TY - JOUR A1 - Verma, Pramod Kumar A1 - Steinbacher, Andreas A1 - Schmiedel, Alexander A1 - Nuernberger, Patrick A1 - Brixner, Tobias T1 - Excited-state intramolecular proton transfer of 2-acetylindan-1,3-dione studied by ultrafast absorption and fluorescence spectroscopy JF - Structural Dynamics N2 - We employ transient absorption from the deep-UV to the visible region and fluorescence upconversion to investigate the photoinduced excited-state intramolecular proton-transfer dynamics in a biologically relevant drug molecule, 2-acetylindan-1,3-dione. The molecule is a ß-diketone which in the electronic ground state exists as exocyclic enol with an intramolecular H-bond. Upon electronic excitation at 300 nm, the first excited state of the exocyclic enol is initially populated, followed by ultrafast proton transfer (≈160 fs) to form the vibrationally hot endocyclic enol. Subsequently, solvent-induced vibrational relaxation takes place (≈10 ps) followed by decay (≈390 ps) to the corresponding ground state. KW - time resolved spectroscopy KW - ground states KW - fluorescence spectra KW - absorption spectra KW - ultraviolet light KW - hydrogen bonding KW - excited states KW - reaction mechanisms KW - fluorescence KW - solvents Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-181301 VL - 3 ER - TY - INPR A1 - Lambert, Christoph A1 - Völker, Sebastian F. A1 - Koch, Federico A1 - Schmiedel, Alexander A1 - Holzapfel, Marco A1 - Humeniuk, Alexander A1 - Röhr, Merle I. S. A1 - Mitric, Roland A1 - Brixner, Tobias T1 - Energy Transfer Between Squaraine Polymer Sections: From helix to zig-zag and All the Way Back T2 - Journal of the American Chemical Society N2 - Joint experimental and theoretical study of the absorption spectra of squaraine polymers in solution provide evidence that two different conformations are present in solution: a helix and a zig-zag structure. This unique situation allows investigating ultrafast energy transfer processes between different structural segments within a single polymer chain in solution. The understanding of the underlying dynamics is of fundamental importance for the development of novel materials for light-harvesting and optoelectronic applications. We combine here femtosecond transient absorption spectroscopy with time-resolved 2D electronic spectroscopy showing that ultrafast energy transfer within the squaraine polymer chains proceeds from initially excited helix segments to zig-zag segments or vice versa, depending on the solvent as well as on the excitation wavenumber. These observations contrast other conjugated polymers such as MEH-PPV where much slower intrachain energy transfer was reported. The reason for the very fast energy transfer in squaraine polymers is most likely a close matching of the density of states between donor and acceptor polymer segments because of very small reorganization energy in these cyanine-like chromophores. KW - energy transfer dynamics KW - squaraine polymer Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159607 UR - http://dx.doi.org/10.1021/jacs.5b03644 N1 - This document is the unedited Author's version of a Submitted Work that war subsequently accepted for publication in Journal of the American Chemical Society, copyright American Chemical Society after peer review. To access the final edited and published work see doi:10.1021/jacs.5b03644. ER - TY - INPR A1 - Huber, Bernhard A1 - Pres, Sebastian A1 - Wittmann, Emanuel A1 - Dietrich, Lysanne A1 - Lüttig, Julian A1 - Fersch, Daniel A1 - Krauss, Enno A1 - Friedrich, Daniel A1 - Kern, Johannes A1 - Lisinetskii, Victor A1 - Hensen, Matthias A1 - Hecht, Bert A1 - Bratschitsch, Rudolf A1 - Riedle, Eberhard A1 - Brixner, Tobias T1 - Space- and time-resolved UV-to-NIR surface spectroscopy and 2D nanoscopy at 1 MHz repetition rate N2 - We describe a setup for time-resolved photoemission electron microscopy (TRPEEM) with aberration correction enabling 3 nm spatial resolution and sub-20 fs temporal resolution. The latter is realized by our development of a widely tunable (215–970 nm) noncollinear optical parametric amplifier (NOPA) at 1 MHz repetition rate. We discuss several exemplary applications. Efficient photoemission from plasmonic Au nanoresonators is investigated with phase-coherent pulse pairs from an actively stabilized interferometer. More complex excitation fields are created with a liquid-crystal-based pulse shaper enabling amplitude and phase shaping of NOPA pulses with spectral components from 600 to 800 nm. With this system we demonstrate spectroscopy within a single plasmonic nanoslit resonator by spectral amplitude shaping and investigate the local field dynamics with coherent two-dimensional (2D) spectroscopy at the nanometer length scale (“2D nanoscopy”). We show that the local response varies across a distance as small as 33 nm in our sample. Further, we report two-color pump–probe experiments using two independent NOPA beamlines. We extract local variations of the excited-state dynamics of a monolayered 2D material (WSe2) that we correlate with low-energy electron microscopy (LEEM) and reflectivity (LEER) measurements. Finally, we demonstrate the in-situ sample preparation capabilities for organic thin films and their characterization