TY - JOUR A1 - Eckardt, Jan-Niklas A1 - Stasik, Sebastian A1 - Kramer, Michael A1 - Röllig, Christoph A1 - Krämer, Alwin A1 - Scholl, Sebastian A1 - Hochhaus, Andreas A1 - Crysandt, Martina A1 - Brümmendorf, Tim H. A1 - Naumann, Ralph A1 - Steffen, Björn A1 - Kunzmann, Volker A1 - Einsele, Hermann A1 - Schaich, Markus A1 - Burchert, Andreas A1 - Neubauer, Andreas A1 - Schäfer-Eckart, Kerstin A1 - Schliemann, Christoph A1 - Krause, Stefan W. A1 - Herbst, Regina A1 - Hänel, Mathias A1 - Frickhofen, Norbert A1 - Noppeney, Richard A1 - Kaiser, Ulrich A1 - Baldus, Claudia D. A1 - Kaufmann, Martin A1 - Rácil, Zdenek A1 - Platzbecker, Uwe A1 - Berdel, Wolfgang E. A1 - Mayer, Jiří A1 - Serve, Hubert A1 - Müller-Tidow, Carsten A1 - Ehninger, Gerhard A1 - Stölzel, Friedrich A1 - Kroschinsky, Frank A1 - Schetelig, Johannes A1 - Bornhäuser, Martin A1 - Thiede, Christian A1 - Middeke, Jan Moritz T1 - Loss-of-function mutations of BCOR are an independent marker of adverse outcomes in intensively treated patients with acute myeloid leukemia JF - Cancers N2 - Acute myeloid leukemia (AML) is characterized by recurrent genetic events. The BCL6 corepressor (BCOR) and its homolog, the BCL6 corepressor-like 1 (BCORL1), have been reported to be rare but recurrent mutations in AML. Previously, smaller studies have reported conflicting results regarding impacts on outcomes. Here, we retrospectively analyzed a large cohort of 1529 patients with newly diagnosed and intensively treated AML. BCOR and BCORL1 mutations were found in 71 (4.6%) and 53 patients (3.5%), respectively. Frequently co-mutated genes were DNTM3A, TET2 and RUNX1. Mutated BCORL1 and loss-of-function mutations of BCOR were significantly more common in the ELN2017 intermediate-risk group. Patients harboring loss-of-function mutations of BCOR had a significantly reduced median event-free survival (HR = 1.464 (95%-Confidence Interval (CI): 1.005–2.134), p = 0.047), relapse-free survival (HR = 1.904 (95%-CI: 1.163–3.117), p = 0.01), and trend for reduced overall survival (HR = 1.495 (95%-CI: 0.990–2.258), p = 0.056) in multivariable analysis. Our study establishes a novel role for loss-of-function mutations of BCOR regarding risk stratification in AML, which may influence treatment allocation. KW - acute myeloid leukemia KW - BCOR KW - BCORL1 KW - loss-of-function KW - risk stratification KW - survival Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236735 SN - 2072-6694 VL - 13 IS - 9 ER - TY - JOUR A1 - Lüke, Florian A1 - Haller, Florian A1 - Utpatel, Kirsten A1 - Krebs, Markus A1 - Meidenbauer, Norbert A1 - Scheiter, Alexander A1 - Spoerl, Silvia A1 - Heudobler, Daniel A1 - Sparrer, Daniela A1 - Kaiser, Ulrich A1 - Keil, Felix A1 - Schubart, Christoph A1 - Tögel, Lars A1 - Einhell, Sabine A1 - Dietmaier, Wolfgang A1 - Huss, Ralf A1 - Dintner, Sebastian A1 - Sommer, Sebastian A1 - Jordan, Frank A1 - Goebeler, Maria-Elisabeth A1 - Metz, Michaela A1 - Haake, Diana A1 - Scheytt, Mithun A1 - Gerhard-Hartmann, Elena A1 - Maurus, Katja A1 - Brändlein, Stephanie A1 - Rosenwald, Andreas A1 - Hartmann, Arndt A1 - Märkl, Bruno A1 - Einsele, Hermann A1 - Mackensen, Andreas A1 - Herr, Wolfgang A1 - Kunzmann, Volker A1 - Bargou, Ralf A1 - Beckmann, Matthias W. A1 - Pukrop, Tobias A1 - Trepel, Martin A1 - Evert, Matthias A1 - Claus, Rainer A1 - Kerscher, Alexander T1 - Identification of disparities in personalized cancer care — a joint approach of the German WERA consortium JF - Cancers N2 - (1) Background: molecular tumor boards (MTBs) are crucial instruments for discussing and allocating targeted therapies to suitable cancer patients based on genetic findings. Currently, limited evidence is available regarding the regional impact and the outreach component of MTBs; (2) Methods: we analyzed MTB patient data from four neighboring Bavarian tertiary care oncology centers in Würzburg, Erlangen, Regensburg, and Augsburg, together constituting the WERA Alliance. Absolute patient numbers and regional distribution across the WERA-wide catchment area were weighted with local population densities; (3) Results: the highest MTB patient numbers were found close to the four cancer centers. However, peaks in absolute patient numbers were also detected in more distant and rural areas. Moreover, weighting absolute numbers with local population density allowed for identifying so-called white spots—regions within our catchment that were relatively underrepresented in WERA MTBs; (4) Conclusions: investigating patient data from four neighboring cancer centers, we comprehensively assessed the regional impact of our MTBs. The results confirmed the success of existing collaborative structures with our regional partners. Additionally, our results help identifying potential white spots in providing precision oncology and help establishing a joint WERA-wide outreach strategy. KW - precision oncology KW - MTB KW - patient access KW - cancer care KW - outreach KW - real world data KW - outcomes research Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-290311 SN - 2072-6694 VL - 14 IS - 20 ER -