TY - THES A1 - Werner, Katharina Julia T1 - Adipose Tissue Engineering - In vitro Development of a subcutaneous fat layer and a vascularized adipose tissue construct utilizing extracellular matrix structures T1 - Fettgewebe Engineering - In vitro Entwicklung einer subkutanen Fettschicht und eines vaskularisierten Fettgewebskonstruktes unter Verwendung extrazellulärer Matrixstrukturen N2 - Each year millions of plastic and reconstructive procedures are performed to regenerate soft tissue defects after, for example, traumata, deep burns or tumor resections. Tissue engineered adipose tissue grafts are a promising alternative to autologous fat transfer or synthetic implants to meet this demand for adipose tissue. Strategies of tissue engineering, especially the use of cell carriers, provide an environment for better cell survival, an easier positioning and supplemented with the appropriate conditions a faster vascularization in vivo. To successfully engineer an adipose tissue substitute for clinical use, it is crucial to know the actual intended application. In some areas, like the upper and lower extremities, only a thin subcutaneous fat layer is needed and in others, large volumes of vascularized fat grafts are more desirable. The use and interplay of stem cells and selected scaffolds were investigated and provide now a basis for the generation of fitted and suitable substitutes in two different application areas. Complex injuries of the upper and lower extremities, in many cases, lead to excessive scarring. Due to severe damage to the subcutaneous fat layer, a common sequela is adhesion formation to mobile structures like tendons, nerves, and blood vessels resulting in restricted motion and disabling pain [Moor 1996, McHugh 1997]. In order to generate a subcutaneous fat layer to cushion scarred tissue after substantial burns or injuries, different collagen matrices were tested for clinical handling and the ability to support adipogenesis. When testing five different collagen matrices, PermacolTM and StratticeTM showed promising characteristics; additionally both possess the clinical approval. Under culture conditions, only PermacolTM, a cross-linked collagen matrix, exhibited an excellent long-term stability. Ranking nearly on the same level was StratticeTM, a non-cross-linked dermal scaffold; it only exhibited a slight shrinkage. All other scaffolds tested were severely compromised in stability under culture conditions. Engineering a subcutaneous fat layer, a construct would be desirable with a thin layer of emerging fat for cushioning on one side, and a non-seeded other side for cell migration and host integration. With PermacolTM and StratticeTM, it was possible to produce constructs with ASC (adipose derived stem cells) seeded on one side, which could be adipogenically differentiated. Additionally, the thickness of the cell layer could be varied. Thereby, it becomes possible to adjust the thickness of the construct to the surrounding tissue. In order to reduce the pre-implantation time ex vivo and the costs, the culture time was varied by testing different induction protocols. An adipogenic induction period of only four days was demonstrated to be sufficient to obtain a substantial adipogenic differentiation of the applied ASC. Thus, seeded with ASC, PermacolTM and StratticeTM are suitable scaffolds to engineer subcutaneous fat layers for reconstruction of the upper and lower extremities, as they support adipogenesis and are appropriately thin, and therefore would not compromise the cosmesis. For the engineering of large-volume adipose tissue, adequate vascularization still represents a major challenge. With the objective to engineer vascularized fat pads, it is important to consider the slow kinetics of revascularization in vivo. Therefore, a decellularized porcine jejunum with pre-existing vascular structures and pedicles to connect to the host vasculature or the circulation of a bioreactor system was used. In a first step, the ability of a small decellularized jejunal section was tested for cell adhesion and for supporting adipogenic differentiation of hASC mono-cultures. Cell adhesion and adipogenic maturation of ASC seeded on the jejunal material