TY - THES A1 - Stollburges, Elisa T1 - Therapeutisches Potential der IL-1ß-Neutralisierung nach Schädel-Hirn-Trauma - eine präklinische randomisierte Kontrollstudie T1 - The therapeutic potential of interleukin 1 beta neutralisation treating Traumatic Brain injury - A preclinical randomised control study N2 - Durch die Interleukin 1ß Neutralisierung mittels eines Antikörpers soll versucht werden, das Outcome nach einem Schädelhirntrauma zu verbessern und den erlittenen Schaden zu minimieren N2 - With the support of antibodies, interleukin 1 beta neutralisation attempts to improve the outcome after suffering from a traumatic brain injury and to limit the damage suffered KW - Interleukin 1-beta KW - Interleukin 1 beta Neutralisierung KW - Schädel-Hirn-Trauma Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-349346 ER - TY - THES A1 - Engert, Jonas T1 - Untersuchung neuronaler Stammzellen des Colliculus inferior der Ratte im zeitlichen Verlauf T1 - Analysis of neural stem cells of the rat inferior colliculus in the course of time N2 - Neural stem cells (NSCs) have been recently identified in the inferior colliculus (IC). These cells are of particular interest, as no casual therapeutic options for impaired neural structures exist. This research project aims to evaluate the neurogenic potential in the rat IC from early postnatal days until adulthood. The IC of rats from postnatal day 6 up to 48 was examined by neurosphere assays and histological sections. In free-floating IC cell cultures, neurospheres formed from animals from early postnatal to adulthood. The amount of generated neurospheres decreased in older ages and increased with the number of cell line passages. Cells in the neurospheres and the histological sections stained positively with NSC markers (Doublecortin, Sox-2, Musashi-1, Nestin, and Atoh1). Dissociated single cells from the neurospheres differentiated and were stained positively for the neural lineage markers β-III-tubulin, glial fibrillary acidic protein, and myelin basic protein. In addition, NSC markers (Doublecortin, Sox-2, CDK5R1, and Ascl-1) were investigated by qRT-PCR. In conclusion, a neurogenic potential in the rat IC was detected and evaluated from early postnatal days until adulthood. The identification of NSCs in the rat IC and their age-specific characteristics contribute to a better understanding of the development and the plasticity of the auditory pathway and might be activated for therapeutic use. N2 - Neuronale Stammzellen wurden kürzlich im unteren Colliculus inferior (CI) identifiziert. Diese Zellen sind von besonderem Interesse, da es keine therapeutischen Optionen für geschädigte neuronale Strukturen gibt. Ziel dieses Forschungsprojekts ist es, das neurogene Potenzial im CI der Ratte von den ersten postnatalen Tagen bis zum Erwachsenenalter zu untersuchen. Der CI von Ratten vom 6. bis zum 48. postnatalen Tag wurde mit Neurosphären-Assays und histologischen Schnitten untersucht. In frei schwimmenden CI-Zellkulturen bildeten sich Neurosphären bei Tieren vom frühen postnatalen Alter bis zum Erwachsenenalter. Die Menge der gebildeten Neurosphären nahm im höheren Alter ab und stieg mit der Anzahl der Zelllinienpassagen. Die Zellen in den Neurosphären und die histologischen Schnitte zeigten eine positive Färbung mit neuronalen Stammzell-Markern (Doublecortin, Sox-2, Musashi-1, Nestin und Atoh1). Dissoziierte Einzelzellen aus den Neurosphären differenzierten und wurden positiv für die neuralen Abstammungsmarker β-III-Tubulin, GFAP und MBP angefärbt. Darüber hinaus wurden neuronalen Stammzell-Marker (Doublecortin, Sox-2, CDK5R1 und Ascl-1) mittels qRT-PCR untersucht. Zusammenfassend lässt sich sagen, dass ein neurogenes Potenzial im CI der Ratte von den frühen postnatalen Tagen bis zum Erwachsenenalter