TY - JOUR A1 - Gotschy, Alexander A1 - Bauer, Wolfgang R. A1 - Winter, Patrick A1 - Nordbeck, Peter A1 - Rommel, Eberhard A1 - Jakob, Peter M. A1 - Herold, Volker T1 - Local versus global aortic pulse wave velocity in early atherosclerosis: An animal study in ApoE\(^{-/-}\) mice using ultrahigh field MRI JF - PLoS ONE N2 - Increased aortic stiffness is known to be associated with atherosclerosis and has a predictive value for cardiovascular events. This study aims to investigate the local distribution of early arterial stiffening due to initial atherosclerotic lesions. Therefore, global and local pulse wave velocity (PWV) were measured in ApoE\(^{-/-}\) and wild type (WT) mice using ultrahigh field MRI. For quantification of global aortic stiffness, a new multi-point transit-time (TT) method was implemented and validated to determine the global PWV in the murine aorta. Local aortic stiffness was measured by assessing the local PWV in the upper abdominal aorta, using the flow/area (QA) method. Significant differences between age matched ApoE\(^{-/-}\) and WT mice were determined for global and local PWV measurements (global PWV: ApoE\(^{-/-}\): 2.7 ±0.2m/s vs WT: 2.1±0.2m/s, P<0.03; local PWV: ApoE\(^{-/-}\): 2.9±0.2m/s vs WT: 2.2±0.2m/s, P<0.03). Within the WT mouse group, the global PWV correlated well with the local PWV in the upper abdominal aorta (R\(^2\) = 0.75, P<0.01), implying a widely uniform arterial elasticity. In ApoE\(^{-/-}\) animals, however, no significant correlation between individual local and global PWV was present (R\(^2\) = 0.07, P = 0.53), implying a heterogeneous distribution of vascular stiffening in early atherosclerosis. The assessment of global PWV using the new multi-point TT measurement technique was validated against a pressure wire measurement in a vessel phantom and showed excellent agreement. The experimental results demonstrate that vascular stiffening caused by early atherosclerosis is unequally distributed over the length of large vessels. This finding implies that assessing heterogeneity of arterial stiffness by multiple local measurements of PWV might be more sensitive than global PWV to identify early atherosclerotic lesions. KW - MRI KW - Atherosclerosis KW - Aorta KW - Stiffness KW - Measurement KW - Time measurement KW - Magnetic resonance imaging KW - Mouse models KW - Systole Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-171824 VL - 12 IS - 2 ER - TY - JOUR A1 - Nordbeck, Peter A1 - Bönhof, Leoni A1 - Hiller, Karl-Heinz A1 - Voll, Sabine A1 - Arias-Loza, Paula A1 - Seidlmaier, Lea A1 - Williams, Tatjana A1 - Ye, Yu-Xiang A1 - Gensler, Daniel A1 - Pelzer, Theo A1 - Ertl, Georg A1 - Jakob, Peter M. A1 - Bauer, Wolfgang R. A1 - Ritter, Oliver T1 - Impact of Thoracic Surgery on Cardiac Morphology and Function in Small Animal Models of Heart Disease: A Cardiac MRI Study in Rats JF - PLoS ONE N2 - Background Surgical procedures in small animal models of heart disease might evoke alterations in cardiac morphology and function. The aim of this study was to reveal and quantify such potential artificial early or long term effects in vivo, which might account for a significant bias in basic cardiovascular research, and, therefore, could potentially question the meaning of respective studies. Methods Female Wistar rats (n = 6 per group) were matched for weight and assorted for sham left coronary artery ligation or control. Cardiac morphology and function was then investigated in vivo by cine magnetic resonance imaging at 7 Tesla 1 and 8 weeks after the surgical procedure. The time course of metabolic and inflammatory blood parameters was determined in addition. Results Compared to healthy controls, rats after sham surgery showed a lower body weight both 1 week (267.5±10.6 vs. 317.0±11.3 g, n<0.05) and 8 weeks (317.0±21.1 vs. 358.7±22.4 g, n<0.05) after the intervention. Left and right ventricular morphology and function were not different in absolute measures in both groups 1 week after surgery. However, there was a confined difference in several cardiac parameters normalized to the body weight (bw), such as myocardial mass (2.19±0.30/0.83±0.13 vs. 1.85±0.22/0.70±0.07 mg left/right per g