TY - JOUR A1 - Brehm, Klaus A1 - Hemer, Sarah A1 - Konrad, Christian A1 - Spiliotis, Markus A1 - Koziol, Uriel A1 - Schaack, Dominik A1 - Förster, Sabine A1 - Gelmedin, Verena A1 - Stadelmann, Britta A1 - Dandekar, Thomas A1 - Hemphill, Andrew T1 - Host insulin stimulates Echinococcus multilocularis insulin signalling pathways and larval development N2 - Background The metacestode of the tapeworm Echinococcus multilocularis is the causative agent of alveolar echinococcosis, a lethal zoonosis. Infections are initiated through establishment of parasite larvae within the intermediate host’s liver, where high concentrations of insulin are present, followed by tumour-like growth of the metacestode in host organs. The molecular mechanisms determining the organ tropism of E. multilocularis or the influences of host hormones on parasite proliferation are poorly understood. Results Using in vitro cultivation systems for parasite larvae we show that physiological concentrations (10 nM) of human insulin significantly stimulate the formation of metacestode larvae from parasite stem cells and promote asexual growth of the metacestode. Addition of human insulin to parasite larvae led to increased glucose uptake and enhanced phosphorylation of Echinococcus insulin signalling components, including an insulin receptor-like kinase, EmIR1, for which we demonstrate predominant expression in the parasite’s glycogen storage cells. We also characterized a second insulin receptor family member, EmIR2, and demonstrated interaction of its ligand binding domain with human insulin in the yeast two-hybrid system. Addition of an insulin receptor inhibitor resulted in metacestode killing, prevented metacestode development from parasite stem cells, and impaired the activation of insulin signalling pathways through host insulin. Conclusions Our data indicate that host insulin acts as a stimulant for parasite development within the host liver and that E. multilocularis senses the host hormone through an evolutionarily conserved insulin signalling pathway. Hormonal host-parasite cross-communication, facilitated by the relatively close phylogenetic relationship between E. multilocularis and its mammalian hosts, thus appears to be important in the pathology of alveolar echinococcosis. This contributes to a closer understanding of organ tropism and parasite persistence in larval cestode infections. Furthermore, our data show that Echinococcus insulin signalling pathways are promising targets for the development of novel drugs. KW - Cestode KW - Tapeworm KW - Echinococcus KW - Echinococcosis KW - Insulin KW - Receptor kinase KW - Kinase inhibitor KW - Host-parasite interaction Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-110357 ER - TY - THES A1 - Gelmedin, Verena Magdalena T1 - Targeting flatworm signaling cascades for the development of novel anthelminthic drugs T1 - Signalkaskaden von Plattwürmern als Angriffspunkte zur Entwicklung neuer Antihelminthika N2 - Echinococcus multilocularis verursacht die Alveoläre Echinokokkose (AE), eine lebendsbedrohliche Krankheit mit limitierten chemotherapeutischen Möglichkeiten. Die jetzige Anti-AE Chemotherapie basiert auf einer einzigen Wirkstoffklasse, den Benzimidazolen. Obwohl Benzimidazole in vitro parasitozid wirken, wirken sie in vivo bei AE-Behandlung lediglich parasitostatisch und rufen schwere Nebenwirkungen hervor. In Fällen operabler Läsionen erfordert die Resektion des Parasitengewebes über einen längeren Zeitraum eine chemotherapeutische Unterstützung. Damit sind die jetzigen Behandlungsmöglichkeiten inadäquat und benötigen Alternativen. In der vorliegenden Arbeit wurden die Signalwege von Plattwürmern analysiert, um potentielle Targets für neue therapeutische Ansätze zu identifizieren. Dabei konzentrierte ich mich unter Anwendung von molekularbiologischer, biochemischer und zellbiologischer Methoden auf