nachgewiesen und bewertet wurde. Die Identifizierung von neuronalen Stammzellen im CI der Ratte und ihre altersspezifischen Merkmale tragen zu einem besseren Verständnis der Entwicklung und der Plastizität der Hörbahn bei und könnten für eine therapeutische Nutzung aktiviert werden. KW - Colliculus inferior KW - Neurogenesis KW - Stem cells KW - Neuronale Stammzellen KW - Neural Stem cells KW - Colliculus inferior KW - Adulte Neurogenese KW - Hörbahn KW - Inferior colliculus KW - adult neurogenesis KW - auditory pathway Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-282642 ER - TY - THES A1 - Kerscher, Susanne Regina T1 - Die Rolle von Makrophagen an der motorischen Endplatte bei der Pathogenese neuromuskulärer Erkrankungen am Beispiel von Tiermodellen peripherer Neuropathien vom Charcot-Marie-Tooth-Typ T1 - The role of macrophages at neuromuscular junctions in the pathogenesis of Charcot-Marie-Tooth neuropathies N2 - Bei den Charcot-Marie-Tooth (CMT) Neuropathien handelt es sich um erbliche Erkrankungen des peripheren Nervensystems, die progredient zu motorischen und sensorischen Defiziten führen und für die bislang keine kausalen Therapieoptionen existieren. In verschiedenen Studien konnte gezeigt werden, dass Entzündungsreaktionen, insbesondere durch Lymphozyten und Makrophagen vermittelt, eine bedeutende Rolle bei der Pathogenese dieser Erkrankung spielen. Neben neuronaler und axonaler Schädigung, sowie Demyelinisierung ist in untersuchten Myelin Mutanten auch eine erhöhte Anzahl an denervierten neuromuskulärer Endplatten zu erkennen. Eine genetische Blockade der Makrophagen-Aktivierung konnte in den Studien eine Verbesserung sämtlicher neuropathologischer Merkmale bei gleichzeitig reduzierter Makrophagenanzahl zeigen. Ob und welche Rolle Makrophagen bei der Denervation neuromuskulärer Endplatten spielen, blieb bislang ungeklärt. In dieser Studie konnte in allen untersuchten Myelin Mutanten im Vergleich zum Wildtyp eine Zunahme an neuromuskulären Synapsen beobachtet werden, die mit Makrophagen räumlich assoziiert waren. Daneben zeigten entsprechende Myelin Mutanten eine Zunahme denervierter und partiell denervierter Endplatten und zwar interessanterweise direkt proportional zur Anzahl an Synapsen in Assoziation mit Makrophagen. Das bedeutet, dass die Anzahl an Endplatten in Assoziation mit Makrophagen verhältnismäßig parallel zur Anzahl an denervierten Endplatten zunahm, während die Anzahl an Makrophagen im gesamten Muskel nahezu unverändert blieb. Dies deutet eine mögliche Rolle der räumlich mit Endplatten assoziierten Makrophagen an deren Denervation an. Dabei waren alle Synapsen in Assoziation mit Makrophagen innerviert und damit morphologisch intakt. Bei doppel-mutanten Mäusen mit genetischer Blockade der Makrophagen-Aktivierung waren die beschriebenen pathologischen Merkmale an der neuromuskulären Synapse deutlich reduziert bei gleichzeitig signifikanter Abnahme an Makrophagen in Assoziation mit Endplatten. Ähnliche pathologische Auffälligkeiten wie bei Myelin Mutanten fanden sich in geringerer Ausprägung auch im Wildtyp im Rahmen des Alterungsprozesses sowie auch bei Mäusen mit Defizienz des neurotrophen Faktors CNTF. Zusammenfassend deuten die Ergebnisse darauf hin, dass sowohl in der Pathogenese der CMT Neuropathie wie auch im Rahmen altersbedingter Neurodegeneration ein Makrophagen-vermittelter Schaden an der neuromuskulären Endplatte entsteht. Wesentliche Mediatoren scheinen hierbei das von Fibroblasten und vermutlich auch perisynaptischen Fibroblasten exprimierte CSF-1 zu sein, sowie MCP-1, das durch Schwann Zellen und möglicherweise auch von terminalen Schwann Zellen freigesetzt wird. Auch eine Defizienz des neurotrophen Faktors CNTF bewirkt zumindest in geringem Ausmaß eine Zunahme der pathologischen Merkmale