TY - JOUR A1 - Trebing, J. A1 - El-Mesery, M. A1 - Schäfer, V. A1 - Weisenberger, D. A1 - Siegmund, D. A1 - Silence, K. A1 - Wajant, H. T1 - CD70-restricted specific activation of TRAILR1 or TRAILR2 using scFv-targeted TRAIL mutants JF - Cell Death & Disease N2 - To combine the CD27 stimulation inhibitory effect of blocking CD70 antibodies with an antibody-dependent cellular cytotoxicity (ADCC)-independent, cell death-inducing activity for targeting of CD70-expressing tumors, we evaluated here fusion proteins of the apoptosis-inducing TNF family member TRAIL and a single-chain variable fragment (scFv) derived from a high-affinity llama-derived anti-human CD70 antibody (lαhCD70). A fusion protein of scFv:lαhCD70 with TNC-TRAIL, a stabilized form of TRAIL, showed strongly enhanced apoptosis induction upon CD70 binding and furthermore efficiently interfered with CD70-CD27 interaction. Noteworthy, introduction of recently identified mutations that discriminate between TRAILR1 and TRAILR2 binding into the TRAIL part of scFv:lαhCD70-TNC-TRAIL resulted in TRAIL death receptor-specific fusion proteins with CD70-restricted activity. KW - apoptosis KW - CD27 KW - CD70 KW - scFv KW - TRAIL Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120078 VL - 5 ER - TY - JOUR A1 - Antoniou, Antonis C. A1 - Kuchenbaecker, Karoline B. A1 - Soucy, Penny A1 - Beesley, Jonathan A1 - Chen, Xiaoqing A1 - McGuffog, Lesley A1 - Lee, Andrew A1 - Barrowdale, Daniel A1 - Healey, Sue A1 - Sinilnikova, Olga M. A1 - Caligo, Maria A. A1 - Loman, Niklas A1 - Harbst, Katja A1 - Lindblom, Annika A1 - Arver, Brita A1 - Rosenquist, Richard A1 - Karlsson, Per A1 - Nathanson, Kate A1 - Domchek, Susan A1 - Rebbeck, Tim A1 - Jakubowska, Anna A1 - Lubinski, Jan A1 - Jaworska, Katarzyna A1 - Durda, Katarzyna A1 - Zlowowcka-Perłowska, Elżbieta A1 - Osorio, Ana A1 - Durán, Mercedes A1 - Andrés, Raquel A1 - Benítez, Javier A1 - Hamann, Ute A1 - Hogervorst, Frans B. A1 - van Os, Theo A. A1 - Verhoef, Senno A1 - Meijers-Heijboer, Hanne E. J. A1 - Wijnen, Juul A1 - Garcia, Encarna B. Gómez A1 - Ligtenberg, Marjolijn J. A1 - Kriege, Mieke A1 - Collée, Margriet A1 - Ausems, Margreet G. E. M. A1 - Oosterwijk, Jan C. A1 - Peock, Susan A1 - Frost, Debra A1 - Ellis, Steve D. A1 - Platte, Radka A1 - Fineberg, Elena A1 - Evans, D. Gareth A1 - Lalloo, Fiona A1 - Jacobs, Chris A1 - Eeles, Ros A1 - Adlard, Julian A1 - Davidson, Rosemarie A1 - Cole, Trevor A1 - Cook, Jackie A1 - Paterson, Joan A1 - Douglas, Fiona A1 - Brewer, Carole A1 - Hodgson, Shirley A1 - Morrison, Patrick J. A1 - Walker, Lisa A1 - Rogers, Mark T. A1 - Donaldson, Alan A1 - Dorkins, Huw A1 - Godwin, Andrew K. A1 - Bove, Betsy A1 - Stoppa-Lyonnet, Dominique A1 - Houdayer, Claude A1 - Buecher, Bruno A1 - de Pauw, Antoine A1 - Mazoyer, Sylvie A1 - Calender, Alain A1 - Léoné, Mélanie A1 - Bressac-de Paillerets, Brigitte A1 - Caron, Olivier A1 - Sobol, Hagay A1 - Frenay, Marc A1 - Prieur, Fabienne A1 - Ferrer, Sandra Fert A1 - Mortemousque, Isabelle A1 - Buys, Saundra A1 - Daly, Mary A1 - Miron, Alexander A1 - Terry, Mary Beth