TY - JOUR A1 - Schreiber, Laura M. A1 - Lohr, David A1 - Baltes, Steffen A1 - Vogel, Ulrich A1 - Elabyad, Ibrahim A. A1 - Bille, Maya A1 - Reiter, Theresa A1 - Kosmala, Aleksander A1 - Gassenmaier, Tobias A1 - Stefanescu, Maria R. A1 - Kollmann, Alena A1 - Aures, Julia A1 - Schnitter, Florian A1 - Pali, Mihaela A1 - Ueda, Yuichiro A1 - Williams, Tatiana A1 - Christa, Martin A1 - Hofmann, Ulrich A1 - Bauer, Wolfgang A1 - Gerull, Brenda A1 - Zernecke, Alma A1 - Ergün, Süleyman A1 - Terekhov, Maxim T1 - Ultra-high field cardiac MRI in large animals and humans for translational cardiovascular research JF - Frontiers in Cardiovascular Medicine N2 - A key step in translational cardiovascular research is the use of large animal models to better understand normal and abnormal physiology, to test drugs or interventions, or to perform studies which would be considered unethical in human subjects. Ultrahigh field magnetic resonance imaging (UHF-MRI) at 7 T field strength is becoming increasingly available for imaging of the heart and, when compared to clinically established field strengths, promises better image quality and image information content, more precise functional analysis, potentially new image contrasts, and as all in-vivo imaging techniques, a reduction of the number of animals per study because of the possibility to scan every animal repeatedly. We present here a solution to the dual use problem of whole-body UHF-MRI systems, which are typically installed in clinical environments, to both UHF-MRI in large animals and humans. Moreover, we provide evidence that in such a research infrastructure UHF-MRI, and ideally combined with a standard small-bore UHF-MRI system, can contribute to a variety of spatial scales in translational cardiovascular research: from cardiac organoids, Zebra fish and rodent hearts to large animal models such as pigs and humans. We present pilot data from serial CINE, late gadolinium enhancement, and susceptibility weighted UHF-MRI in a myocardial infarction model over eight weeks. In 14 pigs which were delivered from a breeding facility in a national SARS-CoV-2 hotspot, we found no infection in the incoming pigs. Human scanning using CINE and phase contrast flow measurements provided good image quality of the left and right ventricle. Agreement of functional analysis between CINE and phase contrast MRI was excellent. MRI in arrested hearts or excised vascular tissue for MRI-based histologic imaging, structural imaging of myofiber and vascular smooth muscle cell architecture using high-resolution diffusion tensor imaging, and UHF-MRI for monitoring free radicals as a surrogate for MRI of reactive oxygen species in studies of oxidative stress are demonstrated. We conclude that UHF-MRI has the potential to become an important precision imaging modality in translational cardiovascular research. KW - ultrahigh-field MRI KW - large animal models KW - translational research KW - research infrastructure KW - heart KW - organoid KW - pig KW - cardiovascular MRI Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-317398 SN - 2297-055X VL - 10 ER - TY - JOUR A1 - Schreiber, Ulrich A1 - Klughammer, Christof A1 - Kolbowski, Jörg T1 - Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer JF - Photosynthesis Research N2 - Technical features of a novel multi-color pulse amplitude modulation (PAM) chlorophyll fluorometer as well as the applied methodology and some typical examples of its practical application with suspensions of Chlorella vulgaris and Synechocystis PCC 6803 are presented. The multi-color PAM provides six colors of pulse-modulated measuring light (peak-wavelengths at 400, 440, 480, 540, 590, and 625 nm) and six colors of actinic light (AL), peaking at 440, 480, 540, 590, 625 and 420–640 nm (white). The AL can be used for continuous illumination, maximal intensity single-turnover pulses, high intensity multiple-turnover pulses, and saturation pulses. In addition, far-red light (peaking at 725 nm) is provided for preferential excitation of PS I. Analysis of the fast fluorescence rise kinetics in saturating light allows determination of the wavelength- and sample-specific functional absorption cross section of PS II, Sigma(II)λ, with which the PS II turnover rate at a given incident photosynthetically active radiation (PAR) can be calculated. Sigma(II)λ is defined for a quasi-dark reference state, thus differing from σPSII used in limnology and oceanography. Vastly different light response curves for Chlorella are obtained with light of different colors, when the usual PAR-scale is used. Based on Sigma(II)λ the PAR, in units of μmol quanta/(m2 s), can be converted into PAR(II) (in units of PS II effective quanta/s) and a fluorescence-based electron transport rate ETR(II) = PAR(II) · Y(II)/Y(II)max can be defined. ETR(II) in contrast to rel.ETR qualifies for quantifying the absolute rate of electron transport in optically thin suspensions of unicellular algae and cyanobacteria. Plots of ETR(II) versus PAR(II) for Chlorella are almost identical using either 440 or 625 nm light. Photoinhibition data are presented suggesting that a lower value of ETR(II)max with 440 nm possibly reflects photodamage via absorption by the Mn-cluster of the oxygen-evolving complex. KW - synechocystis KW - O–I 1 fluorescence rise KW - functional absorption cross section of PS II KW - ETR KW - chlorella KW - PAR KW - photoinhibition Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127003 VL - 113 IS - 1 ER - TY - JOUR A1 - Klughammer, Christof A1 - Siebke, Katharina A1 - Schreiber, Ulrich T1 - Continuous