TY - THES A1 - Ciba, Manuel T1 - Synchrony Measurement and Connectivity Estimation of Parallel Spike Trains from in vitro Neuronal Networks T1 - Messung der Synchronität und Abschätzung der Konnektivität von in-vitro Spike-Trains N2 - The goal of this doctoral thesis is to identify appropriate methods for the estimation of connectivity and for measuring synchrony between spike trains from in vitro neuronal networks. Special focus is set on the parameter optimization, the suitability for massively parallel spike trains, and the consideration of the characteristics of real recordings. Two new methods were developed in the course of the optimization which outperformed other methods from the literature. The first method “Total spiking probability edges” (TSPE) estimates the effective connectivity of two spike trains, based on the cross-correlation and a subsequent analysis of the cross-correlogram. In addition to the estimation of the synaptic weight, a distinction between excitatory and inhibitory connections is possible. Compared to other methods, simulated neuronal networks could be estimated with higher accuracy, while being suitable for the analysis of massively parallel spike trains. The second method “Spike-contrast” measures the synchrony of parallel spike trains with the advantage of automatically optimizing its time scale to the data. In contrast to other methods, which also adapt to the characteristics of the data, Spike-contrast is more robust to erroneous spike trains and significantly faster for large amounts of parallel spike trains. Moreover, a synchrony curve as a function of the time scale is generated by Spike-contrast. This optimization curve is a novel feature for the analysis of parallel spike trains. N2 - Ziel dieser Dissertation ist die Identifizierung geeigneter Methoden zur Schätzung der Konnektivität und zur Messung der Synchronität von in-vitro Spike-Trains. Besonderes Augenmerk wird dabei auf die Parameteroptimierung, die Eignung für große Mengen paralleler Spike-Trains und die Berücksichtigung der Charakteristik von realen Aufnahmen gelegt. Im Zuge der Optimierung wurden zwei neue Methoden entwickelt, die anderen Methoden aus der Literatur überlegen waren. Die erste Methode “Total spiking probability edges” (TSPE) schätzt die effektive Konnektivität zwischen zwei Spike-Trains basierend auf der Berechnung einer Kreuzkorrelation und einer anschließenden Analyse des Kreuzkorrelograms. Neben der Schätzung der synaptischen Ge- wichtung ist eine Unterscheidung zwischen exzitatorischen und inhibitorischen Verbindungen möglich. Im Vergleich zu anderen Methoden, konnten simulierte neuronale Netzwerke mit einer höheren Genauigkeit geschätzt werden. Zudem ist TSPE aufgrund der hohen Rechengeschwindigkeit für große Datenmengen geeignet. Die zweite Methode “Spike-contrast” misst die Synchronität paralleler Spike-Trains mit dem Vorteil, dass die Zeitskala automatisch an die Daten angepasst wird. Im Gegensatz zu anderen Methoden, welche sich ebenfalls an die Daten anpassen, ist Spike-contrast robuster gegenüber fehlerhaften Spike-Trains und schneller für große Datenmengen. Darüber hinaus berechnet Spike-Contrast eine Synchronitätskurve als Funktion der Zeitskala. Diese Kurve ist ein neuartiges Feature zur Analyse paralleler Spike-Trains. KW - Synchronitätsmessung KW - Konnektivitätsschätzung KW - microelectrode array KW - bicuculline KW - similarity KW - distance KW - correlation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-223646 ER - TY - THES A1 - Pieper, Sabrina H. T1 - Temporal information transfer by electrical stimulation in auditory implants T1 - Zeitliche Informationsübertragung durch elektrische Stimulation bei Hörprothesen N2 - In deafness, which is caused by the malfunctioning of the inner ear, an implantation of a cochlear implant (CI) is able to restore hearing. The CI is a neural prosthesis that is located within the cochlea. It replaces the function of the inner hair cells by direct electrical stimulation of the auditory nerve fibers. The CI enables many deaf or severe hearing-impaired people to achieve a good speech perception. Nevertheless, there is a lot of potential for further improvements. Compared to normal-hearing listeners rate pitch discrimination is much worse. Rate