A1 - Hopper, John L. A1 - John, Esther M. A1 - Southey, Melissa A1 - Goldgar, David A1 - Singer, Christian F. A1 - Fink-Retter, Anneliese A1 - Muy-Kheng, Tea A1 - Geschwantler Kaulich, Daphne A1 - Hansen, Thomas V. O. A1 - Nielsen, Finn C. A1 - Barkardottir, Rosa B. A1 - Gaudet, Mia A1 - Kirchhoff, Tomas A1 - Joseph, Vijai A1 - Dutra-Clarke, Ana A1 - Offit, Kenneth A1 - Piedmonte, Marion A1 - Kirk, Judy A1 - Cohn, David A1 - Hurteau, Jean A1 - Byron, John A1 - Fiorica, James A1 - Toland, Amanda E. A1 - Montagna, Marco A1 - Oliani, Cristina A1 - Imyanitov, Evgeny A1 - Isaacs, Claudine A1 - Tihomirova, Laima A1 - Blanco, Ignacio A1 - Lazaro, Conxi A1 - Teulé, Alex A1 - Del Valle, J. A1 - Gayther, Simon A. A1 - Odunsi, Kunle A1 - Gross, Jenny A1 - Karlan, Beth Y. A1 - Olah, Edith A1 - Teo, Soo-Hwang A1 - Ganz, Patricia A. A1 - Beattie, Mary S. A1 - Dorfling, Cecelia M. A1 - Jansen van Rensburg, Elizabeth A1 - Diez, Orland A1 - Kwong, Ava A1 - Schmutzler, Rita K. A1 - Wappenschmidt, Barbara A1 - Engel, Christoph A1 - Meindl, Alfons A1 - Ditsch, Nina A1 - Arnold, Norbert A1 - Heidemann, Simone A1 - Niederacher, Dieter A1 - Preisler-Adams, Sabine A1 - Gadzicki, Dorothea A1 - Varon-Mateeva, Raymonda A1 - Deissler, Helmut A1 - Gehrig, Andrea A1 - Sutter, Christian A1 - Kast, Karin A1 - Fiebig, Britta A1 - Schäfer, Dieter A1 - Caldes, Trinidad A1 - de la Hoya, Miguel A1 - Nevanlinna, Heli A1 - Muranen, Taru A. A1 - Lespérance, Bernard A1 - Spurdle, Amanda B. A1 - Neuhausen, Susan L. A1 - Ding, Yuan C. A1 - Wang, Xianshu A1 - Fredericksen, Zachary A1 - Pankratz, Vernon S. A1 - Lindor, Noralane M. A1 - Peterlongo, Paulo A1 - Manoukian, Siranoush A1 - Peissel, Bernard A1 - Zaffaroni, Daniela A1 - Bonanni, Bernardo A1 - Bernard, Loris A1 - Dolcetti, Riccardo A1 - Papi, Laura A1 - Ottini, Laura A1 - Radice, Paolo A1 - Greene, Mark H. A1 - Loud, Jennifer T. A1 - Andrulis, Irene L. A1 - Ozcelik, Hilmi A1 - Mulligan, Anna Marie A1 - Glendon, Gord A1 - Thomassen, Mads A1 - Gerdes, Anne-Marie A1 - Jensen, Uffe B. A1 - Skytte, Anne-Bine A1 - Kruse, Torben A. A1 - Chenevix-Trench, Georgia A1 - Couch, Fergus J. A1 - Simard, Jacques A1 - Easton, Douglas F. T1 - Common variants at 12p11, 12q24, 9p21, 9q31.2 and in ZNF365 are associated with breast cancer risk for BRCA1 and/or BRCA2 mutation carriers JF - Breast Cancer Research N2 - Introduction: Several common alleles have been shown to be associated with breast and/or ovarian cancer risk for BRCA1 and BRCA2 mutation carriers. Recent genome-wide association studies of breast cancer have identified eight additional breast cancer susceptibility loci: rs1011970 (9p21, CDKN2A/B), rs10995190 (ZNF365), rs704010 (ZMIZ1), rs2380205 (10p15), rs614367 (11q13), rs1292011 (12q24), rs10771399 (12p11 near PTHLH) and rs865686 (9q31.2). Methods: To evaluate whether these single nucleotide polymorphisms (SNPs) are associated with breast cancer risk for BRCA1 and BRCA2 carriers, we genotyped these SNPs in 12,599 BRCA1 and 7,132 BRCA2 mutation carriers and analysed the associations with breast cancer risk within a