was verified through histological and molecular analysis. After the successful mono-culture, the goal was to establish a MVEC (microvascular endothelial cells) and ASC co-culture; suitable culture conditions had to be found, which support the viability of both cell types and do not interfere with the adipogenic differentiation. After the elimination of EGF (epidermal growth factor) from the co-culture medium, substantial adipogenic maturation was observed. In the next step, a large jejunal segment (length 8 cm), with its pre-existing vascular structures and arterial/venous pedicles, was connected to the supply system of a custom-made bioreactor. After successful reseeding the vascular structure with endothelial cells, the lumen was seeded with ASC which were then adipogenically induced. Histological and molecular examinations confirmed adipogenic maturation and the existence of seeded vessels within the engineered construct. Noteworthily, a co-localization of adipogenically differentiating ASC and endothelial cells in vascular networks could be observed. So, for the first time a vascularized fat construct was developed in vitro, based on the use of a decellularized porcine jejunum. As this engineered construct can be connected to a supply system or even to a patient vasculature, it is versatile in use, for example, as transplant in plastic and reconstruction surgery, as model in basic research or as an in vitro drug testing system. To summarize, in this work a promising substitute for subcutaneous fat layer reconstruction, in the upper and lower extremities, was developed, and the first, as far as reported, in vitro generated adipose tissue construct with integrated vascular networks was successfully engineered. N2 - Jedes Jahr werden Millionen von plastischen und wiederherstellenden Eingriffe durchgeführt, um zum Beispiel nach Traumata, hochgradigen Verbrennungen oder Tumorekonstruktionen, die natürliche Erscheinung und Funktion im Bereich von Weichgewebsdefekt wiederherzustellen. Gezüchtete Fettgewebskonstrukte sind eine vielversprechende Alternative zu autologen Fettgewebstransfers oder synthetischen Implantaten, um dem Bedarf an Fettgewebe gerecht zu werden. Die Strategien der Gewebezüchtung, besonders das Verwenden von Zellträgern, schaffen eine Umgebung für besseres Zellüberleben, eine einfachere Positionierung und - versehen mit den entsprechenden Eigenschaften - eine schnellere Vaskularisierung in vivo. Um erfolgreich einen Fettgewebe-Ersatz für die klinische Anwendung herzustellen, ist es notwendig das spätere Anwendungsgebiet zu kennen. In manchen Bereichen, wie in den oberen und unteren Extremitäten, braucht man nur eine dünne Unterhautfettschicht, und in anderen Bereichen wiederum ist ein großes Volumen an vaskularisiertem Fettgewebskonstrukt anzustreben. Die Nutzung und das Zusammenspiel von Stammzellen und ausgewählten Zellträgern wurden untersucht und legen nun eine Basis für die Herstellung von passendem und zweckmäßigem Ersatzgewebe zweier unterschiedlicher Anwendungsgebiete. Komplexe Verletzungen der oberen und unteren Extremitäten führen oftmals zu beträchtlicher Narbenbildung. Eine häufige Folgeerscheinung, hervorgerufen durch eine schwere Beschädigung des Unterhautfettgewebes, ist die Adhäsion zwischen mobilen Strukturen wie Sehnen, Nerven und Blutgefäßen. Dies resultiert dann in eingeschränkter Beweglichkeit und lähmenden Schmerzen [Moor 1996, McHugh 1997]. Um eine subkutane Fettschicht herzustellen, die das vernarbte Gewebe nach schwerer Verbrennung oder Verletzung polstert, wurden verschiedene Kollagenmaterialien auf die klinische Handhabung und die Unterstützung der Adipogenese untersucht. In der Untersuchung von fünf verschiedenen Kollagenmatrices zeigten PermacolTM und StratticeTM vielversprechende Eigenschaften. Beide besitzen außerdem die klinische Zulassung. PermacolTM, eine chemisch quervernetzte Kollagenmatrix, zeigte unter Kulturbedingungen hervorragende Langzeitstabilität. Fast ebenso gute Eigenschaften konnten bei StratticeTM, einem nicht vernetzten dermalen Gerüstmaterial, beobachtet werden; es zeigte lediglich leichte Schrumpfung. Alle sonst getesteten Kollagenmaterialien waren unter Kulturbedingungen stark in ihrer