TY - JOUR A1 - Morton, Charles Oliver A1 - Fliesser, Mirjam A1 - Dittrich, Marcus A1 - Müller, Tobias A1 - Bauer, Ruth A1 - Kneitz, Susanne A1 - Hope, William A1 - Rogers, Thomas Richard A1 - Einsele, Hermann A1 - Löffler, Jürgen T1 - Gene Expression Profiles of Human Dendritic Cells Interacting with Aspergillus fumigatus in a Bilayer Model of the Alveolar Epithelium/Endothelium Interface N2 - The initial stages of the interaction between the host and Aspergillus fumigatus at the alveolar surface of the human lung are critical in the establishment of aspergillosis. Using an in vitro bilayer model of the alveolus, including both the epithelium (human lung adenocarcinoma epithelial cell line, A549) and endothelium (human pulmonary artery epithelial cells, HPAEC) on transwell membranes, it was possible to closely replicate the in vivo conditions. Two distinct sub-groups of dendritic cells (DC), monocyte-derived DC (moDC) and myeloid DC (mDC), were included in the model to examine immune responses to fungal infection at the alveolar surface. RNA in high quantity and quality was extracted from the cell layers on the transwell membrane to allow gene expression analysis using tailored custom-made microarrays, containing probes for 117 immune-relevant genes. This microarray data indicated minimal induction of immune gene expression in A549 alveolar epithelial cells in response to germ tubes of A. fumigatus. In contrast, the addition of DC to the system greatly increased the number of differentially expressed immune genes. moDC exhibited increased expression of genes including CLEC7A, CD209 and CCL18 in the absence of A. fumigatus compared to mDC. In the presence of A. fumigatus, both DC subgroups exhibited up-regulation of genes identified in previous studies as being associated with the exposure of DC to A. fumigatus and exhibiting chemotactic properties for neutrophils, including CXCL2, CXCL5, CCL20, and IL1B. This model closely approximated the human alveolus allowing for an analysis of the host pathogen interface that complements existing animal models of IA. KW - aspergillus fumigatus KW - gene expression KW - immune receptors KW - immune response KW - denritic cells KW - B cell receptors KW - gene regulation KW - RNA extraction Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112893 ER - TY - JOUR A1 - Schwarz, Tobias A1 - Remer, Katharina A. A1 - Nahrendorf, Wiebke A1 - Masic, Anita A1 - Siewe, Lisa A1 - Müller, Werner A1 - Roers, Axel A1 - Moll, Heidrun T1 - T Cell-Derived IL-10 Determines Leishmaniasis Disease Outcome and Is Suppressed by a Dendritic Cell Based Vaccine JF - PLoS Pathogens N2 - Abstract In the murine model of Leishmania major infection, resistance or susceptibility to the parasite has been associated with the development of a Th1 or Th2 type of immune response. Recently, however, the immunosuppressive effects of IL-10 have been ascribed a crucial role in the development of the different clinical correlates of Leishmania infection in humans. Since T cells and professional APC are important cellular sources of IL-10, we compared leishmaniasis disease progression in T cell-specific, macrophage/neutrophil-specific and complete IL-10-deficient C57BL/6 as well as T cell-specific and complete IL-10-deficient BALB/c mice. As early as two weeks after infection of these mice with L. major, T cell-specific and complete IL-10-deficient animals showed significantly increased lesion development accompanied by a markedly elevated secretion of IFN-γ or IFN-γ and IL-4 in the lymph nodes draining the lesions of the C57BL/6 or BALB/c mutants, respectively. In contrast, macrophage/neutrophil-specific IL-10-deficient C57BL/6 mice did not show any altered phenotype. During the further course of disease, the T cell-specific as well as the complete IL-10-deficient BALB/c mice were able to control the infection. Furthermore, a dendritic cell-based vaccination against leishmaniasis efficiently suppresses the early secretion of IL-10, thus contributing to the control of parasite spread. Taken together, IL-10 secretion by T cells has an influence on immune activation early after infection and is sufficient to render BALB/c mice susceptible to an uncontrolled Leishmania major infection. Author Summary The clinical symptoms caused by infections with Leishmania parasites range from self-healing cutaneous to uncontrolled visceral disease and depend not only on the parasite species but also on the type of the host's immune response. It is estimated that 350 million people worldwide are at risk, with a global incidence of 1–1.5 million cases of cutaneous and 500,000 cases of visceral leishmaniasis. Murine leishmaniasis is the best-characterized model to elucidate the mechanisms underlying resistance or susceptibility to Leishmania major parasites in vivo. Using T cell-specific and macrophage-specific mutant mice, we demonstrate that abrogating the secretion of the immunosuppressive cytokine IL-10 by T cells is sufficient to render otherwise susceptible mice resistant to an infection with the pathogen. The healing phenotype is accompanied by an elevated specific inflammatory immune response very early after infection. We further show that dendritic cell-based vaccination against leishmaniasis suppresses the early secretion of IL-10 following challenge infection. Thus, our study unravels a molecular mechanism critical for host immune defense, aiding in the development of an effective vaccine against leishmaniasis. KW - cytokines KW - mouse models KW - T cells KW - lymph nodes KW - leishmania major KW - secretion KW - parasitic diseases KW - immune response Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130385 VL - 9 IS - 6 ER -