Denervation und Makrophagen-Endplatten-Assoziation im Vergleich zum Wildtyp. Diese Ergebnisse erweitern insbesondere das Wissen um Pathomechanismen an der neuromuskulären Endplatte und eröffnen neue Möglichkeiten der Behandlung für CMT und weitere neuromuskuläre Erkrankungen. N2 - Charcot-Marie-Tooth (CMT) neuropathies are a group of hereditary diseases of the peripheral nervous system that progressively lead to motor and sensory deficits and for which currently no causal therapeutic options exist. Various studies revealed that inflammatory reactions, especially mediated by lymphocytes and macrophages, play a significant role in the pathogenesis of this disease. In addition to demyelination, neuronal and axonal damage, an increased number of denervated neuromuscular junctions were detected in myelin mutant mice. In these studies, a genetic blockade of macrophage activation induced an improvement in all neuropathological features with a simultaneous reduction in the number of macrophages. Whether and which role macrophages play in the denervation of neuromuscular endplates remained unclear by now. In this presented study, an increase in neuromuscular synapses spatially associated with macrophages was observed in all investigated myelin mutant mice compared to wild type mice. In addition, corresponding myelin mutants showed an increase in denervated and partially denervated endplates directly proportional to the number of synapses associated with macrophages. This means that the number of endplates in association with macrophages increased relatively in parallel with the number of denervated endplates, while the number of macrophages remained nearly unchanged throughout the skeletal muscle. This suggests a possible pathogenetic role of spatially endplate-associated macrophages in their denervation. All synapses in association with macrophages were innervated and thus morphologically intact. In dual mutant mice with a genetic blockade of macrophage activation, the described pathological features at the neuromuscular junction were significantly reduced with concomitant significant decrease in macrophages associated with endplates. Similar pathological abnormalities as in myelin mutants were found to a lesser extent also in the wild type in the context of the aging process as well as in mice with deficiency of the neurotrophic factor CNTF. In summary, these results suggest that macrophage-related damage of neuromuscular junctions occurs in both the pathogenesis of CMT neuropathy and in the context of age-related neurodegeneration. Important mediators seem to be CSF-1 expressed by fibroblasts and probably also perisynaptic fibroblasts, as well as MCP-1, which is released by Schwann cells and possibly also by terminal Schwann cells. Furthermore, a deficiency of the neurotrophic factor CNTF causes, at least to a small extent, an increase in the pathological features of denervation and macrophage-endplate association compared to the wild-type. In particular, these findings expand knowledge of pathomechanisms at the neuromuscular endplate and open up new treatment options for CMT and other neuromuscular diseases. KW - CMT KW - Charcot-Marie-Tooth KW - hereditäre Neuropathien KW - neuromuskuläre Endplatte KW - Makrophagen Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-169412 ER - TY - THES A1 - Sharifi, Marzieh T1 - Structural plasticity of active zones in mouse hippocampal mossy fiber synapses T1 - Strukturelle Plastizität aktiver Zonen in Maus hippocampalen Moosfasersynapsen N2 - Chemical synapses are a physically and functionally varied type of cell-cell contact specialized in conducting communication between neurons. They are the smallest "computational" unit of the brain and are often classified as electrical and chemical, and they