TY - JOUR A1 - Fuchs, Andreas A1 - Kreczy, Dorothea A1 - Brückner, Theresa A1 - Gbureck, Uwe A1 - Stahlhut, Philipp A1 - Bengel, Melanie A1 - Hoess, Andreas A1 - Nies, Berthold A1 - Bator, Julia A1 - Klammert, Uwe A1 - Linz, Christian A1 - Ewald, Andrea T1 - Bone regeneration capacity of newly developed spherical magnesium phosphate cement granules JF - Clinical Oral Investigations N2 - Objectives Magnesium phosphate-based cements begin to catch more attention as bone substitute materials and especially as alternatives for the more commonly used calcium phosphates. In bone substitutes for augmentation purposes, atraumatic materials with good biocompatibility and resorbability are favorable. In the current study, we describe the in vivo testing of novel bone augmentation materials in form of spherical granules based on a calcium-doped magnesium phosphate (CaMgP) cement. Materials and Methods Granules with diameters between 500 and 710 μm were fabricated via the emulsification of CaMgP cement pastes in a lipophilic liquid. As basic material, two different CaMgP formulations were used. The obtained granules were implanted into drill hole defects at the distal femoral condyle of 27 New Zealand white rabbits for 6 and 12 weeks. After explantation, the femora were examined via X-ray diffraction analysis, histological staining, radiological examination, and EDX measurement. Results Both granule types display excellent biocompatibility without any signs of inflammation and allow for proper bone healing without the interposition of connective tissue. CaMgP granules show a fast and continuous degradation and enable fully adequate bone regeneration. Conclusions Due to their biocompatibility, their degradation behavior, and their completely spherical morphology, these CaMgP granules present a promising bone substitute material for bone augmentation procedures, especially in sensitive areas. Clinical Relevance The mostly insufficient local bone supply after tooth extractions complicates prosthetic dental restoration or makes it even impossible. Therefore, bone augmentation procedures are oftentimes inevitable. Spherical CaMgP granules may represent a valuable bone replacement material in many situations. KW - implantation KW - calcium-magnesium phosphate cement KW - cement pastes KW - prefabricated granules KW - bone replacement material Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-268872 SN - 1436-3771 VL - 26 IS - 3 ER - TY - JOUR A1 - Hill, Philip J. A1 - Stritzker, Jochen A1 - Scadeng, Miriam A1 - Geissinger, Ulrike A1 - Haddad, Daniel A1 - Basse-Lüsebrink, Thomas C. A1 - Gbureck, Uwe A1 - Jakob, Peter A1 - Szalay, Aladar A. T1 - Magnetic Resonance Imaging of Tumors Colonized with Bacterial Ferritin-Expressing \(Escherichia\) \(coli\) JF - PLoS ONE N2 - Background: Recent studies have shown that human ferritin can be used as a reporter of gene expression for magnetic resonance imaging (MRI). Bacteria also encode three classes of ferritin-type molecules with iron accumulation properties. Methods and Findings: Here, we investigated whether these bacterial ferritins can also be used as MRI reporter genes and which of the bacterial ferritins is the most suitable reporter. Bacterial ferritins were overexpressed in probiotic E. coli Nissle 1917. Cultures of these bacteria were analyzed and those generating highest MRI contrast were further investigated in tumor bearing mice. Among members of three classes of bacterial ferritin tested, bacterioferritin showed the most promise as a reporter gene. Although all three proteins accumulated similar amounts of iron when overexpressed individually, bacterioferritin showed the highest contrast change. By site-directed mutagenesis we also show that the heme iron, a unique part of the bacterioferritin molecule, is not critical for MRI contrast change. Tumor-specific induction of bacterioferritin-expression in colonized tumors resulted in contrast changes within the bacteria-colonized tumors. Conclusions: Our data suggest that colonization and gene expression by live vectors expressing bacterioferritin can be monitored by MRI due to contrast changes. KW - Blood-brain barrier KW - Gene-expression KW - Salmonella-typhimurium KW - Sugar-transport KW - Breast-tumors KW - MRI reporter KW - Iron-uptake KW - Proteins KW - Therapy KW - Mice Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-140920 VL - 6 IS - 10 ER - TY - JOUR A1 - Geffers, Martha A1 - Groll, Jürgen A1 - Gbureck, Uwe T1 - Reinforcement strategies for load-bearing calcium phosphate biocements JF - Materials N2 - Calcium phosphate biocements based on calcium phosphate chemistry are well-established biomaterials for the repair of non-load bearing bone defects due to the brittle nature and low flexural strength of such cements. This article features reinforcement strategies of biocements based on various intrinsic or extrinsic material modifications to improve their strength and toughness. Altering