreasing plant (resource) diversity. Using a social bee species as model (Tetragonula carbonaria), we investigated how plant species richness—recorded for study sites located in different habitats—and associated resource abundance affected the diversity and functionality (here defined as nutritional content and antimicrobial activity) of resources (i.e., pollen, nectar, and resin) collected by a generalist herbivorous consumer. The diversity of both pollen and resin collected strongly increased with increasing plant/tree species richness, while resource abundance was only positively correlated with resin diversity. These findings suggest that bees maximize resource diversity intake in (resource) diverse habitats. Collecting more diverse resources did, however, not increase their functionality, which appeared to be primarily driven by the surrounding (plant) source community in our study. In generalist herbivores, maximizing resource diversity intake may therefore primarily secure collection of sufficient amounts of resources across the entire foraging season, but it also ensures that the allocated resources meet all functional needs. Decreasing available resource diversity may thus impact consumers primarily by reduced resource abundance, but also by reduced resource functionality, particularly when resources of high functionality (e.g., from specific plant species) become scarce. KW - functional complementarity KW - functional redundancy KW - Meliponini KW - nutritional ecology KW - plant–insect interactions KW - pollinator decline Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-171155 VL - 8 IS - 3 ER - TY - JOUR A1 - Trinkl, Moritz A1 - Kaluza, Benjamin F. A1 - Wallace, Helen A1 - Heard, Tim A. A1 - Keller, Alexander A1 - Leonhardt, Sara D. T1 - Floral Species Richness Correlates with Changes in the Nutritional Quality of Larval Diets in a Stingless Bee JF - Insects N2 - Bees need food of appropriate nutritional quality to maintain their metabolic functions. They largely obtain all required nutrients from floral resources, i.e., pollen and nectar. However, the diversity, composition and nutritional quality of floral resources varies with the surrounding environment and can be strongly altered in human-impacted habitats. We investigated whether differences in plant species richness as found in the surrounding environment correlated with variation in the floral diversity and nutritional quality of larval provisions (i.e., mixtures of pollen, nectar and salivary secretions) composed by the mass-provisioning stingless bee Tetragonula carbonaria (Apidae: Meliponini). We found that the floral diversity of larval provisions increased with increasing plant species richness. The sucrose and fat (total fatty acid) content and the proportion and concentration of the omega-6 fatty acid linoleic acid decreased, whereas the proportion of the omega-3 fatty acid linolenic acid increased with increasing plant species richness. Protein (total amino acid) content and amino acid composition did not change. The protein to fat (P:F) ratio, known to affect bee foraging, increased on average by more than 40% from plantations to forests and gardens, while the omega-6:3 ratio, known to negatively affect cognitive performance, decreased with increasing plant species richness. Our results suggest that plant species richness may support T. carbonaria colonies by providing not only a continuous resource supply (as shown in a previous study), but also floral resources of high nutritional quality. KW - floral resources KW - plant-insect interactions KW - nutrition KW - biodiversity KW - bee decline Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200605 SN - 2075-4450 VL - 11 IS - 2 ER -