via spatially resolved electron diffraction and dark-field LEEM. KW - Photoemission electron microscopy PEEM KW - Low energy electron microscopy LEEM KW - Spatially resolved 2D spectroscopy KW - Two-color pump-probe spectroscopy KW - Time-resolved photoemission electron microscopy Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-191906 SN - 0034-6748 N1 - This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Review of Scientific Instruments 90, 113103 (2019); https://doi.org/10.1063/1.5115322 and may be found at https://doi.org/10.1063/1.5115322. ER - TY - JOUR A1 - Süß, Jasmin A1 - Wehner, Johannes G. A1 - Dostál, Jakub A1 - Engel, Volker A1 - Brixner, Tobias T1 - Mapping of exciton-exciton annihilation in a molecular dimer via fifth-order femtosecond two-dimensional spectroscopy JF - Journal of Physical Chemistry Letters N2 - We present a theoretical study on exciton–exciton annihilation (EEA) in a molecular dimer. This process is monitored using a fifth-order coherent two-dimensional (2D) spectroscopy as was recently proposed by Dostál et al. [Nat. Commun. 9, 2466 (2018)]. Using an electronic three-level system for each monomer, we analyze the different paths which contribute to the 2D spectrum. The spectrum is determined by two entangled relaxation processes, namely, the EEA and the direct relaxation of higher lying excited states. It is shown that the change of the spectrum as a function of a pulse delay can be linked directly to the presence of the EEA process. KW - exciton-exciton KW - Exziton KW - Spektroskopie KW - EEA KW - 2Dimensionale Spektroskopie KW - exciton Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178420 UR - https://aip.scitation.org/doi/full/10.1063/1.5086151 N1 - This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in J. Süß et al., J. Chem. Phys. 150, 104304 (2019); https://doi.org/10.1063/1.5086151 and may be found at https://doi.org/10.1063/1.5086151. VL - 150 IS - 10 ER - TY - INPR A1 - Süß, Jasmin A1 - Wehner, Johannes G. A1 - Dostál, Jakub A1 - Engel, Volker A1 - Brixner, Tobias T1 - Mapping of exciton-exciton annihilation in a molecular dimer via fifth-order femtosecond two-dimensional spectroscopy T2 - Journal of Physical Chemistry Letters N2 - We present a theoretical study on exciton–exciton annihilation (EEA) in a molecular dimer. This process is monitored using a fifth-order coherent two-dimensional (2D) spectroscopy as was recently proposed by Dostál et al. [Nat. Commun. 9, 2466 (2018)]. Using an electronic three-level system for each monomer, we analyze the different paths which contribute to the 2D spectrum. The spectrum is determined by two entangled relaxation processes, namely, the EEA and the direct relaxation of higher lying excited states. It is shown that the change of the spectrum as a function of a pulse delay can be linked directly to the presence of the EEA process. KW - Exziton KW - Spektroskopie KW - Exciton KW - 2Dimensionale Spektroskopie KW - EEA KW - exciton-exciton Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178482 UR - https://aip.scitation.org/doi/full/10.1063/1.5086151 N1 - This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in J. Süß et al.,J. Chem. Phys. 150, 104304 (2019); https://doi.org/10.1063/1.5086151 and may be found at https://doi.org/10.1063/1.5086151 ER - TY - INPR A1 - Müller, Stefan A1 - Draeger, Simon A1 - Ma, Kiaonan A1 - Hensen, Matthias A1 - Kenneweg, Tristan A1 - Pfeiffer, Walter A1 - Brixner, Tobias T1 - Fluorescence-Detected Two-Quantum and One-Quantum-Two-Quantum 2D Electronic Spectroscopy T2 - Journal of Physical Chemistry Letters N2 - We demonstrate two-quantum (2Q) coherent two-dimensional (2D)electronic spectroscopy using a shot-to-shot-modulated pulse shaper and fluorescence detection. Broadband collinear excitation is realized with the supercontinuum output of an argon-filled hollow-core fiber, enabling us to excite multiple transitions simultaneously in the visible range. The 2Q contribution is extracted via a three-pulse sequence with 16-fold phase cycling and simulated employing cresyl violet as a model system. Furthermore, we report the first experimental realization of one-quantum−two-quantum (1Q-2Q) 2D spectroscopy, offering less congested spectra as compared with the 2Q implementation. We avoid scattering artifacts and nonresonant solvent contributions by using fluorescence as the observable. This allows us to extract quantitative information about doubly excited states that agree with literature expectations. The high sensitivity and background-free nature of fluorescence detection allow for a general applicability of this method to many other systems. KW - Zweidimensionale Spektroskopie KW - elektronisch angeregte Zustände KW - Doppelquantenkohärenz KW - Fluoreszenz KW - Optische Spektroskopie KW - Molekülzustand Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173468 UR - https://pubs.acs.org/doi/10.1021/acs.jpclett.8b00541 ER - TY - JOUR A1 - Hoche, Joscha A1 - Schulz, Alexander A1 - Dietrich, Lysanne Monika A1 - Humeniuk, Alexander A1 - Stolte, Matthias A1 - Schmidt, David A1 - Brixner, Tobias A1 - Würthner, Frank A1 - Mitric, Roland T1 - The origin of the solvent dependence of fluorescence quantum yields in dipolar merocyanine