TY - JOUR A1 - Wohlwend, Michael R. A1 - Craven, Dylan A1 - Weigelt, Patrick A1 - Seebens, Hanno A1 - Winter, Marten A1 - Kreft, Holger A1 - Zurell, Damaris A1 - Sarmento Cabral, Juliano A1 - Essl, Franz A1 - van Kleunen, Mark A1 - Pergl, Jan A1 - Pyšek, Petr A1 - Knight, Tiffany M. T1 - Anthropogenic and environmental drivers shape diversity of naturalized plants across the Pacific JF - Diversity and Distributions N2 - Aim The Pacific exhibits an exceptional number of naturalized plant species, but the drivers of this high diversity and the associated compositional patterns remain largely unknown. Here, we aim to (a) improve our understanding of introduction and establishment processes and (b) evaluate whether this information is sufficient to create scientific conservation tools, such as watchlists. Location Islands in the Pacific Ocean, excluding larger islands such as New Zealand, Japan, the Philippines and Indonesia. Methods We combined information from the most up‐to‐date data sources to quantify naturalized plant species richness and turnover across island groups and investigate the effects of anthropogenic, biogeographic and climate drivers on these patterns. In total, we found 2,672 naturalized plant species across 481 islands and 50 island groups, with a total of 11,074 records. Results Most naturalized species were restricted to few island groups, and most island groups have a low number of naturalized species. Island groups with few naturalized species were characterized by a set of widespread naturalized species. Several plant families that contributed many naturalized species globally also did so in the Pacific, particularly Fabaceae and Poaceae. However, many families were significantly over‐ or under‐represented in the Pacific naturalized flora compared to other regions of the world. Naturalized species richness increased primarily with increased human activity and island altitude/area, whereas similarity between island groups in temperature along with richness differences was most important for beta diversity. Main conclusions The distribution and richness of naturalized species can be explained by a small set of drivers. The Pacific region contains many naturalized plant species also naturalized in other regions in the world, but our results highlight key differences such as a stronger role of anthropogenic drivers in shaping diversity patterns. Our results establish a basis for predicting and preventing future naturalizations in a threatened biodiversity hotspot. KW - anthropogenic drivers KW - beta diversity KW - island biogeography KW - naturalized species KW - Pacific Ocean KW - plant invasion Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239925 VL - 27 IS - 6 SP - 1120 EP - 1133 ER - TY - JOUR A1 - Bowler, Diana E. A1 - Bjorkman, Anne D. A1 - Dornelas, Maria A1 - Myers‐Smith, Isla H. A1 - Navarro, Laetitia M. A1 - Niamir, Aidin A1 - Supp, Sarah R. A1 - Waldock, Conor A1 - Winter, Marten A1 - Vellend, Mark A1 - Blowes, Shane A. A1 - Böhning‐Gaese, Katrin A1 - Bruelheide, Helge A1 - Elahi, Robin A1 - Antão, Laura H. A1 - Hines, Jes A1 - Isbell, Forest A1 - Jones, Holly P. A1 - Magurran, Anne E. A1 - Cabral, Juliano Sarmento A1 - Bates, Amanda E. T1 - Mapping human pressures on biodiversity across the planet uncovers anthropogenic threat complexes JF - People and Nature N2 - Climate change and other anthropogenic drivers of biodiversity change are unequally distributed across the world. Overlap in the distributions of different drivers have important implications for biodiversity change attribution and the potential for interactive effects. However, the spatial relationships among different drivers and whether they differ between the terrestrial and marine realm has yet to be examined. We compiled global gridded datasets on climate change, land‐use, resource exploitation, pollution, alien species potential and human population density. We used multivariate statistics to examine the spatial relationships among the drivers and to characterize the typical combinations of drivers experienced by different regions of the world. We found stronger positive correlations among drivers in the terrestrial than in the marine realm, leading to areas with high intensities of multiple drivers on land. Climate change tended to be negatively correlated with other drivers in the terrestrial realm (e.g. in the tundra and boreal forest with high climate change but low human use and pollution), whereas the opposite was true in the marine realm (e.g. in the Indo‐Pacific with high climate change and high fishing). We show that different regions of the world can be defined by Anthropogenic Threat Complexes (ATCs), distinguished by different sets of drivers with varying intensities. We identify 11 ATCs that can be used to test hypotheses about patterns of biodiversity and ecosystem change, especially about the joint effects of multiple drivers. Our global analysis highlights the broad conservation priorities needed to mitigate the impacts of anthropogenic change, with different priorities emerging on land and in the ocean, and in different parts of the world. KW - Anthropocene KW - biodiversity threats KW - direct drivers KW - global change Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-213634 VL - 2 IS - 2 SP - 380 EP - 394 ER - TY - JOUR A1 - Keil, Petr A1 - Pereira, Henrique M. A1 - Cabral, Juliano S. A1 - Chase, Jonathan M. A1 - May, Felix A1 - Martins, Inês S. A1 - Winter, Marten T1 - Spatial scaling of extinction rates: Theory and data reveal nonlinearity and a major upscaling and downscaling challenge JF - Global Ecology and Biogeography N2 - Aim Biodiversity loss is a key component of biodiversity change and can impact ecosystem services. However, estimation of the loss has focused mostly on per-species extinction rates measured over a limited number of spatial scales, with little theory linking small-scale extirpations to global extinctions. Here, we provide such a link by introducing the relationship between area and the number of extinctions (number of extinctions–area relationship; NxAR) and between area and the proportion of extinct species (proportion of extinctions–area relationship; PxAR). Unlike static patterns, such as the species–area relationship, NxAR and PxAR represent spatial scaling of a dynamic process. We show theoretical and empirical forms of these relationships and we discuss their role in perception and estimation of the current extinction crisis. Location U.S.A., Europe, Czech Republic and Barro Colorado Island (Panama). Time period 1500–2009. Major taxa studied Vascular plants, birds, butterflies and trees. Methods We derived the expected forms of NxAR and PxAR from several theoretical frameworks, including the theory of island biogeography, neutral models and species–area relationships. We constructed NxAR and PxAR from five empirical datasets collected over a range of spatial and temporal scales. Results Although increasing PxAR is theoretically possible, empirical data generally support a decreasing PxAR; the proportion of extinct species decreases with area. In contrast, both theory and data revealed complex relationships between numbers of extinctions and area (NxAR), including nonlinear, unimodal and U-shaped relationships, depending on region, taxon and temporal scale. Main conclusions The wealth of forms of NxAR and PxAR explains why biodiversity change appears scale dependent. Furthermore, the complex scale dependence of NxAR and PxAR means that global extinctions indicate little about local extirpations, and vice versa. Hence, effort should be made to understand and report extinction rates as a scale-dependent problem. In this effort, estimation of scaling relationships such as NxAR and PxAR should be central. KW - Anthropocene KW - continental KW - grain KW - habitat loss KW - local KW - mass extinction KW - MAUP KW - metapopulation KW - patch KW - resolution Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-325682 VL - 27 ER -