TY - THES A1 - von Papen, Hans Michael T1 - Untersuchungen zum Einfluss der Meningokokkeninfektion auf den Zellzyklus von Epithelzellen T1 - Disease and carrier isolates of Neisseria meningitidis cause G1 cell cycle arrest in human epithelial cells N2 - Zahlreiche humanpathogene bakterielle Erreger können ihre Fähigkeit zur Kolonisation epithelialer Barrieren optimieren, indem sie mit dem Zellzyklus der infizierten Wirtszelle in Wechselwirkung treten und so die Abschilferung und Erneuerung des Epithels verzögern. Die hierbei wirksamen bakteriellen Effektoren sind als „Cyclomoduline“ bekannt und gelten als neue Klasse bakterieller Pathogenitätsfaktoren. Ziel der vorliegenden Promotionsarbeit war es zu untersuchen, ob durch die Infektion menschlicher pharyngealer Epithelzellen mit N. meningitidis der Zellzyklus der Wirtszelle beeinflusst wird. Mit zwei verschiedenen Untersuchungsmethoden konnte übereinstimmend gezeigt werden, dass die Infektion der Epithelzelllinie Detroit 562 mit verschiedenen Meningokokkenisolaten zu einer signifikanten Akkumulation von Epithelzellen in der G1-Phase führte. Dieser Effekt wurde sowohl von pathogenen Meningokokkenstämmen als auch von Trägerstämmen ausgelöst, jedoch nur durch Isolate, die fähig zur Adhärenz und zur Invasion in die Epithelzelle waren. Durch Hitzebehandlung der Bakterien konnte der Zellzyklusarrest vollständig aufgehoben werden. Ebenso konnte der Effekt durch Inkubation der Epithelzellen mit bakteriellen Kulturüberständen und durch Infektion der Zellen mit E. coli-Stämmen, welche die Meningokokkenadhäsine Opa und Opc überexprimieren, nicht ausgelöst werden. Es konnte weiterhin nachgewiesen werden, dass die Infektion mit N. meningitidis in der Zielzelle zu einer signifikant gesteigerten Expression des CDK-Inhibitors p21WAF1/Cip1 führte, begleitet von einer vermehrten Lokalisation im Zellkern. Auch zeigte sich eine veränderte Proteinexpression der für die G1-Phase relevanten Cycline D und E. Diese scheint sich erst posttranslational zu ereignen, da die unterschiedliche Expression auf mRNA-Ebene nicht festgestellt werden konnte. Zusammenfassend konnte dargestellt werden, dass die Infektion von Pharynxepithelzellen mit lebenden, zur Adhärenz und Invasion fähigen Meningokokkenstämmen in der menschlichen Zielzelle einen Zellzyklusarrest in der G1-Phase verursacht, vermutlich durch veränderte Expression der Zellzyklusregulatoren p21WAF1/Cip1, Cyclin D und Cyclin E. Möglicherweise stellt die Induktion dieses Zellzyklusarrestes einen wichtigen Schritt in der Pathogenese der bakteriellen Kolonisation des oberen Atemwegsepithels durch N. meningitidis dar. N2 - Several microbial pathogens have developed mechanisms to modulate host cell cycle progression in order to improve bacterial colonization of epithelial barriers. The required bacterial effectors were summarized as “cyclomodulins” and have been proposed to be a new class of virulence factors. The objective of this doctoral research study was to analyze the capability of N. meningitidis to interfere with the cell cycle progression in human pharyngeal epithelial cells. Using two different methods for cell cycle analysis, we show that infection of the human pharyngeal epithelial cell line Detroit 562 with different meningococcal isolates induces an arrest of epithelial host cells in the G1 phase. This effect was caused by infection with both pathogenic isolates and carriage isolates, but only by strains able to adhere to and to invade into the host cells. Heat-inactivation of the bacteria prior to infection completely prevented the cell cycle arrest. Moreover treatment of epithelial cells with bacterial supernatants, as well as infection with E. coli strains expressing neisserial adhesins Opa and Opc did not induce the cell cycle arrest. We further demonstrate that infection of Detroit 562 cells with N. meningitidis leads to a significantly increased expression of the CDK-inhibitor p21WAF1/Cip1 in the host cell, as well as its increased nuclear localization. The protein expression of cyclin D and E, which are relevant for progression through the G1 phase, were altered by bacterial infection, too. This effect is most likely induced by posttranslational modification, since bacterial infection did not affect Cyclin D and E mRNA levels. In conclusion, we demonstrate that infection of human pharyngeal epithelial cells