bw, p<0.05), or enddiastolic ventricular volume (1.31±0.36/1.21±0.31 vs. 1.14±0.20/1.07±0.17 µl left/right per g bw, p<0.05). Vice versa, after 8 weeks, cardiac masses, volumes, and output showed a trend for lower values in sham operated rats compared to controls in absolute measures (782.2±57.2/260.2±33.2 vs. 805.9±84.8/310.4±48.5 mg, p<0.05 for left/right ventricular mass), but not normalized to body weight. Matching these findings, blood testing revealed only minor inflammatory but prolonged metabolic changes after surgery not related to cardiac disease. Conclusion Cardio-thoracic surgical procedures in experimental myocardial infarction cause distinct alterations upon the global integrity of the organism, which in the long term also induce circumscribed repercussions on cardiac morphology and function. This impact has to be considered when analyzing data from respective animal studies and transferring these findings to conditions in patients. KW - heart rate KW - body weight KW - surgical and invasive medical procedures KW - magnetic resonance imaging KW - blood KW - vascular surgery KW - myocardial infarction KW - cardiac ventricles Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130064 VL - 8 IS - 8 ER - TY - JOUR A1 - Reiter, Theresa A1 - Gensler, Daniel A1 - Ritter, Oliver A1 - Weiss, Ingo A1 - Geistert, Wolfgang A1 - Kaufmann, Ralf A1 - Hoffmeister, Sabine A1 - Friedrich, Michael T. A1 - Wintzheimer, Stefan A1 - Düring, Markus A1 - Nordbeck, Peter A1 - Jakob, Peter M. A1 - Ladd, Mark E. A1 - Quick, Harald H. A1 - Bauer, Wolfgang R. T1 - Direct cooling of the catheter tip increases safety for CMR-guided electrophysiological procedures JF - Journal of Cardiovascular Magnetic Resonance N2 - Background: One of the safety concerns when performing electrophysiological (EP) procedures under magnetic resonance (MR) guidance is the risk of passive tissue heating due to the EP catheter being exposed to the radiofrequency (RF) field of the RF transmitting body coil. Ablation procedures that use catheters with irrigated tips are well established therapeutic options for the treatment of cardiac arrhythmias and when used in a modified mode might offer an additional system for suppressing passive catheter heating. Methods: A two-step approach was chosen. Firstly, tests on passive catheter heating were performed in a 1.5 T Avanto system (Siemens Healthcare Sector, Erlangen, Germany) using a ASTM Phantom in order to determine a possible maximum temperature rise. Secondly, a phantom was designed for simulation of the interface between blood and the vascular wall. The MR-RF induced temperature rise was simulated by catheter tip heating via a standard ablation generator. Power levels from 1 to 6 W were selected. Ablation duration was 120 s with no tip irrigation during the first 60 s and irrigation at rates from 2 ml/min to 35 ml/min for the remaining 60 s (Biotronik Qiona Pump, Berlin, Germany). The temperature was measured with fluoroscopic sensors (Luxtron, Santa Barbara, CA, USA) at a distance of 0 mm, 2 mm, 4 mm, and 6 mm from the catheter tip. Results: A maximum temperature rise of 22.4 degrees C at the catheter tip was documented in the MR scanner. This temperature rise is equivalent to the heating effect of an ablator's power output of 6 W at a contact force of the weight of 90 g (0.883 N). The catheter tip irrigation was able to limit the temperature rise to less than 2 degrees C for the majority of examined power levels, and for all examined power levels the residual temperature rise was less than 8 degrees C. Conclusion: Up to a maximum of 22.4 degrees C, the temperature rise at the tissue surface can be entirely suppressed by using the catheter's own irrigation system. The irrigated tip system can be used to increase MR safety of EP catheters by suppressing the effects of unwanted passive catheter heating due to RF exposure from the MR scanner. KW - EP Procedures KW - radiofrequency ablation KW - contact force KW - lesion size KW - MRI KW - temperature KW - tissue KW - wires KW - model KW - ablation KW - safety KW - catheter tip KW - MR guidance Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-134927 VL - 14 IS - 12 ER -