can be distinguished based on their transmission mechanism. These categories could be further broken into many kinds, each having a specific structure-function repertoire that is hypothesized to provide neural networks with distinct computational capabilities. Heterogeneity refers to the variety of structures and functions present in a particular category of synapses. Contributing factors for this heterogeneity may be the synaptic vesicles, the active zone (AZ), the synaptic cleft, the postsynaptic density, and the glial processes associated with the synaptic contacts. Each of these five structural modules has its own set of functions, and their combination determines the spectrum of functional heterogeneity at mammalian excitatory synapses. This work focused on the changes in AZ protein expression after chemical induction of plasticity with forskolin in synaptic contacts of the hippocampal mossy fibers. With the nanoscopic resolution provided by dSTORM, along with the multicolor SIM imaging capabilities, changes in expression of key presynaptic AZ components were analyzed. Using SIM imaging along with a standardized stimulation protocol in acute brain slices from male 16-week old Thy1-mEGFP (Lsi1) mice, the changes of the key AZ proteins Bassoon, Munc 13-1 and Tomosyn were investigated 30 min after stimulation with forskolin (50 μM for 30 min). Forskolin induced changes in these proteins largely in small synaptic contacts whereas no clear changes were detected in large mossy fiber boutons. However, due to the high variability it cannot be ruled out that forskolin may differentially modify AZ protein composition depending on experimental circumstances such as age and gender of mice or the time point and duration of forskolin stimulation. The dSTORM data demonstrated feasibility to perform single molecule 3D imaging of hippocampal presynaptic AZs and allowed quantitative mapping of molecular changes in AZ proteins after induction of plasticity. The findings suggest high heterogeneity in mossy fiber synaptic contacts that may have an impact on the function of neural networks. These imaging approaches may now be used to identify potential differences in functional molecular rearrangements of synaptic proteins in healthy and diseased brain (e.g. after induction of traumatic brain injury). N2 - Chemische Synapsen sind eine physikalisch und funktionell vielfältige Art von Zell-Zell-Kontakten, die auf die Kommunikation zwischen Neuronen spezialisiert sind. Sie sind die kleinste " computational " Einheit des Gehirns und werden oft als elektrisch und chemisch klassifiziert, und sie können auf der Grundlage ihres Übertragungsmechanismus unterschieden werden. Diese Kategorien lassen sich weiter in viele Arten unterteilen, die jeweils ein spezifisches Struktur-Funktions-Repertoire aufweisen, von dem angenommen wird, dass es neuronale Netze mit unterschiedlichen Berechnungsfähigkeiten ausstattet. Heterogenität bezieht sich auf die Vielfalt der Strukturen und Funktionen, die in einer bestimmten Kategorie von Synapsen vorhanden sind. Die wichtigsten Gründe für diese Heterogenität sind molekulare und strukturelle Unterschiede in synaptischen Vesikel, der aktiven Zone (AZ), synaptischem Spalt, postsynaptischer Dichte und der mit der Synapse verbundenen glialen Prozesse. Jedes dieser fünf strukturellen Module hat seine eigenen Funktionen, und ihre Kombination bestimmt das Spektrum der funktionellen Heterogenität an exzitatorischen Synapsen von Säugetieren. Diese Arbeit konzentrierte sich auf Änderungen der AZ Proteine nach chemischer Induktion von Plastizität an hippocampalen Moosfasersynapsen mittels superhochauflösende Fluoreszenzmikroskopie. Mit der nanoskopischen Auflösung von dSTORM und der Mehrfarben-SIM-Bildgebung könnten Proteine in der