TY - JOUR A1 - Patil, Sandeep S. A1 - Gentschev, Ivaylo A1 - Adelfinger, Marion A1 - Donat, Ulrike A1 - Hess, Michael A1 - Weibel, Stephanie A1 - Nolte, Ingo A1 - Frentzen, Alexa A1 - Szalay, Aladar A. T1 - Virotherapy of Canine Tumors with Oncolytic Vaccinia Virus GLV-1h109 Expressing an Anti-VEGF Single-Chain Antibody JF - PLoS One N2 - Virotherapy using oncolytic vaccinia virus (VACV) strains is one promising new strategy for cancer therapy. We have previously reported that oncolytic vaccinia virus strains expressing an anti-VEGF (Vascular Endothelial Growth Factor) single-chain antibody (scAb) GLAF-1 exhibited significant therapeutic efficacy for treatment of human tumor xenografts. Here, we describe the use of oncolytic vaccinia virus GLV-1h109 encoding GLAF-1 for canine cancer therapy. In this study we analyzed the virus-mediated delivery and production of scAb GLAF-1 and the oncolytic and immunological effects of the GLV-1h109 vaccinia virus strain against canine soft tissue sarcoma and canine prostate carcinoma in xenograft models. Cell culture data demonstrated that the GLV-1h109 virus efficiently infect, replicate in and destroy both tested canine cancer cell lines. In addition, successful expression of GLAF-1 was demonstrated in virus-infected canine cancer cells and the antibody specifically recognized canine VEGF. In two different xenograft models, the systemic administration of the GLV-1h109 virus was found to be safe and led to anti-tumor and immunological effects resulting in the significant reduction of tumor growth in comparison to untreated control mice. Furthermore, tumor-specific virus infection led to a continued production of functional scAb GLAF-1, resulting in inhibition of angiogenesis. Overall, the GLV-1h109-mediated cancer therapy and production of immunotherapeutic anti-VEGF scAb may open the way for combination therapy concept i.e. vaccinia virus mediated oncolysis and intratumoral production of therapeutic drugs in canine cancer patients. KW - angiogenesis KW - microenvironment KW - model KW - cancer KW - therapy KW - pet dogs KW - nude-mice KW - breast-tumors KW - microvascular density KW - endothelial growth-factor Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130039 VL - 7 IS - 10 ER - TY - JOUR A1 - Szalay, Aladar A A1 - Weibel, Stephanie A1 - Hofmann, Elisabeth A1 - Basse-Luesebrink, Thomas Christian A1 - Donat, Ulrike A1 - Seubert, Carolin A1 - Adelfinger, Marion A1 - Gnamlin, Prisca A1 - Kober, Christina A1 - Frentzen, Alexa A1 - Gentschev, Ivaylo A1 - Jakob, Peter Michael T1 - Treatment of malignant effusion by oncolytic virotherapy in an experimental subcutaneous xenograft model of lung cancer JF - Journal of Translational Medicine N2 - Background Malignant pleural effusion (MPE) is associated with advanced stages of lung cancer and is mainly dependent on invasion of the pleura and expression of vascular endothelial growth factor (VEGF) by cancer cells. As MPE indicates an incurable disease with limited palliative treatment options and poor outcome, there is an urgent need for new and efficient treatment options. Methods In this study, we used subcutaneously generated PC14PE6 lung adenocarcinoma xenografts in athymic mice that developed subcutaneous malignant effusions (ME) which mimic pleural effusions of the orthotopic model. Using this approach monitoring of therapeutic intervention was facilitated by direct observation of subcutaneous ME formation without the need of sacrificing mice or special imaging equipment as in case of MPE. Further, we tested oncolytic virotherapy using Vaccinia virus as a novel treatment modality against ME in this subcutaneous PC14PE6 xenograft model of advanced lung adenocarcinoma. Results We demonstrated significant therapeutic efficacy of Vaccinia virus treatment of both advanced lung adenocarcinoma and tumor-associated ME. We attribute the efficacy to the virus-mediated reduction of tumor cell-derived VEGF levels in tumors, decreased invasion of tumor cells into the peritumoral tissue, and to viral infection of the blood vessel-invading tumor cells. Moreover, we showed that the use of oncolytic Vaccinia virus encoding for a single-chain antibody (scAb) against VEGF (GLAF-1) significantly enhanced mono-therapy of oncolytic treatment. Conclusions Here, we demonstrate for the first time that oncolytic virotherapy using tumor-specific Vaccinia virus represents a novel and promising treatment modality for therapy of ME associated with advanced lung cancer. KW - Oncolytic virotherapy KW - Malignant effusion KW - Lung cancer KW - VEGF KW - Lungenkrebs KW - Vascular endothelial Growth Factor Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96016 UR - http://www.translational-medicine.com/content/11/1/106 ER -