Stabilität beeinträchtigt. Zur Herstellung einer subkutanen Fettschicht wäre ein Konstrukt wünschenswert mit einer dünnen, gerade entstehenden Fettschicht für die Polsterung auf der einen Seite und einer nicht besiedelten anderen Seite für die Zelleinwanderung und die Integration in das umliegende Gewebe. Mit PermacolTM und StratticeTM war es möglich Konstrukte herzustellen, welche auf einer Seite mit ASC (aus dem Fettgewebe isolierte Stammzellen) besiedelt und anschließend adipogen differenziert werden konnten. Zusätzlich konnte die Dicke der Zellschicht hierbei variiert werden. Somit ist es möglich die Dicke des Konstruktes an das umliegende Gewebe anzupassen. Um die Preimplantationszeit ex vivo zu verkürzen und damit auch die Kosten zu senken, wurde die Kulturzeit variiert, indem verschiedene Induktionsprotokolle getestet wurden. Eine adipogene Induktionsperiode von nur vier Tagen erwies sich als ausreichend, um eine substantielle adipogene Differenzierung der eingesetzten ASC zu erreichen. Das heißt, die mit ASC besiedelten PermacolTM und StratticeTM Matrices sind zweckdienliche Zellträgermaterialien, um eine subkutane Fettschicht für die oberen und unteren Extremitäten herzustellen, da sie die Adipogenese unterstützen und durch die nur geringe und anpassbare Dicke die Kosmesis nicht beeinträchtigen. Für die Entwicklung von großvolumigem Fettgewebe stellt die adäquate Vaskularisierung noch immer eine große Herausforderung dar. Mit dem Ziel ein vaskularisiertes Fettkonstrukt herzustellen, ist es wichtig die langsame Kinetik der Revaskularisierung in vivo zu berücksichtigen. Daher wurde hier ein dezellularisiertes Schweinedarmsegment mit schon vorhandenen Gefäßstrukturen und Gefäßanschlüssen für die Verbindung zum Kreislaufsystem des Patienten oder eines Bioreaktor-Systems verwendet. Im ersten Schritt wurden auf einem kleinen dezellularisierten Schweinedarm-Stück die Zelladhäsion und die adipogene Differenzierung der ASC in Monokultur getestet. Die Zelladhäsion und die adipogene Reifung konnte mittels histologischer und molekularer Analysen auf dem jejunalen Material nachgewiesen werden. Nach der erfolgreichen Monokultur musste die Co-Kultur von MVEC (micro vaskuläre Endothelzellen) und ASC etabliert werden. Um dieses Ziel zu erreichen, wurden geeignete Kulturbedingungen gesucht, die die Lebensfähigkeit beider Zelltypen unterstützen und gleichzeitig die adipogene Differenzierung nicht beeinträchtigen. Nach dem Ausschluss von EGF (epidermaler Wachstumsfaktor) aus dem Co-Kulturmedium wurde eine substantielle adipogene Reifung der ASC beobachtet. Im nächsten Schritt wurde ein großes dezellularisiertes jejunales Darmsegment (Länge 8 cm) mit der schon existenten Gefäßstruktur und dem arteriellen und venösen Gefäßstiel an den spezialangefertigten Bioreaktor angeschlossen. Nach der erfolgreichen Wiederbesiedelung der Gefäßstrukturen mit Endothelzellen wurde das Darmlumen mit ASC besiedelt, welche anschließend adipogen induziert wurden. Histologische und molekulare Untersuchungen konnten die adipogenen Reifung und die Existenz von besiedelten Gefäßen im hergestellten Konstrukt bestätigen. Besonders erwähnenswert ist die Beobachtung der Co-Lokalisierung von adipogen differenzierenden ASC und Endothelzellen in vasculären Netzwerken. Somit wurde zum ersten Mal - basierend auf einem dezellularisierten Schweinedarm - ein vaskularisiertes Fettgewebskonstrukt in vitro hergestellt. Da dieses Konstrukt an das Versorgungssystem angeschlossen oder mit dem Blutkreislauf des Patienten verbunden werden kann, ist es vielfältig einsetzbar, zum Beispiel in der plastisch-rekonstruktiven Chirurgie, als Modell in der Grundlagenforschung oder als ein in vitro Medikamenten-Testsystem. Zusammengefasst, wurde in der vorgelegten Arbeit ein vielversprechendes Ersatzmaterial für die Rekonstruktion des Unterhautfettgewebes für die unteren und oberen Extremitäten entwickelt, und zum ersten Mal erfolgreich, so weit in der Literatur bekannt, ein Fettgewebskonstrukt mit integriertem vaskularisiertem Netzwerk in vitro generiert. KW - Tissue Engineering KW - Fettgewebe KW - Extrazelluläre Matrix KW - Vascularisation KW - adipose tissue engineering KW - subcutaneous fat layer KW - scar revision