Faktoren, die an Entwicklung und Proliferation von E. multilocularis beteiligt sind. Darunter waren die drei MAP kinases des Parasiten EmMPK1, ein Erk1/2-Ortholog, EmMPK2, ein p38-Ortholog und EmMPK3, ein Erk7/8-Ortholog. Des Weiteren identifizierte und charakterisierte ich EmMKK2, ein MEK1/2-Ortholog des Parasiten, welches zusammen mit den bekannten Kinasen EmRaf und EmMPK1 ein Erk1/2-ähnliches MAPK Modul bildet. Ich konnte zudem verschiedene Einflüsse von Wirtswachstumsfaktoren wie EGF (epidermal growth factor) und Insulin auf die Signalmechanismen des Parasiten und das Larvenwachstum zeigen, darunter die Phosphorylierung von Elp, ein Ezrin-Radixin-Moesin ähnliches Protein, die Aktivierung von EmMPK1 und EmMPK3 und eine gesteigerte mitotische Aktivität der Echinokokkenzellen. Zusätzlich wurden verschiedene Substanzen auf ihre letale Wirkung auf den Parasiten untersucht, darunter befanden sich (1.) generelle Inhibitoren von Tyrosinkinasen (PP2, Leflunamid), (2.) gegen die Aktivität von Rezeptor-Tyrosin-Kinasen gerichtete Präparate, (3.) ursprünglich anti-neoplastische Wirkstoffe wie Miltefosin und Perifosin, (4.) Inhibitoren von Serin/ Threonin-Kinasen, die die Erk1/2 MAPK Kaskade blockieren und (5.) Inhibitoren der p38 MAPK. In diesen Untersuchungen hat sich EmMPK2 aus den folgenden Gründen als vielversprechendes Target erwiesen. Aminosäuresequenz-Analysen offenbarten einige Unterschiede zu menschlichen p38 MAP Kinasen, welche sehr wahrscheinlich die beobachtete gesteigerte basale Aktivität des rekombinanten EmMPK2 verursachen, verglichen mit der Aktivität humaner p38 MAPK-α. Zusätzlich suggerieren die prominente Autophosphorylierungsaktivität von rekombinantem EmMPK2 und das Ausbleiben einer Interaktion mit den Echinococcus MKKs einen unterschiedlichen Regulierungsmechanismus im Vergleich zu den humanen Proteinen. Die Aktivität von EmMPK2 konnte sowohl in vitro als auch in kultivierten Metazestodenvesikeln durch die Behandlung mit SB202190 und ML3403, zwei ATP kompetitiven Pyridinylimidazolinhibitoren der p38 MAPK, in Konzentrations-abhängiger Weise inhibiert werden. Zudem verursachten beide Substanzen, insbesondere ML3403 die Inaktivierung von Parasitenvesikeln bei Konzentrationen, die kultivierte Säugerzellen nicht beeinträchtigten. Ebenso verhinderte die Anwesenheit von ML3403 die Generation von neuen Vesikeln während der Kultivierung von Echinococcus Primärzellen. Das Targeting von Mitgliedern des EGF-Signalwegs, insbesondere der Erk1/2-ähnlichen MAPK Kaskade mit Raf- und MEK- Inhibitoren verhinderte die Phosphorylierung von EmMPK1 in in vitro kultivierten Metazestoden. Obwohl das Parasitenwachstum unter diesen Konditionen verhindert wurde, blieb die strukturelle Integrität der Metazestodenvesikeln während der Langzeitkultivierung in Anwesenheit der MAPK Kaskade-Inhibitoren erhalten. Ähnliche Effekte wurden beobachtet nach Behandlung mit den anderen zuvor aufgeführten Inhibitoren. Zusammenfassend lässt sich festhalten, dass verschiedene Targets identifiziert werden konnten, die hoch sensibel auf die Anwesenheit der inhibitorischen Substanzen reagierten, aber nicht zum Absterben des Parasiten führten, mit Ausnahme der Pyridinylimidazolen. Die vorliegenden Daten zeigen, dass EmMPK2 ein Überlebendsignal vermittelnden Faktor darstellt und dessen Inhibierung zur Behandlung der AE benutzt werden könnte. Dabei erwiesen sich p38 MAPK Inhibitoren der Pyridinylimidazolklasse als potentielle neue Substanzklasse gegen Echinokokken. N2 - Echinococcus multilocularis is the causative agent of alveolar echinococcosis (AE), a life-threatening disease with limited options of chemotherapeutic treatment. Anti-AE chemotherapy is currently based on a single class of drugs, the benzimidazoles. Although acting parasitocidic in vitro, benzimidazoles are merely parasitostatic during in vivo treatment of AE and cause severe site effects. In the case