TY - JOUR A1 - Shan, Junwen A1 - Böck, Thomas A1 - Keller, Thorsten A1 - Forster, Leonard A1 - Blunk, Torsten A1 - Groll, Jürgen A1 - Teßmar, Jörg T1 - TEMPO/TCC as a Chemo Selective Alternative for the Oxidation of Hyaluronic Acid JF - Molecules N2 - Hyaluronic acid (HA)-based hydrogels are very commonly applied as cell carriers for different approaches in regenerative medicine. HA itself is a well-studied biomolecule that originates from the physiological extracellular matrix (ECM) of mammalians and, due to its acidic polysaccharide structure, offers many different possibilities for suitable chemical modifications which are necessary to control, for example, network formation. Most of these chemical modifications are performed using the free acid function of the polymer and, additionally, lead to an undesirable breakdown of the biopolymer’s backbone. An alternative modification of the vicinal diol of the glucuronic acid is oxidation with sodium periodate to generate dialdehydes via a ring opening mechanism that can subsequently be further modified or crosslinked via Schiff base chemistry. Since this oxidation causes a structural destruction of the polysaccharide backbone, it was our intention to study a novel synthesis protocol frequently applied to selectively oxidize the C6 hydroxyl group of saccharides. On the basis of this TEMPO/TCC oxidation, we studied an alternative hydrogel platform based on oxidized HA crosslinked using adipic acid dihydrazide as the crosslinker. KW - hyaluronic acid KW - oxidation KW - hydrogel formation KW - Schiff base chemistry Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-248362 SN - 1420-3049 VL - 26 IS - 19 ER - TY - JOUR A1 - Hauptstein, Julia A1 - Forster, Leonard A1 - Nadernezhad, Ali A1 - Horder, Hannes A1 - Stahlhut, Philipp A1 - Groll, Jürgen A1 - Blunk, Torsten A1 - Teßmar, Jörg T1 - Bioink Platform Utilizing Dual-Stage Crosslinking of Hyaluronic Acid Tailored for Chondrogenic Differentiation of Mesenchymal Stromal Cells JF - Macromolecular Bioscience N2 - 3D bioprinting often involves application of highly concentrated polymeric bioinks to enable fabrication of stable cell-hydrogel constructs, although poor cell survival, compromised stem cell differentiation, and an inhomogeneous distribution of newly produced extracellular matrix (ECM) are frequently observed. Therefore, this study presents a bioink platform using a new versatile dual-stage crosslinking approach based on thiolated hyaluronic acid (HA-SH), which not only provides stand-alone 3D printability but also facilitates effective chondrogenic differentiation of mesenchymal stromal cells. A range of HA-SH with different molecular weights is synthesized and crosslinked with acrylated (PEG-diacryl) and allylated (PEG-diallyl) polyethylene glycol in a two-step reaction scheme. The initial Michael addition is used to achieve ink printability, followed by UV-mediated thiol–ene reaction to stabilize the printed bioink for long-term cell culture. Bioinks with high molecular weight HA-SH (>200 kDa) require comparably low polymer content to facilitate bioprinting. This leads to superior quality of cartilaginous constructs which possess a coherent ECM and a strongly increased stiffness of long-term cultured constructs. The dual-stage system may serve as an example to design platforms using two independent crosslinking reactions at one functional group, which allows adjusting printability as well as material and biological properties of bioinks. KW - hyaluronic acid KW - biofabrication KW - chondrogenic differentiation KW - dual-stage crosslinking KW - extracellular matrix Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257556 VL - 22 IS - 2 ER - TY - JOUR A1 - Janzen, Dieter A1 - Bakirci, Ezgi A1 - Faber, Jessica A1 - Andrade Mier, Mateo A1 - Hauptstein, Julia A1 - Pal, Arindam A1 - Forster, Leonard A1 - Hazur, Jonas A1 - Boccaccini, Aldo R. A1 - Detsch, Rainer A1 - Teßmar, Jörg A1 - Budday, Silvia A1 - Blunk, Torsten A1 - Dalton, Paul D. A1 - Villmann, Carmen T1 - Reinforced Hyaluronic Acid-Based Matrices Promote 3D Neuronal Network Formation JF - Advanced Healthcare Materials N2 - 3D neuronal cultures attempt to better replicate the in