particle size distribution in conjunction with using liquefiers reduces the amount of cement liquid necessary for cement paste preparation. This in turn decreases cement porosity and increases the mechanical performance, but does not change the brittle nature of the cements. The use of fibers may lead to a reinforcement of the matrix with a toughness increase of up to two orders of magnitude, but restricts at the same time cement injection for minimal invasive application techniques. A novel promising approach is the concept of dual-setting cements, in which a second hydrogel phase is simultaneously formed during setting, leading to more ductile cement-hydrogel composites with largely unaffected application properties. KW - in vitro KW - synergistic reinforcement KW - dihydrate cement KW - porosity KW - mechanical properties KW - dual setting KW - calcium phosphate cements KW - fiber reinforcement KW - polyacrylic acid KW - compressive strength KW - balloon kyphoplasty KW - brushite cement KW - bone cement Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148636 VL - 8 ER - TY - JOUR A1 - Szalay, Aladar A. A1 - Hill, Philip J. A1 - Stritzker, Jochen A1 - Scadeng, Miriam A1 - Geissinger, Ulrike A1 - Haddad, Daniel A1 - Basse-Lüsebrink, Thomas C. A1 - Gbureck, Uwe A1 - Jakob, Peter T1 - Magnetic Resonance Imaging of Tumors Colonized with Bacterial Ferritin-Expressing Escherichia coli N2 - Background: Recent studies have shown that human ferritin can be used as a reporter of gene expression for magnetic resonance imaging (MRI). Bacteria also encode three classes of ferritin-type molecules with iron accumulation properties. Methods and Findings: Here, we investigated whether these bacterial ferritins can also be used as MRI reporter genes and which of the bacterial ferritins is the most suitable reporter. Bacterial ferritins were overexpressed in probiotic E. coli Nissle 1917. Cultures of these bacteria were analyzed and those generating highest MRI contrast were further investigated in tumor bearing mice. Among members of three classes of bacterial ferritin tested, bacterioferritin showed the most promise as a reporter gene. Although all three proteins accumulated similar amounts of iron when overexpressed individually, bacterioferritin showed the highest contrast change. By site-directed mutagenesis we also show that the heme iron, a unique part of the bacterioferritin molecule, is not critical for MRI contrast change. Tumor-specific induction of bacterioferritin-expression in colonized tumors resulted in contrast changes within the bacteria-colonized tumors. Conclusions: Our data suggest that colonization and gene expression by live vectors expressing bacterioferritin can be monitored by MRI due to contrast changes KW - Escherichia coli Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75789 ER - TY - JOUR A1 - Rath, Subha N. A1 - Brandl, Andreas A1 - Hiller, Daniel A1 - Hoppe, Alexander A1 - Gbureck, Uwe A1 - Horch, Raymund E. A1 - Boccaccini, Aldo R. A1 - Kneser, Ulrich T1 - Bioactive Copper-Doped Glass Scaffolds Can Stimulate Endothelial Cells in Co-Culture in Combination with Mesenchymal Stem Cells JF - PLOS ONE N2 - Bioactive glass (BG) scaffolds are being investigated for bone tissue engineering applications because of their osteoconductive and angiogenic nature. However, to increase the in vivo performance of the scaffold, including enhancing the angiogenetic growth into the scaffolds, some researchers use different modifications of the scaffold including addition of inorganic ionic components to the basic BG composition. In this study, we investigated the in vitro biocompatibility and bioactivity of Cu2+-doped BG derived scaffolds in either BMSC (bone-marrow derived mesenchymal stem cells)-only culture or co-culture of BMSC and human dermal microvascular endothelial cells (HDMEC). In BMSC-only culture, cells were seeded either directly on the scaffolds (3D or direct culture) or were exposed to ionic dissolution products of the BG scaffolds, kept in permeable cell culture inserts (2D or indirect culture). Though we did not observe any direct osteoinduction of BMSCs by alkaline phosphatase (ALP) assay or by PCR, there was increased vascular endothelial growth factor (VEGF) expression, observed by PCR and ELISA assays. Additionally, the scaffolds showed no toxicity to BMSCs and there were healthy live cells found throughout the scaffold. To analyze further the reasons behind the increased VEGF expression and to exploit the benefits of the finding, we used the indirect method with HDMECs in culture plastic and Cu2+-doped BG scaffolds with or without BMSCs in cell culture inserts. There was clear observation of increased endothelial markers by both FACS analysis and acetylated LDL (acLDL) uptake assay. Only in presence of Cu2+-doped BG scaffolds with BMSCs, a high VEGF secretion was demonstrated by ELISA; and typical tubular structures were observed in culture plastics. We conclude that