pitch discrimination is the ability to distinguish the pitch of two stimuli with two different pulse rates. This ability is important for enjoying music as well as speech perception (in noise). Further, the small dynamic range in electrical hearing (compared to normal-hearing listeners) and therefore the small intensity resolution limits the performance of CI users. Both, rate pitch coding and dynamic range were investigated in this doctoral thesis. For the first issue, a pitch discrimination task was designed to determine the just-noticeable-difference (JND) in pitch with 200 and 400 pps as reference. Additionally to the default biphasic pulse (single pulse) the experiment was performed with double pulses. The double pulse consists out of two biphasic pulses directly after each other and a small interpulse interval (IPI) in between. Three different IPIs (15, 50, and 150 µs) were tested. The statistical analysis of JNDs revealed no significant effects between stimulation with single-pulse or double-pulse trains. A follow-up study investigated an alternating pulse train consisting of single and double pulses. To investigate if the 400 pps alternating pulse train is comparable in pitch with the 400 pps single-pulse train, a pairwise pitch comparison test was conducted. The alternating pulse train was compared with single-pulse trains at 200, 300 and 400 pps. The results showed that the alternating pulse train is for most subjects similar in pitch with the 200 pps single-pulse train. Therefore, pitch perception seemed to be dominated by the double pulses within the pulse train. Accordingly, double pulses with different amplitudes were tested. Based on the facilitation effect, a larger neuronal response was expected by stimulating with two pulses with a short IPI within the temporal facilitation range. In other studies, this effect was shown to be maximal in CIs of the manufacturer Cochlear, with first pulse amplitudes set at or slightly below the electrically evoked compound action potential (ECAP) threshold. The second pulse amplitude did not influence the facilitation effect and therefore could be choose at will. Similarly, this effect was tested in this thesis with CIs of the manufacturer MED-EL. Nevertheless, to achieve a proper signal-to-noise ratio, technical issues had to be addressed like a high noise floor, resulting in incorrect determination of the ECAP threshold. After solving this issues, the maximum facilitation effect was around the ECAP threshold as in the previous study with Cochlear. For future studies this effect could be used in a modified double pulse rate pitch experiment with the first pulse amplitude at ECAP threshold and the second pulse amplitude variable to set the most comfortable loudness level (MCL). The last study within this thesis investigated the loudness perception at two different loudness levels and the resulting dynamic range for different interphase-gaps (IPG). A larger IPG can reduce the amplitude at same loudness level to save battery power. However, it was unknown if the IPG has an influence on the dynamic range. Different IPGs (10 and 30 µs) were compared with the default IPG (2.1 µs) in a loudness matching experiment. The experiment was performed at the most comfortable loudness level (MCL) of the subject and the amplitude of half the dynamic range (50%-ADR). An upper dynamic range was calculated from the results of MCL and 50%-ADR (therefore not the whole dynamic range was covered). As expected from previous studies a larger IPG resulted in smaller amplitudes. However, the observed effect was larger at MCL than at 50%-ADR which resulted in a smaller upper dynamic range. This is the first time a decrease of this dynamic range was shown. N2 - Bei einer Taubheit, welche durch eine Schädigung des Innenohres hervorgerufen wird, ist es möglich das Gehör mittels eines Cochlea-Implantates (CI) wieder herzustellen. Das Implantat befindet sich innerhalb der Hörschnecke und ist in der Lage, die Funktion der inneren Haarzellen zu ersetzen. Dies geschieht durch direkte elektrische Stimulation der auditorischen Nervenfasern. Dadurch ermöglicht das CI Ertaubten oder stark Schwerhörigen, ein gutes Sprachverstehen zu erlangen. Dennoch gibt es weiterhin Verbesserungspotential. Im Vergleich