präsynaptischen AZ abgebildet werden. Mithilfe der SIM-Bildgebung wurden Veränderungen in der Expression von AZ-Proteine Bassoon, Munc 13-1 und Tomosyn nach der Induktion von Plastizität mit Forskolin an akuten Hirnschnitten von 16-Wochen alten männlichen Thy1-mEGFP (Lsi1) Mäusen analysiert. Forskolin reduzierte die Expression von Bassoon, Munc-13-1 und Tomosyn hauptsächlich in kleinen Moosfasersynapsen. Aufgrund der hohen Variabilität kann jedoch nicht ausgeschlossen werden, dass Forskolin die Expression der AZ-Proteine abhängig von den experimentellen Bedingungen, wie z.B. dem Alter oder dem Geschlecht der Mäuse oder der Zeitpunkt und der Dauer der Forskolin-Stimulation unterschiedlich verändern könnte. Die dSTORM-Daten zeigten, dass es möglich ist, eine Einzelmolekül-3D-Bildgebung präsynaptischer aktiver Zonen in Hippocampus durchzuführen. Die Methode ermöglichte eine quantitative Analyse der molekularen Veränderungen in AZ-Proteinen nach Induktion von Plastizität. Die Ergebnisse deuten auf eine große Heterogenität der Moosfasersynapsen, die einen Einfluss auf die Funktion neuronaler Netzwerke haben könnte. Diese bildgebenden Verfahren können nun eingesetzt werden, um potenzielle Unterschiede in den funktionellen molekularen Änderungen synaptischer Proteine im gesunden und pathologischen Gehirn (z. B. nach einer traumatischen Schädelverletzung) zu untersuchen. KW - Chemische Synapsen KW - active zone Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-275433 ER - TY - THES A1 - Nieberler, Matthias T1 - The physiological role of autoproteolysis of the Adhesion GPCR Latrophilin/dCIRL T1 - Die physiologische Bedeutung der Autoproteolyse des Adhäsions-GPCR Latrophilin/dCIRL N2 - G protein-coupled receptors of the Adhesion family (aGPCRs) comprise the second largest group within the GPCR realm with over 30 mammalian homologs. They contain a unique structure with unusually large extracellular domains (ECDs) holding many structural folds known to mediate cell-cell and cell-matrix interactions. Furthermore, aGPCRs undergo autoproteolytic cleavage at the GPCR proteolysis site (GPS), an integral portion of the GPCR autoproteolysis inducing (GAIN) domain. Thus far, it is largely unknown if and how self-cleavage affects aGPCR activation and signaling and how these signals may shape the physiological function of cells. Latrophilin, alternatively termed the calcium-independent receptor of α-latrotoxin (CIRL) constitutes a highly conserved, prototypic aGPCR and has been assigned roles in various biological processes such as synaptic development and maturation or the regulation of neurotransmitter release. The Drosophila melanogaster homolog dCIRL is found in numerous sensory neurons including the mechanosensory larval pentascolopidial chordotonal organs (CHOs), which rely on dCIRL function in order to sense mechanical cues and to modulate the mechanogating properties of present ionotropic receptors. This study reveals further insight into the broad distribution of dCirl expression throughout the larval central nervous system, at the neuromuscular junction (NMJ), as well as subcellular localization of dCIRL in distal dendrites and cilia of chordotonal neurons. Furthermore, targeted mutagenesis which disabled GPS cleavage of dCIRL left intracellular trafficking in larval CHOs unaffected and proved autoproteolysis is not required for dCIRL function in vivo. However, substitution of a threonine residue, intrinsic to a putative tethered agonist called Stachel that has previously been documented for several other aGPCRs, abrogated receptor function. Conclusively, while this uncovered the presence of Stachel in dCIRL, it leaves the question about the biological relevance of the predetermined breaking point at the GPS unanswered. In an independent