vivo environment to study neurological/neurodegenerative diseases compared to 2D models. A challenge to establish 3D neuron culture models is the low elastic modulus (30–500 Pa) of the native brain. Here, an ultra-soft matrix based on thiolated hyaluronic acid (HA-SH) reinforced with a microfiber frame is formulated and used. Hyaluronic acid represents an essential component of the brain extracellular matrix (ECM). Box-shaped frames with a microfiber spacing of 200 µm composed of 10-layers of poly(ɛ-caprolactone) (PCL) microfibers (9.7 ± 0.2 µm) made via melt electrowriting (MEW) are used to reinforce the HA-SH matrix which has an elastic modulus of 95 Pa. The neuronal viability is low in pure HA-SH matrix, however, when astrocytes are pre-seeded below this reinforced construct, they significantly support neuronal survival, network formation quantified by neurite length, and neuronal firing shown by Ca\(^{2+}\) imaging. The astrocyte-seeded HA-SH matrix is able to match the neuronal viability to the level of Matrigel, a gold standard matrix for neuronal culture for over two decades. Thus, this 3D MEW frame reinforced HA-SH composite with neurons and astrocytes constitutes a reliable and reproducible system to further study brain diseases. KW - 3D model systems KW - melt electrowriting KW - cortical neurons KW - astrocytes KW - Ca\(^{2+}\)-Imaging KW - hyaluronic acid Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318682 VL - 11 IS - 21 ER - TY - JOUR A1 - Hauptstein, Julia A1 - Forster, Leonard A1 - Nadernezhad, Ali A1 - Groll, Jürgen A1 - Teßmar, Jörg A1 - Blunk, Torsten T1 - Tethered TGF-β1 in a hyaluronic acid-based bioink for bioprinting cartilaginous tissues JF - International Journal of Molecular Sciences N2 - In 3D bioprinting for cartilage regeneration, bioinks that support chondrogenic development are of key importance. Growth factors covalently bound in non-printable hydrogels have been shown to effectively promote chondrogenesis. However, studies that investigate the functionality of tethered growth factors within 3D printable bioinks are still lacking. Therefore, in this study, we established a dual-stage crosslinked hyaluronic acid-based bioink that enabled covalent tethering of transforming growth factor-beta 1 (TGF-β1). Bone marrow-derived mesenchymal stromal cells (MSCs) were cultured over three weeks in vitro, and chondrogenic differentiation of MSCs within bioink constructs with tethered TGF-β1 was markedly enhanced, as compared to constructs with non-covalently incorporated TGF-β1. This was substantiated with regard to early TGF-β1 signaling, chondrogenic gene expression, qualitative and quantitative ECM deposition and distribution, and resulting construct stiffness. Furthermore, it was successfully demonstrated, in a comparative analysis of cast and printed bioinks, that covalently tethered TGF-β1 maintained its functionality after 3D printing. Taken together, the presented ink composition enabled the generation of high-quality cartilaginous tissues without the need for continuous exogenous growth factor supply and, thus, bears great potential for future investigation towards cartilage regeneration. Furthermore, growth factor tethering within bioinks, potentially leading to superior tissue development, may also be explored for other biofabrication applications. KW - biofabrication KW - bioink KW - chondrogenic differentiation KW - dual-stage crosslinking KW - hyaluronic acid KW - tethering KW - transforming growth factor-beta 1 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284239 SN - 1422-0067 VL - 23 IS - 2 ER - TY - JOUR A1 - Horder, Hannes A1 - Guaza Lasheras, Mar A1 - Grummel, Nadine A1 - Nadernezhad, Ali A1 - Herbig, Johannes A1 - Ergün, Süleyman A1 - Teßmar, Jörg A1 - Groll, Jürgen A1 - Fabry, Ben A1 - Bauer-Kreisel, Petra A1 - Blunk, Torsten T1 - Bioprinting and differentiation of adipose-derived stromal cell spheroids for a 3D breast cancer-adipose tissue model JF - Cells N2 - Biofabrication, including printing technologies, has emerged as a powerful approach to the design of disease models, such as in cancer research. In breast cancer, adipose tissue has been acknowledged as an important part of