with different isolates of N. meningitidis arrests the host cells at the G1 phase, most likely by affecting the expression of the cell cycle regulators p21WAF1/Cip1, cyclin D and Cyclin E. Potentially, induction this cell cycle arrest is an important step in the pathogenesis of meningococcal colonization and further infection. KW - Neisseria meningitidis KW - Zellzyklus KW - Epithel KW - cell cycle Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-192862 ER - TY - THES A1 - Herrmann, Johannes Bernd T1 - Rolle des Komplement C5a-Rezeptors 1 in der Pathophysiologie der Meningokokken-Sepsis T1 - Role of complement C5a-Receptor 1 in Pathophysiology of Meningococcal Sepsis N2 - Das bekapselte, Gram-negative, diplokokkenförmige Bakterium Neisseria meningitidis (Nme) ist ein asymptomatischer Kommensale des oberen Nasenrachenraums im Men-schen. Gerade bei Kindern ist es dem humanspezifischen Pathogen in seltenen Fällen möglich, in den Blutstrom einzuwandern und lebensbedrohliche Krankheitsbilder wie Meningoenzephalitis und Sepsis auszulösen, welche als „Invasive Meningokokkener-krankung“ (IMD) zusammengefasst werden. Jährlich ereignen sich weltweit bis zu 1,2 Mio Fälle von IMD, welche aufgrund des fulminanten Verlaufs und der hohen Letalität gefürchtet sind. In der Bekämpfung der Nme-Sepsis ist das humane Komplementsystem von entscheidender Bedeutung. Vor diesem Hintergrund ist die protektive Rolle des lytischen (Membranangriffskomplex MAK) und opsonisierenden Arms (Opsonine iC3b und C1q) der Komplementkaskade gut dokumentiert. Dagegen ist der Beitrag des in-flammatorischen Arms (Anaphylatoxine C3a und C5a) in der Nme-Sepsis bisher unklar. Aus diesem Grunde wurde mit dieser Arbeit die Rolle des inflammatorischen Arms an-hand des Komplement C5a-Rezeptors 1 (C5aR1) in der Pathophysiologie der Nme-Sepsis am Mausmodell untersucht. Nach Etablierung des murinen, intraperitonealen In-fektionsmodells konnte ein schädlicher Effekt des C5aR1 in der Nme-Sepsis beobachtet werden. Aus der Abwesenheit des C5aR1 resultierte eine höhere Überlebensrate, ein besserer klinischer Zustand, eine niedrigere Bakteriämie und niedrigere Konzentrationen der pro-inflammatorischen Mediatoren IL-6, CXCL-1 und TNF-α. Im Hinblick auf den zellulären Pathomechanismus sprechen Ergebnisse dieser Arbeit dafür, dass der C5aR1 primär eine gesteigerte Freisetzung inflammatorischer Mediatoren durch verschiedene Zellpopulationen triggert (Zytokinsturm), wodurch sekundär Zellparalyse, steigende Bakteriämie und höhere Letalität bedingt sind. Durch Depletionsversuche und Immun-fluoreszenzfärbungen konnte, unabhängig vom C5aR1, eine allgemein protektive Rolle von neutrophilen Granulozyten und Monozyten/Makrophagen in der Nme-Sepsis beo-bachtet werden. Darüber hinaus präsentierte sich der zyklische C5aR1-Antagonist PMX205 als erfolgsversprechende Therapieoption, um Parameter einer murinen Nme-Sepsis zu verbessern. Weitere Untersuchungen sind nötig, um die Wirksamkeit dieser Substanz in der humanen Nme-Sepsis zu erforschen. Zudem könnte das murine, intrape-ritoneale Infektionsmodell zur Klärung der Rolle des C5aR2 in der Nme-Sepsis genutzt werden. N2 - The encapsulated, Gram-negative diplococcus Neisseria meningitidis (Nme) is an asymp-tomatic commensal in the human upper respiratory tract. In rare cases and especially in children, this human-specific pathogen is able to invade into the blood stream and cause life-threatening disorders like meningoencephalitis and septicemia, which are subsumed as „invasive meningococcal disease“ (IMD). The estimated number of cases is about 1.2 mio per year worldwide. IMD is greatly feared because of its fulminant progression and its high lethality. It is very well known, that the human complement system holds an essential role to fight meningococcal sepsis. In this context, the protective effects of the lytic (membrane attack complex MAC) and opsonizing branches (opsonines iC3b and C1q) are well established. On the contrary, very little is known about the contribution of the inflammatory branch (anaphylatoxines C3a and C5a) in meningococcal sepsis. Therefore, this work focused on the role of the C5a-Receptor 1 (C5aR1) in pathophysi-ology of meningococcal sepsis in a murine model. After having established the para-mount role of complement in murine intraperitoneal infection model, we could observe a detrimental