approach, the structure of the “Inter-RBL-HRM” (IRH) region, the region linking the N-terminal Rhamnose-binding lectin-like (RBL) and the hormone receptor motif (HRM) domains of dCIRL, was analyzed. Results suggest random protein folding, excessive glycosylation, and a drastic expansion of the size of IRH. Therefore, the IRH might represent a molecular spacer ensuring a certain ECD dimension, which in turn may be a prerequisite for proper receptor function. Taken together, the results of this study are consistent with dCIRL’s mechanoceptive faculty and its role as a molecular sensor that translates mechanical cues into metabotropic signals through a yet undefined Stachel-dependent mechanism. N2 - G-Protein-gekoppelte Rezeptoren der Adhäsions-Klasse (aGPCRs) bilden mit über 30 Homologen in Säugern die zweitgrößte Gruppe innerhalb des GPCR-Reichs. Sie teilen eine einzigartige Morphologie mit einer ungewöhnlich großen extrazellulären Domäne (ECD), welche meist vielfältige Strukturen enthält, die Zell-Zell- und Zell-Matrix-Interaktionen vermitteln. Weiterhin unterziehen sich aGPCRs einer autoproteolytischen Spaltung an der GPCR proteolysis site (GPS), die einen integralen Bestandteil der GPCR autoproteolysis inducing (GAIN) Domäne darstellt. Bisher ist weitestgehend unbekannt, ob und wie die Selbstspaltung Aktivierung und Signaltransduktion von aGPCRs beeinflusst und wie diese Signale die physiologische Zellfunktion modulieren. Latrophilin, oder auch der Kalzium-unabhängige Rezeptor für α-Latrotoxin (CIRL), stellt einen evolutiv stark konservierten, prototypischen aGPCR dar und spielt eine Rolle in verschiedenen biologischen Prozessen, darunter die Entwicklung und Reifung von Synapsen, sowie die Regulation der Neurotransmitterausschüttung. Zusätzlich ist dCIRL, das Latrophilinhomolog von Drosophila melanogaster, an der Wahrnehmung mechanischer Reize beteiligt und moduliert die Mechanosensitivität larvaler Chordotonalorgane (CHOs), indem es das mechanisch gesteuerte Verhalten vorliegender ionotroper Rezeptoren verändert. Die vorliegende Arbeit enthüllt weitere Erkenntnisse zur umfassenden Expression von dCirl im larvalen Zentralnervensystem, an der motorischen Endplatte (NMJ), und stellt erstmals dessen subzelluläre Lokalisation in distalen Dendriten und Zilien von Chordotonalneuronen dar. Außerdem zeigen Mutationsstudien mit ausgeschalteter Autoproteolyse an der GPS, dass diese für den intrazellulären Transport und die Rolle von dCIRL in larvalen CHOs in vivo von untergeordneter Bedeutung ist. Die Mutation eines Threonins, welches integraler Bestandteil eines möglichen gebundenen Agonisten Stachel, der kürzlich für einige andere aGPCRs beschrieben wurde, ist, verschlechtert jedoch drastisch die Rezeptorfunktion. Während dies die Existenz Stachels in dCIRL aufdeckt, bleibt die Frage nach der biologischen Bedeutung der vorgegebenen Bruchstelle an der GPS unbeantwortet. Zusätzlich wurde die Struktur der „Inter-RBL-HRM“ (IRH) Region von dCIRL, die die N-terminale Rhamnose-binding lectin-like (RBL) und die hormone receptor motif (HRM) Domänen verbindet, analysiert. Die Ergebnisse legen eine zufällige Proteinfaltung, starke Glykosylierung sowie riesige strukturelle Ausmaße von IRH nahe. Daher könnte die IRH einen molekularen Abstandhalter für dCIRL darstellen, der eine bestimmte Länge der ECD sicherstellt, was wiederum eine Voraussetzung für die Rezeptorfunktion sein könnte. Zusammen betrachtet sind die Ergebnisse dieser Arbeit vereinbar mit der mechanozeptiven Funktion von dCIRL und dessen Rolle als molekularer Sensor, der mechanische Reize mit Hilfe eines bisher unbekannten Stachel-abhängigen Mechanismus in metabotrope Signale umwandelt. KW - Latrophilin KW - Autoproteolysis KW - Adhesion GPCR KW - Mechanosensation Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165894 