zu Normalhörenden ist unter anderem die Tonhöhenunterscheidung stark eingeschränkt. Die Unterscheidung von Tonhöhen ist sowohl für den Musikgenuss als auch für das Sprachverstehen (im Störgeräusch) wichtig. Ebenso verfügen CI Träger über einen vergleichsweise kleinen Dynamikbereich und einer daraus resultierenden geringen Auflösung der Intensitäten. Dies kann zu einer Beeinträchtigung des Hörens führen. Sowohl die Fähigkeit der Tonhöhenunterscheidung als auch der Dynamikbereich werden in der vorliegenden Doktorarbeit untersucht. Hierfür wurde zunächst ein Tonhöhenunterscheidungs-Experiment entworfen, bei welchem der kleinste wahrnehmbare Unterschied zweier Pulsraten ermittelt wurde. Die Pulsraten 200 und 400 pps dienten als Referenzwert. Neben dem standardmäßig verwendeten Biphasischen Puls, wurden Doppelpulse genutzt. Diese bestehen aus zwei aufeinander folgenden biphasischen Pulsen gleicher Amplitude, welche durch ein kurzes interpuls Intervall (IPI) separiert sind. In dem Experiment wurden drei unterschiedliche IPIs getestet (15, 50 und 150 µs). Die Analyse des kleinesten wahrnehmbaren Tonhöhenunterschieds ergab keine signifikanten Unterschiede zwischen dem einfachen Puls und den Doppelpulsen. Ein Folgeexperiment beschäftigte sich mit einer alternierenden Pulsfolge bestehend aus dem einfachen und dem Doppelpuls. In einem paarweisen Vergleichsexperiment wurde die alternierende Pulsfolge bei 400 pps mit einem Einfachpuls bei 200, 300 und 400 pps in ihrer Tonhöhe verglichen. Es zeigte sich, dass die alternierende Pulsfolge bei 400 pps mehrheitlich mit dem Einzelpuls bei 200 pps vergleichbar war. Demzufolge scheint die Tonhöhenwahrnehmung der alternierenden Pulsfolge von dem Doppelpuls dominiert zu werden. Auf beide Experimente aufbauend, wurden Doppelpulse mit unterschiedlichen Amplituden untersucht. Basierend auf den Bahnungseffekt (Facilitation-Effekt), kann eine größere neuronale Antwort hervorgerufen werden, indem mit Doppelpulsen mit kurzem IPI stimuliert wird. In einer anderen Studie konnte anhand von CIs der Firma Cochlear gezeigt werden, dass dieser Effekt maximal war, wenn die Amplitude des ersten Pulses nahe der Schwelle zum elektrisch evozierten Summenaktionspotential (ECAP) liegt. Die Amplitude des zweiten Pulses dagegen hatte keinen Einfluss auf den „Facilitation“-Effekt und konnte beliebig gewählt werden. Dieser Effekt wurde mit CIs der Firma MED-EL in der vorliegenden Doktorarbeit nachgestellt. Es zeigte sich, dass auch hier der größte „Facilitation“-Effekt auftrat, wenn die Amplitude des ersten Pulses nahe der ECAP-Schwelle lag. In zukünftigen Studien könnte dieser Effekt für einen modifizierten Doppelpuls genutzt werden, um mit diesem das ursprüngliche Tonhöhenunterscheidungs-Experiment zu wiederholen. Dabei würde die Amplitude des ersten Pulses der ECAP-Schwelle entsprechen, während die zweite Pulsamplitude variiert wird, um den größten, möglichst angenehmen, Lautheitspegel zu erhalten. In einer letzten Studie wurde das Lautheitsempfinden bei zwei unterschiedlichen Lautheiten bei unterschiedlichen Interphasen-Gaps (IPG) untersucht und der daraus resultierende Dynamikbereich. Eine Vergrößerung des IPGs führt bei gleich bleibendem Lautheitsempfinden zu geringeren Stimulations-Amplituden und ist dadurch in der Lage die Batterie schonen. Allerdings ist der Einfluss auf den Dynamikbereich bisher unbekannt. In einem Lautheits-Experiment wurden Pulse mit verschiedenen IPGs (10 und 30 µs) mit dem standardmäßig verwendeten IPG (2.1 µs) in ihrer Lautheit angeglichen. Dieses Verfahren wurde bei MCL und der Amplitude des halben Dynamikbereichs (50%-ADR) durchgeführt. Aus den ermittelten Werten konnte ein „oberer“ Dynamikbereich zwischen MCL und 50%-ADR ermittelt werden. Es zeigte sich, dass sich die Amplituden mit größerem IPG, wie erwartet, verringerten. Jedoch zeigte sich ein stärkerer Effekt bei MCL, was eine Verringerung des Dynamikbereichs zur Folge hat. Dies ist das erste Mal, dass eine Verringerung des Dynamikbereichs gezeigt wurde. KW - Cochlear-Implantat KW - Bahnung KW - Elektrostimulation KW - temporal information transfer KW - ECAP KW - interphase gap KW - interpulse interval KW - cochlea implant KW - zeitlich Informationsübertragung Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-223887 ER -