ECS-indicated recording of the proton-motive charge flux in leaves JF - Photosynthesis Research N2 - Technical features and examples of application of a special emitter–detector module for highly sensitive measurements of the electrochromic pigment absorbance shift (ECS) via dual-wavelength (550–520 nm) transmittance changes (P515) are described. This device, which has been introduced as an accessory of the standard, commercially available Dual-PAM-100 measuring system, not only allows steady-state assessment of the proton motive force (pmf) and its partitioning into ΔpH and ΔΨ components, but also continuous recording of the overall charge flux driven by photosynthetic light reactions. The new approach employs a double-modulation technique to derive a continuous signal from the light/dark modulation amplitude of the P515 signal. This new, continuously measured signal primarily reflects the rate of proton efflux via the ATP synthase, which under quasi-stationary conditions corresponds to the overall rate of proton influx driven by coupled electron transport. Simultaneous measurements of charge flux and \(CO_2\) uptake as a function of light intensity indicated a close to linear relationship in the light-limited range. A linear relationship between these two signals was also found for different internal \(CO_2\) concentrations, except for very low \(CO_2\), where the rate of charge flux distinctly exceeded the rate of CO2 uptake. Parallel oscillations in \(CO_2\) uptake and charge flux were induced by high \(CO_2\) and \(O_2\). The new device may contribute to the elucidation of complex regulatory mechanisms in intact leaves. KW - photosynthetic electron transport KW - P515 KW - DIRK method KW - CO2 gas exchange KW - Dual-PAM-100 KW - electrochromic absorbance shift Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-132134 VL - 117 ER - TY - JOUR A1 - Beyhoff, Niklas A1 - Lohr, David A1 - Thiele, Arne A1 - Foryst-Ludwig, Anna A1 - Klopfleisch, Robert A1 - Schreiber, Laura M. A1 - Kintscher, Ulrich T1 - Myocardial Infarction After High-Dose Catecholamine Application—A Case Report From an Experimental Imaging Study JF - Frontiers in Cardiovascular Medicine N2 - Although heart failure following myocardial infarction (MI) represents a major health burden, underlying microstructural and functional changes remain incompletely understood. Here, we report on a case of unexpected MI after treatment with the catecholamine isoproterenol in an experimental imaging study in mice using different state-of-the-art imaging modalities. The decline in cardiac function was documented by ultrahigh-frequency echocardiography and speckle-tracking analyses. Myocardial microstructure was studied ex vivo at a spatial resolution of 100 × 100 × 100 μm\(^{3}\) using diffusion tensor magnetic resonance imaging (DT-MRI) and histopathologic analyses. Two weeks after ISO treatment, the animal showed an apical aneurysm accompanied by reduced radial strain in corresponding segments and impaired global systolic function. DT-MRI revealed a loss of contractile fiber tracts together with a disarray of remaining fibers as corresponding microstructural correlates. This preclinical case report provides valuable insights into pathophysiology and morphologic–functional relations of heart failure following MI using emerging imaging technologies. KW - myocardial infarction KW - catecholamines KW - speckle tracking KW - diffusion tensor imaging KW - magnetic resonance imaging KW - case report KW - heart failure KW - echocardiography Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-217959 VL - 7 ER - TY - JOUR A1 - Klughammer, Christof A1 - Schreiber, Ulrich T1 - Deconvolution of ferredoxin, plastocyanin, and P700 transmittance changes in intact leaves with a new type of kinetic LED array spectrophotometer JF - Photosynthesis Research N2 - A newly developed compact measuring system for assessment of transmittance changes in the near-infrared spectral region is described; it allows deconvolution of redox changes due to ferredoxin (Fd), P700, and plastocyanin (PC) in intact leaves. In addition, it can also simultaneously measure chlorophyll fluorescence. The major opto-electronic components as well as the principles of data acquisition and signal deconvolution are outlined. Four original pulse-modulated dual-wavelength difference signals are measured (785-840 nm, 810-870 nm, 870-970 nm, and 795-970 nm). Deconvolution is based on specific spectral information presented graphically in the form of 'Differential Model Plots' (DMP) of Fd, P700, and PC that are derived empirically from selective changes of these three components under appropriately chosen physiological conditions. Whereas information on maximal changes of Fd is obtained upon illumination after dark-acclimation, maximal changes of P700 and PC can be readily induced by saturating light pulses in the presence of far-red light. Using the information of DMP and maximal changes, the new measuring system enables on-line deconvolution of Fd, P700, and PC. The performance of the new device is demonstrated by some examples of practical applications, including fast measurements of flash relaxation kinetics and of the Fd, P700, and PC changes paralleling the polyphasic fluorescence rise upon application of a 300-ms pulse of saturating light. KW - Chlorophyll fluorescence KW - Cyclic electron transport KW - FeS proteins KW - Flash relaxation kinetics KW - Photosystem I KW - Polyphasic fluorescence rise KW - Thioredoxin Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-189050 VL - 128 IS - 2 ER -