effect of C5aR1 in Meningococcal sepsis. The absence of C5aR1 resulted in a higher overall survival, ameliorated clinical status, lower bacteremia and lower levels of the proinflammatory mediators IL-6, CXCL-1, TNF-α. Particularly with regard to results about the cellular pathomechanism, the C5aR1 seems to cause an increased re-lease of proinflammatory mediators (cytokine storm) exerted by various cell populations. As a consequence, cellular paralysis, increasing bacterial burden and higher lethality rate seems to occur. In reference to depletion experiments and immunofluorescence stain-ings, we could observe protective overall effects of neutrophils and mono-cytes/macrophages, uncorrelated to C5aR1 presence. Ultimately, the cyclic C5aR1-antagonist PMX205 appeared to be a promising option to improve parameters in murine meningococcal sepsis. Further experiments are required to examine the potential of this compound in human meningococcal sepsis. Moreover, the murine, intraperitoneal infec-tion model could be used to clarify the role of C5aR2 in meningococcal sepsis. KW - Komplement C5a KW - Neisseria meningitidis KW - Meningokokken-Sepsis KW - Komplement C5a Rezeptor 1 KW - C5aR1-Antagonist Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-184533 ER - TY - THES A1 - Gomes, Sara Ferreira Martins T1 - Induced Pluripotent Stem Cell-derived Brain Endothelial Cells as a Cellular Model to Study Neisseria meningitidis Infection T1 - Induziert pluripotente Stammzellen-basierte Hirnendothelzellen als zelluläres Modell zur Untersuchung der Infektion mit Neisseria meningitidis N2 - Bacterial meningitis occurs when blood-borne bacteria are able to penetrate highly specialized brain endothelial cells (BECs) and gain access to the meninges. Neisseria meningitidis (Nm) is a human-exclusive pathogen for which suitable in vitro models are severely lacking. Until recently, modeling BEC-Nm interactions has been almost exclusively limited to immortalized human cells that lack proper BEC phenotypes. Specifically, these in vitro models lack barrier properties, and continuous tight junctions. Alternatively, humanized mice have been used, but these must rely on known interactions and have limited translatability. This motivates the need to establish novel human-based in vitro BEC models that have barrier phenotypes to research Nm-BEC interactions. Recently, a human induced pluripotent stem cell (iPSC) model of BECs has been developed that possesses superior BEC phenotypes and closely mimics the in vivo blood vessels present at the blood-meningeal barrier. Here, iPSC-BECs were tested as a novel cellular model to study Nm-host pathogen interactions, with focus on host responses to Nm infection. Two wild type strains and three mutant strains of Nm were used to confirm that these followed similar phenotypes to previously described models. Importantly, the recruitment of the recently published pilus adhesin receptor CD147 underneath meningococcal microcolonies could be verified in iPSC-BECs. Nm was also observed to significantly increase the expression of pro-inflammatory and neutrophil-specific chemokines IL6, CXCL1, CXCL2, CXCL8, and CCL20, at distinct time points of infection, and the secretion of IFN γ and RANTES by iPSC-BECs. Nm was directly observed to disrupt tight junction proteins ZO-1, Occludin, and Claudin-5 at late time points of infection, which became frayed and/or discontinuous upon infection. This destruction is preceded by, and might be dependent on, SNAI1 activation (a transcriptional repressor of tight junction proteins). In accordance with tight junction loss, a sharp loss in trans-endothelial electrical resistance, and an increase in sodium fluorescein permeability was observed at late infection time points. Notably, bacterial transmigration correlated with junctional disruption, indicating that the paracellular route contributes for bacterial crossing of BECs. Finally, RNA-Sequencing (RNA-Seq) of sorted, infected iPSC-BECs was established through the use of fluorescence-activated cell sorting (FACS) techniques following infection. This allowed the detection of expression data of Nm-responsive host genes not previously described thus far to play a role during meningitidis. In conclusion, here the utility of iPSC-BECs in vitro to study Nm infection could be demonstrated. This is the first BEC in vitro model