of operable lesions, the resection of parasite tissue needs to be supported by a prolonged chemotherapy. Thus, the current treatment options for AE are inadequate and require alternatives. In the present work, the flatworm signaling pathways were analyzed to establish potential targets for novel therapeutic approaches. I focused on factors that are involved in development and proliferation of E. multilocularis using molecular, biochemical and cell biological methods. Among the analysed factors were three MAP kinases of the parasite, EmMPK1, an Erk-1/2 orthologue, EmMPK2, a p38 orthologue and EmMPK3, an Erk7/8 orthologue. Further, I identified and characterized EmMKK2, a MEK1/2 orthologue of the parasite, which, together with the known kinases EmRaf and EmMPK1, forms an Erk1/2-like MAPK module. Moreover, I was able to demonstrate several influences of host growth factors such as EGF (epidermal growth factor) and insulin on worm signaling mechanisms and larval growth, including the phosphorylation of Elp, an ezrin-radixin-moesin like protein, EmMPK1, EmMPK3 and increased mitotic activity of Echinococcus cells. In addition, several substances were examined for their efficacy against the parasite including (i) general tyrosine kinase inhibitors (PP2, leflunamide), (ii) compounds designed to inhibit the activity of receptor tyrosine kinases, (iii) anti-neoplastic agents (miltefosine, perifosine), (iv) serine/threonine kinase inhibitors that have been designed to block the Erk1/2 MAPK cascade and (v) inhibitors of p38 MAPKs. In these studies, EmMPK2 proved to be a promising drug target for the following reasons. Amino acid sequence analysis disclosed several differences to human p38 MAPKs, which is likely to be the reason for the observed enhanced basal activity of recombinant EmMPK2 towards myelin basic protein in comparison to human recombinant p38 MAPK-α. In addition, the prominent auto-phosphorylation activity of the recombinant EmMPK2 protein together with the absence of an interaction with the Echinococcus MKKs suggest a different mechanism of regulation compared to the human enzyme. EmMPK2 activity could be effectively inhibited in vitro and in cultivated metacestode vesicles by treatment with SB202190 and ML3403, two ATP-competitive pyridinyl imidazole inhibitors of p38 MAPKs, in a concentration-dependent manner. Moreover, both compounds, in particular ML3403, caused parasite vesicle inactivation at concentrations which did not affect cultured mammalian cells. Likewise, during the cultivation of Echinococcus primary cells, the presence of ML3403 prevented the generation of new vesicles. Targeting members of the EGF signaling pathway, particulary of the Erk1/2-like MAPK cascade, with Raf and MEK inhibitors prevented the phosphorylation of EmMPK1 in metacestodes cultivated in vitro. However, although parasite growth was prevented under these conditions, the structural integrity of the metacestode vesicles maintained during long-term cultivation in the presence of the MAPK cascade inhibitors. Similar results were obtained when studying the effects of other drugs mentioned above. Taken together, several targets could be identified that reacted with high sensitivity to the presence of inhibitory substances, but did not cause the parasite’s death with one exception, the pyridinyl imidazoles. Based on the presented data, I suggest pyridinyl imidazoles as a novel class of anti-Echinococcus drugs and imply EmMPK2 as survival signal mediating factor, the inhibition of which could be used for the treatment of AE. KW - Fuchsbandwurm KW - Signaltransduktion KW - MAP-Kinase KW - Eingeweidewürmer KW - Proliferation KW - Zelldifferenzierung KW - Inhibitor KW - Entwicklung KW - Heilmittel KW - Fox tapeworm KW - signaltransduction KW - MAP kinase KW - chemotherapy KW - development Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-33334 ER -