the tumor microenvironment favoring tumor progression. Therefore, in this study, a 3D-printed breast cancer model for facilitating investigations into cancer cell-adipocyte interaction was developed. First, we focused on the printability of human adipose-derived stromal cell (ASC) spheroids in an extrusion-based bioprinting setup and the adipogenic differentiation within printed spheroids into adipose microtissues. The printing process was optimized in terms of spheroid viability and homogeneous spheroid distribution in a hyaluronic acid-based bioink. Adipogenic differentiation after printing was demonstrated by lipid accumulation, expression of adipogenic marker genes, and an adipogenic ECM profile. Subsequently, a breast cancer cell (MDA-MB-231) compartment was printed onto the adipose tissue constructs. After nine days of co-culture, we observed a cancer cell-induced reduction of the lipid content and a remodeling of the ECM within the adipose tissues, with increased fibronectin, collagen I and collagen VI expression. Together, our data demonstrate that 3D-printed breast cancer-adipose tissue models can recapitulate important aspects of the complex cell–cell and cell–matrix interplay within the tumor-stroma microenvironment KW - adipose-derived stromal cells KW - adipose tissue KW - bioprinting KW - breast cancer model KW - extracellular matrix KW - hyaluronic acid KW - spheroids Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236496 VL - 10 IS - 4 ER - TY - JOUR A1 - Schmid, Rafael A1 - Schmidt, Sonja K. A1 - Hazur, Jonas A1 - Detsch, Rainer A1 - Maurer, Evelyn A1 - Boccaccini, Aldo R. A1 - Hauptstein, Julia A1 - Teßmar, Jörg A1 - Blunk, Torsten A1 - Schrüfer, Stefan A1 - Schubert, Dirk W. A1 - Horch, Raymund E. A1 - Bosserhoff, Anja K. A1 - Arkudas, Andreas A1 - Kengelbach-Weigand, Annika T1 - Comparison of hydrogels for the development of well-defined 3D cancer models of breast cancer and melanoma JF - Cancers N2 - Bioprinting offers the opportunity to fabricate precise 3D tumor models to study tumor pathophysiology and progression. However, the choice of the bioink used is important. In this study, cell behavior was studied in three mechanically and biologically different hydrogels (alginate, alginate dialdehyde crosslinked with gelatin (ADA–GEL), and thiol-modified hyaluronan (HA-SH crosslinked with PEGDA)) with cells from breast cancer (MDA-MB-231 and MCF-7) and melanoma (Mel Im and MV3), by analyzing survival, growth, and the amount of metabolically active, living cells via WST-8 labeling. Material characteristics were analyzed by dynamic mechanical analysis. Cell lines revealed significantly increased cell numbers in low-percentage alginate and HA-SH from day 1 to 14, while only Mel Im also revealed an increase in ADA–GEL. MCF-7 showed a preference for 1% alginate. Melanoma cells tended to proliferate better in ADA–GEL and HA-SH than mammary carcinoma cells. In 1% alginate, breast cancer cells showed equally good proliferation compared to melanoma cell lines. A smaller area was colonized in high-percentage alginate-based hydrogels. Moreover, 3% alginate was the stiffest material, and 2.5% ADA–GEL was the softest material. The other hydrogels were in the same range in between. Therefore, cellular responses were not only stiffness-dependent. With 1% alginate and HA-SH, we identified matrices that enable proliferation of all tested tumor cell lines while maintaining expected tumor heterogeneity. By adapting hydrogels, differences could be accentuated. This opens up the possibility of understanding and analyzing tumor heterogeneity by biofabrication. KW - breast cancer KW - melanoma KW - biofabrication KW - hydrogel KW - tumor heterogeneity Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-211195 SN - 2072-6694 VL - 12 IS - 8 ER - TY - JOUR A1 - Frischholz, Sebastian A1 - Berberich, Oliver A1 - Böck, Thomas A1 - Meffert, Rainer H. A1 - Blunk, Torsten T1 - Resveratrol counteracts IL‐1β‐mediated impairment of extracellular matrix deposition in 3D articular chondrocyte constructs JF - Journal of Tissue Engineering and Regenerative Medicine N2 - When aiming at cell‐based therapies in osteoarthritis (OA), proinflammatory conditions