Cu2+-doped BG scaffolds release Cu2+, which in turn act on BMSCs to secrete VEGF. This result is of significance for the application of BG scaffolds in bone tissue engineering approaches. KW - arteriovenous loop KW - calcium-phosphate KW - iron release KW - bone KW - angiogenesis KW - expression KW - differentation KW - proliferation KW - osteoblasts KW - growth Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-114339 SN - 1932-6203 VL - 9 IS - 12 ER - TY - JOUR A1 - Rödel, Michaela A1 - Teßmar, Jörg A1 - Groll, Jürgen A1 - Gbureck, Uwe T1 - Tough and Elastic alpha-Tricalcium Phosphate Cement Composites with Degradable PEG-Based Cross-Linker JF - Materials N2 - Dual setting cements composed of an in situ forming hydrogel and a reactive mineral phase combine high compressive strength of the cement with sufficient ductility and bending strength of the polymeric network. Previous studies were focused on the modification with non-degradable hydrogels based on 2-hydroxyethyl methacrylate (HEMA). Here, we describe the synthesis of suitable triblock degradable poly(ethylene glycol)-poly(lactide) (PEG-PLLA) cross-linker to improve the resorption capacity of such composites. A study with four different formulations was established. As reference, pure hydroxyapatite (HA) cements and composites with 40 wt% HEMA in the liquid cement phase were produced. Furthermore, HEMA was modified with 10 wt% of PEG-PLLA cross-linker or a test series containing only 25% cross-linker was chosen for composites with a fully degradable polymeric phase. Hence, we developed suitable systems with increased elasticity and 5-6 times higher toughn ess values in comparison to pure inorganic cement matrix. Furthermore, conversion rate from alpha-tricalcium phosphate (alpha-TCP) to HA was still about 90% for all composite formulations, whereas crystal size decreased. Based on this material development and advancement for a dual setting system, we managed to overcome the drawback of brittleness for pure calcium phosphate cements. KW - dual setting system KW - bending strength KW - calcium phosphate cement KW - composite material KW - HEMA KW - hydroxyapatite KW - free radical polymerization Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-226437 VL - 12 IS - 53 ER - TY - JOUR A1 - Rödel, Michaela A1 - Baumann, Katrin A1 - Groll, Jürgen A1 - Gbureck, Uwe T1 - Simultaneous structuring and mineralization of silk fibroin scaffolds JF - Journal of Tissue Engineering N2 - Silk fibroin is commonly used as scaffold material for tissue engineering applications. In combination with a mineralization with different calcium phosphate phases, it can also be applied as material for bone regeneration. Here, we present a study which was performed to produce mineralized silk fibroin scaffolds with controlled macroporosity. In contrast to former studies, our approach focused on a simultaneous gelation and mineralization of silk fibroin by immersion of frozen silk fibroin monoliths in acidic calcium phosphate solutions. This was achieved by thawing frozen silk fibroin monoliths in acidic calcium phosphate solution, leading to the precipitation of monocalcium phosphate within the silk fibroin matrix. In the second approach, a conversion of incorporated -tricalcium phosphate particles into brushite was successfully achieved. Furthermore, a controlled cryostructuring process of silk fibroin scaffolds was carried out leading to the formation of parallel-oriented pores with diameters of 30-50 mu m. KW - Brushite KW - calcium phosphate KW - cryostructuring KW - hydrogel KW - mineralization KW - silk fibroin scaffolds Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-226427 VL - 9 ER - TY - JOUR A1 - Seifert, Annika A1 - Gruber, Julia A1 - Gbureck, Uwe A1 - Groll, Jürgen T1 - Morphological control of freeze‐structured scaffolds by selective temperature and material control in the ice‐templating process JF - Advanced Engineering Materials N2 - Herein, it is aimed to highlight the importance of the process parameter choice during directional solidification of polymer solutions, as they have a significant influence on the pore structure and orientation. Biopolymer solutions (alginate and chitosan) are directionally frozen, while systematically varying parameters such as the external temperature gradient, the temperature of the overall system, and the temperatures of the cooling surfaces. In addition, the effect of material properties such as molecular weight, solution concentration, or viscosity on the sample morphology is investigated. By selecting appropriate temperature gradients and cooling surface temperatures, aligned pores ranging in size between (50 ± 22) μm and (144 ± 56) μm are observed in the alginate samples, whereas the pore orientation is influenced by altering the external temperature gradient. As this gradient increases, the pores are increasingly oriented perpendicular to the sample surface. This is also observed in the chitosan