TY - JOUR A1 - Jahn, Martin T. A1 - Markert, Sebastian M. A1 - Ryu, Taewoo A1 - Ravasi, Timothy A1 - Stigloher, Christian A1 - Hentschel, Ute A1 - Moitinho-Silva, Lucas T1 - Shedding light on cell compartmentation in the candidate phylum Poribacteria by high resolution visualisation and transcriptional profiling JF - Scientific Reports N2 - Assigning functions to uncultivated environmental microorganisms continues to be a challenging endeavour. Here, we present a new microscopy protocol for fluorescence in situ hybridisation-correlative light and electron microscopy (FISH-CLEM) that enabled, to our knowledge for the first time, the identification of single cells within their complex microenvironment at electron microscopy resolution. Members of the candidate phylum Poribacteria, common and uncultivated symbionts of marine sponges, were used towards this goal. Cellular 3D reconstructions revealed bipolar, spherical granules of low electron density, which likely represent carbon reserves. Poribacterial activity profiles were retrieved from prokaryotic enriched sponge metatranscriptomes using simulation-based optimised mapping. We observed high transcriptional activity for proteins related to bacterial microcompartments (BMC) and we resolved their subcellular localisation by combining FISH-CLEM with immunohistochemistry (IHC) on ultra-thin sponge tissue sections. In terms of functional relevance, we propose that the BMC-A region may be involved in 1,2-propanediol degradation. The FISH-IHC-CLEM approach was proven an effective toolkit to combine -omics approaches with functional studies and it should be widely applicable in environmental microbiology. KW - high resolution visualisation KW - transcriptional profiling KW - FISH-CLEM KW - cell compartmentation Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167513 VL - 6 IS - 35860 ER - TY - JOUR A1 - Faist, Hanna A1 - Ankenbrand, Markus J. A1 - Sickel, Wiebke A1 - Hentschel, Ute A1 - Keller, Alexander A1 - Deeken, Rosalia T1 - Opportunistic bacteria of grapevine crown galls are equipped with the genomic repertoire for opine utilization JF - Genome Biology and Evolution N2 - Young grapevines (Vitis vinifera) suffer and eventually can die from the crown gall disease caused by the plant pathogen Allorhizobium vitis (Rhizobiaceae). Virulent members of A. vitis harbor a tumor-inducing plasmid and induce formation of crown galls due to the oncogenes encoded on the transfer DNA. The expression of oncogenes in transformed host cells induces unregulated cell proliferation and metabolic and physiological changes. The crown gall produces opines uncommon to plants, which provide an important nutrient source for A. vitis harboring opine catabolism enzymes. Crown galls host a distinct bacterial community, and the mechanisms establishing a crown gall–specific bacterial community are currently unknown. Thus, we were interested in whether genes homologous to those of the tumor-inducing plasmid coexist in the genomes of the microbial species coexisting in crown galls. We isolated 8 bacterial strains from grapevine crown galls, sequenced their genomes, and tested their virulence and opine utilization ability in bioassays. In addition, the 8 genome sequences were compared with 34 published bacterial genomes, including closely related plant-associated bacteria not from crown galls. Homologous genes for virulence and opine anabolism were only present in the virulent Rhizobiaceae. In contrast, homologs of the opine catabolism genes were present in all strains including the nonvirulent members of the Rhizobiaceae and non-Rhizobiaceae. Gene neighborhood and sequence identity of the opine degradation cluster of virulent and nonvirulent strains together with the results of the opine utilization assay support the important role of opine utilization for cocolonization in crown galls, thereby shaping the crown gall community. KW - Vitis vinifera KW - bacterial community KW - Agrobacterium KW - Allorhizobium vitis KW - Ti plasmids KW - de novo sequenced genomes Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350172 VL - 15 IS - 12 ER -