mediated by cytokines such as IL‐1β need to be considered. In recent studies, the phytoalexin resveratrol (RSV) has exhibited potent anti‐inflammatory properties. However, long‐term effects on 3D cartilaginous constructs under inflammatory conditions with regard to tissue quality, especially extracellular matrix (ECM) composition, have remained unexplored. Therefore, we employed long‐term model cultures for cell‐based therapies in an in vitro OA environment and evaluated effects of RSV. Pellet constructs made from expanded porcine articular chondrocytes were cultured with either IL‐1β (1–10 ng/ml) or RSV (50 μM) alone, or a cotreatment with both agents. Treatments were applied for 14 days, either directly after pellet formation or after a preculture period of 7 days. Culture with IL‐1β (10 ng/ml) decreased pellet size and DNA amount and severely compromised glycosaminoglycan (GAG) and collagen content. Cotreatment with RSV distinctly counteracted the proinflammatory catabolism and led to partial rescue of the ECM composition in both culture systems, with especially strong effects on GAG. Marked MMP13 expression was detected in IL‐1β‐treated pellets, but none upon RSV cotreatment. Expression of collagen type I was increased upon IL‐1β treatment and still observed when adding RSV, whereas collagen type X, indicating hypertrophy, was detected exclusively in pellets treated with RSV alone. In conclusion, RSV can counteract IL‐1β‐mediated degradation and distinctly improve cartilaginous ECM deposition in 3D long‐term inflammatory cultures. Nevertheless, potential hypertrophic effects should be taken into account when considering RSV as cotreatment for articular cartilage repair techniques. KW - articular chondrocytes KW - cartilage KW - cell‐based therapy KW - extracellular matrix KW - IL‐1β KW - inflammation KW - osteoarthritis KW - resveratrol Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-215471 VL - 14 IS - 7 SP - 897 EP - 908 ER - TY - JOUR A1 - Jordan, Martin C. A1 - Zimmermann, Christina A1 - Gho, Sheridan A. A1 - Frey, Sönke P. A1 - Blunk, Torsten A1 - Meffert, Rainer H. A1 - Hoelscher-Doht, Stefanie T1 - Biomechanical analysis of different osteosyntheses and the combination with bone substitute in tibial head depression fractures JF - BMC Musculoskeletal Disorders N2 - Background Tibial head depression fractures demand a high level of fracture stabilization to prevent a secondary loss of reduction after surgery. Elderly individuals are at an increased risk of developing these fractures, and biomechanical investigations of the fractures are rare. Therefore, the aim of this study was to systematically analyze different types of osteosyntheses in combination with two commonly used bone substitutes. Methods Lateral tibial head depression fractures were created in synthetic bones. After reduction, the fractures were stabilized with eight different treatment options of osteosynthesis alone or in combination with a bone substitute. Two screws, 4 screws and a lateral buttress plate were investigated. As a bone substitute, two common clinically used calcium phosphate cements, Norian® Drillable and ChronOS™ Inject, were applied. Displacement of the articular fracture fragment (mm) during cyclic loading, stiffness (N/mm) and maximum load (N) in Load-to-Failure tests were measured. Results The three different osteosyntheses (Group 1: 2 screws, group 2: 4 screws, group 3: plate) alone revealed a significantly higher displacement compared to the control group (Group 7: ChronOS™ Inject only) (Group 1, 7 [p < 0.01]; group 2, 7 [p = 0.04]; group 3, 7 [p < 0.01]). However, the osteosyntheses in combination with bone substitute exhibited no differences in displacement compared to the control group. The buttress plate demonstrated a higher normalized maximum load than the 2 and 4 screw osteosynthesis. Comparing the two different bone substitutes to each other, ChronOS™ inject had a significantly higher stiffness and lower displacement than Norian® Drillable. Conclusions The highest biomechanical stability under maximal loading was provided by a buttress plate osteosynthesis. A bone substitute, such as the biomechanically favorable ChronOS™ Inject, is essential to reduce the displacement under lower loading. KW - tibial fracture fixation KW - tibial head fracture KW - biomechanical test KW - static test KW - cyclic test Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-161201 VL - 17 IS - 287 ER - TY - JOUR A1 - Schmidt, Stefanie A1 - Abinzano, Florencia A1 - Mensinga, Anneloes A1 - Teßmar, Jörg A1 - Groll, Jürgen A1 - Malda, Jos A1 - Levato, Riccardo A1 - Blunk, Torsten T1 - Differential production of cartilage ECM in 3D agarose constructs by equine articular cartilage progenitor cells and mesenchymal stromal cells JF - International Journal of Molecular Sciences N2 - Identification of articular cartilage progenitor cells (ACPCs) has opened up new opportunities for cartilage repair. These cells may be used as alternatives for or in combination with mesenchymal stromal cells (MSCs) in cartilage engineering. However, their potential needs to be further investigated, since only a few studies have compared ACPCs and MSCs when cultured in hydrogels. Therefore, in this study, we compared chondrogenic differentiation of equine ACPCs and MSCs in agarose constructs as monocultures and as zonally layered co-cultures under both normoxic and hypoxic conditions. ACPCs and MSCs exhibited distinctly differential production of the cartilaginous extracellular matrix (ECM). For ACPC constructs, markedly higher glycosaminoglycan (GAG) contents were determined by histological and quantitative biochemical evaluation, both in normoxia and hypoxia. Differential GAG production was also reflected in layered co-culture constructs. For both cell types, similar staining for type II collagen was detected. However, distinctly weaker staining for undesired type I collagen was observed in the ACPC constructs. For ACPCs, only very low alkaline phosphatase (ALP) activity, a marker of terminal differentiation, was determined, in stark contrast to what was found for MSCs. This study underscores the potential of ACPCs as a promising cell source for cartilage engineering. KW - ACPC KW - chondroprogenitors KW - tissue engineering KW - MSC KW - agarose KW - hypoxia KW - ECM KW - co-culture KW - zonal KW - cartilage Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236180 SN - 1422-0067 VL - 21 IS - 19 ER - TY - JOUR A1 - Bachmann, Julia A1 - Ehlert, Elias A1 - Becker, Matthias A1 - Otto, Christoph A1 - Radeloff, Katrin A1 - Blunk, Torsten A1 - Bauer-Kreisel, Petra T1 - Ischemia-like stress conditions stimulate trophic activities of adipose-derived stromal/stem cells JF - Cells N2 - Adipose-derived stromal/stem cells (ASCs) have been shown to exert regenerative functions, which are mainly attributed to the secretion of trophic factors. Upon transplantation, ASCs are facing an ischemic environment characterized by oxygen and nutrient deprivation. However, current knowledge on the secretion capacity of ASCs under such conditions is limited. Thus, the present study focused on the secretory function of ASCs under glucose and oxygen deprivation as major components of ischemia. After exposure to glucose/oxygen deprivation, ASCs maintained distinct viability, but the metabolic activity was greatly reduced by glucose limitation. ASCs were able to secrete a broad panel of factors under glucose/oxygen deprivation as revealed by a cytokine antibody array. Quantification of selected factors by ELISA demonstrated that glucose deprivation in combination with hypoxia led to markedly higher secretion levels of the angiogenic and anti-apoptotic factors IL-6, VEGF, and stanniocalcin-1 as compared to the hypoxic condition alone. A conditioned medium of glucose/oxygen-deprived ASCs promoted the viability and tube formation of endothelial cells, and the proliferation and migration of fibroblasts. These findings indicate that ASCs are stimulated by ischemia-like stress conditions to secrete trophic factors and would be able to exert their beneficial function in an ischemic environment. KW - adipose-derived stromal/stem cells (ASCs) KW - regenerative medicine KW - secretion KW - trophic factors KW - ischemia KW - glucose starvation KW - hypoxia Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-211233 SN - 2073-4409 VL - 9 IS - 9 ER -