retrospective likelihood framework. Results: Only SNP rs10771399 near PTHLH was associated with breast cancer risk for BRCA1 mutation carriers (per-allele hazard ratio (HR) = 0.87, 95% CI: 0.81 to 0.94, P-trend = 3 x 10\(^{-4}\)). The association was restricted to mutations proven or predicted to lead to absence of protein expression (HR = 0.82, 95% CI: 0.74 to 0.90, P-trend = 3.1 x 10\(^{-5}\), P-difference = 0.03). Four SNPs were associated with the risk of breast cancer for BRCA2 mutation carriers: rs10995190, P-trend = 0.015; rs1011970, P-trend = 0.048; rs865686, 2df P = 0.007; rs1292011 2df P = 0.03. rs10771399 (PTHLH) was predominantly associated with estrogen receptor (ER)-negative breast cancer for BRCA1 mutation carriers (HR = 0.81, 95% CI: 0.74 to 0.90, P-trend = 4 x 10\(^{-5}\)) and there was marginal evidence of association with ER- negative breast cancer for BRCA2 mutation carriers (HR = 0.78, 95% CI: 0.62 to 1.00, P-trend = 0.049). Conclusions: The present findings, in combination with previously identified modifiers of risk, will ultimately lead to more accurate risk prediction and an improved understanding of the disease etiology in BRCA1 and BRCA2 mutation carriers. KW - investigators KW - genetic modifiers KW - mammographic density KW - susceptibility loci KW - ovarian cancer KW - hormone-related protein KW - genome-wide association KW - tumor subtypes KW - alleles KW - consortium Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130449 VL - 14 IS - R33 ER - TY - JOUR A1 - El-Mesery, M. A1 - Trebing, J. A1 - Schafer, V. A1 - Weisenberger, D. A1 - Siegmund, D. A1 - Wajant, H. T1 - CD40-directed scFv-TRAIL fusion proteins induce CD40-restricted tumor cell death and activate dendritic cells JF - Cell Death & Disease N2 - Targeted cancer therapy concepts often aim at the induction of adjuvant antitumor immunity or stimulation of tumor cell apoptosis. There is further evidence that combined application of immune stimulating and tumor apoptosis-inducing compounds elicits a synergistic antitumor effect. Here, we describe the development and characterization of bifunctional fusion proteins consisting of a single-chain variable fragment (scFv) domain derived from the CD40-specific monoclonal antibody G28-5 that is fused to the N-terminus of stabilized trimeric soluble variants of the death ligand TNF-related apoptosis-inducing ligand (TRAIL). As shown before by us and others for other cell surface antigen-targeted scFv-TRAIL fusion proteins, scFv:G28-TRAIL displayed an enhanced capacity to induce apoptosis upon CD40 binding. Studies with scFv:G28 fusion proteins of TRAIL mutants that discriminate between the two TRAIL death receptors, TRAILR1 and TRAILR2, further revealed that the CD40 binding-dependent mode of apoptosis induction of scFv:G28-TRAIL is operable with each of the two TRAIL death receptors. Binding of scFv:G28-TRAIL fusion proteins to CD40 not only result in enhanced TRAIL death receptor signaling but also in activation of the targeted CD40 molecule. In accordance with the latter, the scFv:G28-TRAIL fusion proteins