surgery KW - vascularized fat construct KW - Bioreactor System KW - extracellular matrix KW - adipose tissue Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-104676 ER - TY - JOUR A1 - Hartrampf, Philipp E. A1 - Krebs, Markus A1 - Peter, Lea A1 - Heinrich, Marieke A1 - Ruffing, Julia A1 - Kalogirou, Charis A1 - Weinke, Maximilian A1 - Brumberg, Joachim A1 - Kübler, Hubert A1 - Buck, Andreas K. A1 - Werner, Rudolf A. A1 - Seitz, Anna Katharina T1 - Reduced segmentation of lesions is comparable to whole-body segmentation for response assessment by PSMA PET/CT: initial experience with the keyhole approach JF - Biology N2 - Simple Summary The calculation of PSMA-positive tumor volume (PSMA-TV) of the whole body from PSMA PET scans for response evaluation remains a time-consuming procedure. We hypothesized that it may be possible to quantify changes in PSMA-TV by considering only a limited number of representative tumor lesions. Changes in the whole-body PSMA-TV of 65 patients were comparable to the changes in PSMA-TV after including only the ten largest lesions. Moreover, changes in PSMA-TV correlated well with changes in PSA levels, as did the changes in PSMA-TV with the reduced number of lesions. We conclude that a response assessment using PSMA-TV with a reduced number of lesions is feasible and could lead to a simplified process for evaluating PSMA PET/CT. Abstract (1) Background: Prostate-specific membrane antigen (PSMA) positron emission tomography (PET)-derived parameters, such as the commonly used standardized uptake value (SUV) and PSMA-positive tumor volume (PSMA-TV), have been proposed for response assessment in metastatic prostate cancer (PCa) patients. However, the calculation of whole-body PSMA-TV remains a time-consuming procedure. We hypothesized that it may be possible to quantify changes in PSMA-TV by considering only a limited number of representative lesions. (2) Methods: Sixty-five patients classified into different disease stages were assessed by PSMA PET/CT for staging and restaging after therapy. Whole-body PSMA-TV and whole-body SUV\(_{max}\) were calculated. We then repeated this calculation only including the five or ten hottest or largest lesions. The corresponding serum levels of prostate-specific antigen (PSA) were also determined. The derived delta between baseline and follow-up values provided the following parameters: ΔSUV\(_{maxall}\), ΔSUV\(_{max10}\), ΔSUV\(_{max5}\), ΔPSMA-TV\(_{all}\), ΔPSMA-TV\(_{10}\), ΔPSMA-TV\(_{5}\), ΔPSA. Finally, we compared the findings from our whole-body segmentation with the results from our keyhole approach (focusing on a limited number of lesions) and correlated all values with the biochemical response (ΔPSA). (3) Results: Among patients with metastatic hormone-sensitive PCa (mHSPC), none showed a relevant deviation for ΔSUV\(_{max10}\)/ΔSUV\(_{max5}\) or ΔPSMA-TV\(_{10}\)/ΔPSMA-TV\(_{5}\) compared to ΔSUV\(_{maxall}\) and ΔPSMA-TV\(_{all}\). For patients treated with taxanes, up to 6/21 (28.6%) showed clinically relevant deviations between ΔSUV\(_{maxall}\) and ΔSUV\(_{max10}\) or ΔSUV\(_{max5}\), but only up to 2/21 (9.5%) patients showed clinically relevant deviations between ΔPSMA-TV\(_{all}\) and ΔPSMA-TV\(_{10}\) or ΔPSMA-TV\(_{5}\). For patients treated with radioligand therapy (RLT), up to 5/28 (17.9%) showed clinically relevant deviations between ΔSUV\(_{maxall}\) and ΔSUV\(_{max10}\) or ΔSUV\(_{max5}\), but only 1/28 (3.6%) patients showed clinically relevant deviations between ΔPSMA-TV\(_{all}\) and ΔPSMA-TV\(_{10}\) or ΔPSMA-TV\(_{5}\). The highest correlations with ΔPSA were found for ΔPSMA-TV\(_{all}\) (r ≥ 0.59, p ≤ 0.01), followed by ΔPSMA-TV\(_{10}\) (r ≥ 0.57, p ≤ 0.01) and ΔPSMA-TV\(_{5}\) (r ≥ 0.53, p ≤ 0.02) in all cohorts. ΔPSA only correlated with ΔSUV\(_{maxall}\) (r = 0.60, p = 0.02) and with ΔSUV\(_{max10}\) (r = 0.53, p = 0.03) in the mHSPC cohort, as well as with ΔSUV\(_{maxall}\) (r = 0.51, p = 0.01) in the RLT cohort. (4) Conclusion: Response assessment using PSMA-TV with a reduced number of lesions is feasible, and may allow for a simplified evaluation process for PSMA PET/CT. KW - PET/CT KW - PSMA-TV KW - SUV KW - prostate cancer KW - taxane KW - radioligand