dyes JF - Chemical Science N2 - Fluorophores with high quantum yields are desired for a variety of applications. Optimization of promising chromophores requires an understanding of the non-radiative decay channels that compete with the emission of photons. We synthesized a new derivative of the famous laser dye 4-dicyanomethylen-2-methyl-6-p-dimethylaminostyryl-4H-pyran (DCM),i.e., merocyanine 4-(dicyanomethylene)-2-tert-butyl-6-[3-(3-butyl-benzothiazol-2-ylidene)1-propenyl]-4H-pyran (DCBT). We measured fluorescence lifetimes and quantum yields in a variety of solvents and found a trend opposite to the energy gap law.This motivated a theoretical investigation into the possible non-radiative decay channels. We propose that a barrier to a conical intersection exists that is very sensitive to the solvent polarity. The conical intersection is characterized by a twisted geometry which allows a subsequent photoisomerization. Transient absorption measurements confirmed the formation of a photoisomer in unpolar solvents, while the measurements of fluorescence quantum yields at low temperature demonstrated the existence of an activation energy barrier. KW - solvent-dependent fluorescence yield Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-198707 UR - https://doi.org/10.1039/C9SC05012D VL - 10 ER - TY - JOUR A1 - Kanal, Florian A1 - Keiber, Sabine A1 - Eck, Reiner A1 - Brixner, Tobias T1 - 100-kHz shot-to-shot broadband data acquisition for high-repetition-rate pump–probe spectroscopy N2 - Shot-to-shot broadband detection is common in ultrafast pump–probe spectroscopy. Taking advantage of the intensity correlation of subsequent laser pulses improves the signal-to-noise ratio. Finite data readout times of CCD chips in the employed spectrometer and the maximum available speed of mechanical pump-beam choppers typically limit this approach to lasers with repetition rates of a few kHz. For high-repetition (≥ 100 kHz) systems, one typically averages over a larger number of laser shots leading to inferior signal-to-noise ratios or longer measurement times. Here we demonstrate broadband shot-to-shot detection in transient absorption spectroscopy with a 100-kHz femtosecond laser system. This is made possible using a home-built high-speed chopper with external laser synchronization and a fast CCD line camera. Shot-to-shot detection can reduce the data acquisition time by two orders of magnitude compared to few-kHz lasers while keeping the same signal-to-noise ratio. KW - cameras KW - CCD KW - charge-coupled device KW - modulators KW - time-resolved spectroscopy KW - ultrafast spectroscopy KW - ultrafast measurements Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112853 ER - TY - JOUR A1 - Brixner, Tobias A1 - Pawłowska, Monika A1 - Goetz, Sebastian A1 - Dreher, Christian A1 - Wurdack, Matthias A1 - Krauss, Enno A1 - Razinskas, Gary A1 - Geisler, Peter A1 - Hecht, Bert T1 - Shaping and spatiotemporal characterization of sub-10-fs pulses focused by a high-NA objective N2 - We describe a setup consisting of a 4 f pulse shaper and a microscope with a high-NA objective lens and discuss the spects most relevant for an undistorted spatiotemporal profile of the focused beam. We demonstrate shaper-assisted pulse compression in focus to a sub-10-fs duration using phase-resolved interferometric spectral modulation (PRISM). We introduce a nanostructure-based method for sub-diffraction spatiotemporal characterization of strongly focused pulses. The distortions caused by optical aberrations and space–time coupling from the shaper can be reduced by careful setup design and alignment to about 10 nm in space and 1 fs in time. KW - Interference microscopy KW - Scanning microscopy KW - Subwavelength structures KW - nanostructures KW - Pulse shaping KW - Ultrafast measurements Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-111120 ER - TY - JOUR A1 - Rewitz, Christian A1 - Keitzl, Thomas A1 - Tuchscherer, Philip A1 - Goetz, Sebastian A1 - Geisler, Peter A1 - Razinskas, Gary A1 - Hecht, Bert A1 - Brixner, Tobias T1 - Spectral-interference microscopy for characterization of functional plasmonic elements JF - Optics Express N2 - Plasmonic modes supported by noble-metal nanostructures offer strong subwavelength electric-field confinement and promise the realization of nanometer-scale integrated optical circuits with well-defined functionality. In order to measure the spectral and spatial response functions of such plasmonic elements, we combine a confocal microscope setup with spectral interferometry detection. The setup, data acquisition, and data evaluation are discussed in detail by means of exemplary experiments involving propagating plasmons transmitted through silver nanowires. By considering and experimentally calibrating any setup-inherent signal delay with an accuracy of 1 fs, we are able to extract correct timing information of propagating plasmons. The method can be applied, e.g., to determine the dispersion and group velocity of propagating plasmons in nanostructures, and can be extended towards the investigation of nonlinear phenomena. Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85922 UR - http://www.opticsinfobase.org/oe/fulltext.cfm?uri=oe-20-13-14632&id=238393 ER -