triggered strong CD40-mediated maturation of dendritic cells. The CD40-targeted TRAIL fusion proteins described in this study therefore represent a novel type of bifunctional fusion proteins that couple stimulation of antigen presenting cells and apoptosis induction. KW - dendritic cells KW - apoptosis KW - CD40 KW - TRAIL Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-128777 VL - 4 IS - e916 ER - TY - JOUR A1 - Bachmann, Friederike A1 - Schreder, Martin A1 - Engelhardt, Monika A1 - Langer, Christian A1 - Wolleschak, Denise A1 - Mügge, Lars Olof A1 - Dürk, Heinz A1 - Schäfer-Eckart, Kerstin A1 - Blau, Igor Wolfgang A1 - Gramatzki, Martin A1 - Liebisch, Peter A1 - Grube, Matthias A1 - Metzler, Ivana v. A1 - Bassermann, Florian A1 - Metzner, Bernd A1 - Röllig, Christoph A1 - Hertenstein, Bernd A1 - Khandanpour, Cyrus A1 - Dechow, Tobias A1 - Hebart, Holger A1 - Jung, Wolfram A1 - Theurich, Sebastian A1 - Maschmeyer, Georg A1 - Salwender, Hans A1 - Hess, Georg A1 - Bittrich, Max A1 - Rasche, Leo A1 - Brioli, Annamaria A1 - Eckardt, Kai-Uwe A1 - Straka, Christian A1 - Held, Swantje A1 - Einsele, Hermann A1 - Knop, Stefan T1 - Kinetics of renal function during induction in newly diagnosed multiple myeloma: results of two prospective studies by the German Myeloma Study Group DSMM JF - Cancers N2 - Background: Preservation of kidney function in newly diagnosed (ND) multiple myeloma (MM) helps to prevent excess toxicity. Patients (pts) from two prospective trials were analyzed, provided postinduction (PInd) restaging was performed. Pts received three cycles with bortezomib (btz), cyclophosphamide, and dexamethasone (dex; VCD) or btz, lenalidomide (len), and dex (VRd) or len, adriamycin, and dex (RAD). The minimum required estimated glomerular filtration rate (eGFR) was >30 mL/min. We analyzed the percent change of the renal function using the International Myeloma Working Group (IMWG) criteria and Kidney Disease: Improving Global Outcomes (KDIGO)-defined categories. Results: Seven hundred and seventy-two patients were eligible. Three hundred and fifty-six received VCD, 214 VRd, and 202 RAD. VCD patients had the best baseline eGFR. The proportion of pts with eGFR <45 mL/min decreased from 7.3% at baseline to 1.9% PInd (p < 0.0001). Thirty-seven point one percent of VCD versus 49% of VRd patients had a decrease of GFR (p = 0.0872). IMWG-defined “renal complete response (CRrenal)” was achieved in 17/25 (68%) pts after VCD, 12/19 (63%) after RAD, and 14/27 (52%) after VRd (p = 0.4747). Conclusions: Analyzing a large and representative newly diagnosed myeloma (NDMM) group, we found no difference in CRrenal that occurred independently from the myeloma response across the three regimens. A trend towards deterioration of the renal function with VRd versus VCD may be explained by a better pretreatment “renal fitness” in the latter group. KW - multiple myeloma KW - renal failure KW - kidney KW - bortezomib KW - lenalidomide KW - induction regimen Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-234139 SN - 2072-6694 VL - 13 IS - 6 ER -