ER - TY - THES A1 - Wolber, Wanja Andrej T1 - Neuronales Differenzierungspotential muriner androgenetischer Embryonaler- Stammzellen in „vitro“ und in „vivo“ T1 - Neural Differentiation of Androgenetic Murine ES Cell-Derived Neural Progenitor Cells in vitro and in vivo N2 - In dieser Arbeit wurde gezeigt, dass aus uniparentalen, embryonalen Stammzellen mit fehlender maternal geprägter Genexpression (AG-Zellen) differenzierte neuronale Progenitorzellen (pNPCs) eine ähnliche neuronale Kapazität wie wildtypische Progenitorzellen haben. Sie bilden nach histomorphologischen Kriterien in vitro adulte Neurone mit Ausbildung eines synaptischen Netzwerks. In elektrophysiologischen PatchClamp- Untersuchungen wurde gezeigt, dass diese Zellen, ähnlich dem wildtypischen Pendant, spannungsabhängige Natrium- und Kaliumkanälen besitzen, ein negatives Membranpotential haben und bei Stimulation mit repetitiven Aktionspotentialen reagieren. Nach Transplantation in einem Schädel-Hirn- Trauma-Modell konnten nach drei Monaten in vivo Donorzellen mit neuraler Morphologie und der Expression von jungen, neuronalen und glialen Proteinen gefunden werden. Die Teratombildung ist im Vergleich zum Wildtyp unverändert, eine maligne Entartung mit invasivem Wachstum oder ausgedehnter Metastasierung konnte nicht gefunden werden. Aus AG-Zellen generierte neuronale Progenitorzellen sind ein starkes Instrument, um neuronale genomische Prägung zu untersuchen. Außerdem könnte die regenerative Kapazität für eine patientenspezifische Zellersatztherapie genutzt werden. N2 - We have shown that uniparental maternal [AG-origin] embryonic stem cells can give rise to neural progenitor cells [pNPCs] and have a similar ability to form neural tissue compared to wildtype progenitor cells. In vitro they can develop into adult neurons that form a synaptic network. In patch clamp experiments it could be shown that these cells produce a similar amount of voltage gated sodium- and potassium channels, have a negative membrane potential and form multiple action potentials after depolarisation. Three month after transplantation donor cells with expression of early neural development could be found in a transplantation modell afterbrain trauma. The frequency of teratoma forming does not vary compared to wildtype cells. Neural progenitor cells derived from AG-ES cells are a strong tool to study neural genomic imprinting. Their regenerative capacity could be used for a patient specific cell replacement therapy. KW - Uniparentale Stammzellen Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165929 ER - TY - THES A1 - Lichter, Katharina T1 - Die Ultrastruktur von Aktiven Zonen in hippocampalen Moosfaserboutons T1 - The ultrastructure of active zones in hippocampal mossy fiber boutons N2 - In nervous systems, synapses precisely orchestrate information transfer and memory formation. Active zones (AZ) are specialized subcellular compartments at the presynaptic mesoscale which process synaptic transmission on an ultrastructural level. The AZ cytomatrix including the essential scaffold protein Rab3 interacting molecule (RIM) enables exocytosis of synaptic vesicles. A deficiency of the locally most abundant protein isoform RIM1α diminishes long-term potentiation in a complex central mammalian synapse – the connection of hippocampal mossy fiber boutons (MFB) to cornu ammonis (CA)3 pyramidal neurons. Behaviourally, these mice present with learning impairment. The present MD thesis addresses the so far unknown three-dimensional (3D) AZ ultrastructure of MFBs in acute hippocampal slices of wild-type and RIM1α-/- mice. In a first set of experiments, a standardized protocol for near-to-native synaptic tissue preparation at MFBs using high-pressure freezing and freeze substitution