therapy Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-271191 SN - 2079-7737 VL - 11 IS - 5 ER - TY - JOUR A1 - Kreß, Julia Katharina Charlotte A1 - Jessen, Christina A1 - Hufnagel, Anita A1 - Schmitz, Werner A1 - Da Xavier Silva, Thamara Nishida A1 - Ferreira Dos Santos, Ancély A1 - Mosteo, Laura A1 - Goding, Colin R. A1 - Friedmann Angeli, José Pedro A1 - Meierjohann, Svenja T1 - The integrated stress response effector ATF4 is an obligatory metabolic activator of NRF2 JF - Cell Reports N2 - Highlights • The integrated stress response leads to a general ATF4-dependent activation of NRF2 • ATF4 causes a CHAC1-dependent GSH depletion, resulting in NRF2 stabilization • An elevation of NRF2 transcript levels fosters this effect • NRF2 supports the ISR/ATF4 pathway by improving cystine and antioxidant supply Summary The redox regulator NRF2 becomes activated upon oxidative and electrophilic stress and orchestrates a response program associated with redox regulation, metabolism, tumor therapy resistance, and immune suppression. Here, we describe an unrecognized link between the integrated stress response (ISR) and NRF2 mediated by the ISR effector ATF4. The ISR is commonly activated after starvation or ER stress and plays a central role in tissue homeostasis and cancer plasticity. ATF4 increases NRF2 transcription and induces the glutathione-degrading enzyme CHAC1, which we now show to be critically important for maintaining NRF2 activation. In-depth analyses reveal that NRF2 supports ATF4-induced cells by increasing cystine uptake via the glutamate-cystine antiporter xCT. In addition, NRF2 upregulates genes mediating thioredoxin usage and regeneration, thus balancing the glutathione decrease. In conclusion, we demonstrate that the NRF2 response serves as second layer of the ISR, an observation highly relevant for the understanding of cellular resilience in health and disease. KW - NRF2 KW - ATF4 KW - integrated stress response KW - CHAC1 KW - melanoma KW - SLC7A11 KW - GSH Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350312 VL - 42 IS - 7 ER - TY - JOUR A1 - Meinert, Madlen A1 - Jessen, Christina A1 - Hufnagel, Anita A1 - Kreß, Julia Katharina Charlotte A1 - Burnworth, Mychal A1 - Däubler, Theo A1 - Gallasch, Till A1 - Da Xavier Silva, Thamara Nishida A1 - Dos Santos, Ancély Ferreira A1 - Ade, Carsten Patrick A1 - Schmitz, Werner A1 - Kneitz, Susanne A1 - Friedmann Angeli, José Pedro A1 - Meierjohann, Svenja T1 - Thiol starvation triggers melanoma state switching in an ATF4 and NRF2-dependent manner JF - Redox Biology N2 - The cystine/glutamate antiporter xCT is an important source of cysteine for cancer cells. Once taken up, cystine is reduced to cysteine and serves as a building block for the synthesis of glutathione, which efficiently protects cells from oxidative damage and prevents ferroptosis. As melanomas are particularly exposed to several sources of oxidative stress, we investigated the biological role of cysteine and glutathione supply by xCT in melanoma. xCT activity was abolished by genetic depletion in the Tyr::CreER; Braf\(^{CA}\); Pten\(^{lox/+}\) melanoma model and by acute cystine withdrawal in melanoma cell lines. Both interventions profoundly impacted melanoma glutathione levels, but they were surprisingly well tolerated by murine melanomas in vivo and by most human melanoma cell lines in vitro. RNA sequencing of human melanoma cells revealed a strong adaptive upregulation of NRF2 and ATF4 pathways, which orchestrated the compensatory upregulation of genes involved in antioxidant defence and de novo cysteine biosynthesis. In addition, the joint activation of ATF4 and NRF2 triggered a phenotypic switch characterized by a reduction of differentiation genes and induction of pro-invasive features, which was also observed after erastin treatment or the inhibition of glutathione synthesis. NRF2 alone was capable of inducing the phenotypic switch in a transient manner. Together, our data show that cystine or glutathione levels regulate the phenotypic plasticity of melanoma cells by elevating ATF4 and NRF2. KW - thiol starvation KW - ATF4 KW - NRF2 KW - melanoma Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350328 VL - 70 ER -