samples. However, if the overall system is too cold, that is, using temperatures of the lower cooling surface down to −60 °C combined with low temperatures of the upper cooling surface, control over pore orientation is lost. This is also found when viscosity of chitosan solutions is above ≈5 Pas near the freezing point. KW - unidirectional freezing KW - anisotropic porous structures KW - morphology controls KW - systematic investigations Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256330 VL - 24 IS - 3 ER - TY - JOUR A1 - Stuckensen, Kai A1 - Lamo-Espinosa, José M. A1 - Muiños-López, Emma A1 - Ripalda-Cemboráin, Purificación A1 - López-Martínez, Tania A1 - Iglesias, Elena A1 - Abizanda, Gloria A1 - Andreu, Ion A1 - Flandes-Iparraguirre, María A1 - Pons-Villanueva, Juan A1 - Elizalde, Reyes A1 - Nickel, Joachim A1 - Ewald, Andrea A1 - Gbureck, Uwe A1 - Prósper, Felipe A1 - Groll, Jürgen A1 - Granero-Moltó, Froilán T1 - Anisotropic cryostructured collagen scaffolds for efficient delivery of RhBMP−2 and enhanced bone regeneration JF - Materials N2 - In the treatment of bone non-unions, an alternative to bone autografts is the use of bone morphogenetic proteins (BMPs), e.g., BMP–2, BMP–7, with powerful osteoinductive and osteogenic properties. In clinical settings, these osteogenic factors are applied using absorbable collagen sponges for local controlled delivery. Major side effects of this strategy are derived from the supraphysiological doses of BMPs needed, which may induce ectopic bone formation, chronic inflammation, and excessive bone resorption. In order to increase the efficiency of the delivered BMPs, we designed cryostructured collagen scaffolds functionalized with hydroxyapatite, mimicking the structure of cortical bone (aligned porosity, anisotropic) or trabecular bone (random distributed porosity, isotropic). We hypothesize that an anisotropic structure would enhance the osteoconductive properties of the scaffolds by increasing the regenerative performance of the provided rhBMP–2. In vitro, both scaffolds presented similar mechanical properties, rhBMP–2 retention and delivery capacity, as well as scaffold degradation time. In vivo, anisotropic scaffolds demonstrated better bone regeneration capabilities in a rat femoral critical-size defect model by increasing the defect bridging. In conclusion, anisotropic cryostructured collagen scaffolds improve bone regeneration by increasing the efficiency of rhBMP–2 mediated bone healing. KW - rhBMP–2 KW - collagen sponge KW - cryostructured scaffolds KW - bone critical size defect Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-195966 SN - 1996-1944 VL - 12 IS - 19 ER - TY - JOUR A1 - Heilig, Philipp A1 - Sandner, Phoebe A1 - Jordan, Martin Cornelius A1 - Jakubietz, Rafael Gregor A1 - Meffert, Rainer Heribert A1 - Gbureck, Uwe A1 - Hoelscher-Doht, Stefanie T1 - Experimental drillable magnesium phosphate cement is a promising alternative to conventional bone cements JF - Materials N2 - Clinically used mineral bone cements lack high strength values, absorbability and drillability. Therefore, magnesium phosphate cements have recently received increasing attention as they unify a high mechanical performance with presumed degradation in vivo. To obtain a drillable cement formulation, farringtonite (Mg\(_3\)(PO\(_4\))\(_2\)) and magnesium oxide (MgO) were modified with the setting retardant phytic acid (C\(_6\)H\(_{18}\)O\(_{24}\)P\(_6\)). In a pre-testing series, 13 different compositions of magnesium phosphate cements were analyzed concentrating on the clinical demands for application. Of these 13 composites, two cement formulations with different phytic acid content (22.5 wt% and 25 wt%) were identified to meet clinical demands. Both formulations were evaluated in terms of setting time, injectability, compressive strength, screw pullout tests and biomechanical tests in a clinically relevant fracture model. The cements were used as bone filler of a metaphyseal bone defect alone, and in combination with screws drilled through the cement. Both formulations achieved a setting time of 5 min 30 s and an injectability of 100%. Compressive strength was shown to be ~12–13 MPa and the overall displacement of the reduced fracture was <2 mm with and without screws. Maximum load until reduced fracture failure was ~2600 N for the cements only and ~3800 N for the combination with screws. Two new compositions of magnesium phosphate cements revealed high strength in clinically relevant biomechanical test set-ups and add clinically desired characteristics to its strength such as injectability and drillability. KW - magnesium phosphate cement KW - phytic acid KW - inositol hexaphosphate KW - drillable bone cement KW - tibial head depression fracture KW - synbones KW - artificial bones KW - biomechanical evaluation KW - cyclic testing KW - load to failure testing Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236633 SN - 1996-1944 VL - 14 IS - 8 ER -