to express all major BEC tight junctions and to display high barrier potential. Altogether, here this model provides novel insights into Nm pathogenesis, including an impact of Nm on barrier properties and tight junction complexes and suggests that the paracellular route contributes to Nm traversal of BECs. N2 - Eine bakterielle Meningitis tritt auf, wenn durch Blut übertragene Bakterien hochspezialisierte Hirnendothelzellen (BEC) durchdringen und Zugang zu den Meningen erhalten. Neisseria meningitidis (Nm) ist ein human-exklusiver Erreger, für dessen Untersuchung es an geeigneten In-vitro-Modellen mangelt. Bis vor kurzem war die Modellierung von BEC-Nm-Wechselwirkungen fast ausschließlich auf immortalisierte humane Zellen beschränkt, denen wichtige BEC-Phänotypen fehlen. Besonders hervorzuheben sind das Fehlen physiologischer Barriereeigenschaften durch unkontinuierliche dichte Zell-Zell-Verbindungen. Als alternative Modellorganismen können humanisierte Mäuse verwendet werden, die sich jedoch auf bekannte Wirt-Erreger-Wechselwirkungen stützen und durch Speziesunterschiede eine eingeschränkte Übersetzbarkeit aufweisen. Dies begründet die Notwendigkeit, neuartige humane In-vitro-BEC-Modelle zu etablieren, die physiologische Barrierephänotypen aufweisen, um Nm-BEC-Wechselwirkungen zu untersuchen. Kürzlich wurde ein humanes Modell entwickelt, welches auf aus induziert pluripotenten Stammzellen (iPSCs) abgeleiteten humanen BECs basiert und sich durch einen physiologischen Blut-Hirn-Schranken-Phänotyp auszeichnet. Die iPSC-BECs wurden in dieser Arbeit als neuartiges zelluläres Modell getestet, um Nm-Wirt-Pathogen-Wechselwirkungen zu untersuchen, wobei der Schwerpunkt auf Wirtsreaktionen auf Nm-Infektionen lag. Zwei Wildtypstämme und drei Mutantenstämme von Nm wurden verwendet, um zu bestätigen, dass diese ähnlichen Phänotypen wie in zuvor beschriebenen Modellen folgten. Hervorzuheben ist, dass die Rekrutierung des kürzlich veröffentlichten Pilus-Adhäsin-Rezeptors CD147 unter Meningokokken-Mikrokolonien in iPSC-BECs verifiziert werden konnte. Es wurde auch beobachtet, dass Nm die Expression der entzündungsfördernden und neutrophilen spezifischen Chemokine IL6, CXCL1, CXCL2, CXCL8 und CCL20 zu bestimmten Zeitpunkten der Infektion sowie die Sekretion von IFN-γ und RANTES durch iPSC-BECs signifikant erhöht. Es wurde zudem beobachtet, dass Nm die Tight Junction-Proteine ZO-1, Occludin und Claudin-5 zu späten Zeitpunkten der Infektion zerstört, verursacht durch die Infektion wurde ein ausgefranster und/oder diskontinuierlicher Tight Junction-Phänotyp beobachtet. Dieser Zerstörung geht die SNAI1-Aktivierung (ein Transkriptionsrepressor für Tight Junction-Proteine) voraus und könnte von ihr abhängig sein. In Übereinstimmung mit dem Verlust der Tight Junctions wurde zu späten Infektionszeitpunkten ein starker Verlust des transendothelialen elektrischen Widerstands und eine Zunahme der Natriumfluoreszein-Permeabilität beobachtet. Bemerkenswerterweise korrelierte die bakterielle Transmigration mit dem Verlust der Tight Junctions, was darauf hinweist, dass der parazelluläre Weg zur bakteriellen Überwindung von BECs eine entscheidende Rolle spielt. Schließlich wurde die RNA-Sequencing (RNA-Seq) von sortierten, infizierten iPSC-BECs durch die Verwendung von fluoreszenzaktivierten Zellsortiertechniken (FACS) nach der Infektion durchgeführt. Dies ermöglichte erstmalig den Nachweis von Expressionsdaten von Nm-responsiven Wirtsgenen, welche bei der Meningitidis eine Rolle zu spielen scheinen. Zusammenfassend konnte im Rahmen der vorliegenden Arbeit der Nutzen von iPSC-BECs In-Vitro-Modellen zur Untersuchung von Nm-Infektionen gezeigt werden. Dies ist das erste BEC-In-vitro-Modell, das alle wichtigen BEC-Tight Junctions exprimiert und ein hohes Barrierepotential aufweist. Insgesamt liefert das eingesetzte Modell neue Einblicke in die Nm-Pathogenese, einschließlich der Beeinflussung der Barriereeigenschaften und der Tight Junction-Komplexe durch Nm, und gibt erste Hinweise darauf, dass die parazelluläre Route zum Nm-Übertritt von BEC-Barrieren eine entscheidende Rolle spielt. KW - Neisseria meningitidis KW - endothelial cells KW - blood brain barrier KW - blood cerebrospinal fluid barrier KW - cellular model KW - Neisseria meningitidis KW - endothelial cells Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-188550 ER -