and 3D modelling using electron tomography was developed and established. Based on the excellent preservation of synaptic tissue using this protocol, the AZ ultrastructure in both genotypes was quantified in detail up to an individual docked synaptic vesicle using custom-written programming scripts. The experiments demonstrate that deficiency of RIM1α leads to multidimensional alter-ation of AZ 3D ultrastructure and synaptic vesicle pools in MFBs. (Tightly) docked synaptic vesicles – ultrastructural correlates of the readily releasable pool – are reduced, decentralized, and structurally modified, whereas the more distant vesicle pool clusters more densely above larger and more heterogenous AZ surfaces with higher synaptic clefts. The present thesis contributes to a more comprehensive understanding regarding the role of RIM1α for (tight) vesicle docking and organization at MFBs. Furthermore, the precise 3D ultrastructural analysis of MFB AZs in this thesis provides the necessary mor-phological basis for further studies to correlate synaptic ultrastructure with presynaptic plasticity and memory dysfunction in RIM1α-/- mice using advanced electrophysiological and behavioral techniques. N2 - In Nervensystemen bedürfen Informationsweitergabe und Gedächtnisformation eines präzisen Zusammenspiels von Synapsen in Zeit und Raum. Synaptische Transmission basiert strukturell auf mesoskopischen cytosolischen Kompartimenten an der präsynaptischen Membran, sogenannten Aktiven Zonen (AZ). Ihre Cytomatrix, bestehend aus zentralen Gerüstproteinen wie Rab3 interacting molecule (RIM), ermöglicht eine schnelle Freisetzung synaptischer Vesikel. Die Defizienz der lokal häufigsten Isoform RIM1α resultiert an einer komplexen zentralen Säugersynapse, die des hippocampalen Moosfaserboutons (MFB) zu im Cornu ammonis (CA)3 befindlichen Pyramidalzellen, in einer dezimierten Langzeitplastizität. Auf Verhaltensebene zeigen diese Mäuse eine reduzierte Lernfähigkeit. Die vorliegende Dissertation widmet sich grundlegend der bisher unbekannten dreidimensionalen (3D) AZ-Ultrastruktur des MFB in akuten Hippocampusschnitten der adulten Wildtyp- und RIM1α-Knock-Out-Maus (RIM1α\(^{-/-}\)). In einer methodischen Entwicklungsphase wurde ein neuartiges, anspruchsvolles Protokoll der nahezu artefaktfreien (near to native) Synapsenpräparation am MFB mittels Hochdruckgefrierung und Gefriersubstitution sowie der 3D-Modellierung mittels Elektronentomographie etabliert. In einer zweiten Experimentier- und Analysephase ermöglichte die hochwertige synaptische Gewebeerhaltung in beiden Genotypen eine standardisierte, auf Programmierskripten basierte Quantifizierung der AZ-Ultrastruktur bis auf die Ebene eines individuell gedockten synaptischen Vesikels. Dieser Dissertation gelingt der Nachweis, dass eine Defizienz von RIM1α zu einer multidimensionalen ultrastrukturellen Veränderung der AZ und ihres Vesikelpools am MFB führt. Neben einer Reduktion, Dezentralisierung und strukturellen Veränderung (eng) gedockter Vesikel – der ultrastrukturellen Messgrößen von unmittelbar freisetzungsfähigen Vesikeln – verdichtet sich der distaler lokalisierte Vesikelpool auf zugleich größeren, heterogenen AZ-Flächen mit erweitertem synaptischem Spalt. Vorliegende Untersuchungen tragen zum Verständnisgewinn über eine zentrale Rolle von RIM1α für das Docking und die Organisation von Vesikeln der AZ im MFB bei. Darüber hinaus stellen die präzisen ultrastrukturellen Analysen eine morphologische Grundlage für weiterführende Studien mit Hilfe modernster Techniken dar, beispielsweise über die Auswirkungen der geänderten RIM1α\(^{-/-}\) AZ-Ultrastruktur auf die präsynaptische Plastizität sowie in Korrelation zum Gedächtnis und Lernen der Tiere. KW - Hippocampus KW - Neurowissenschaften KW - Exzitatorische Synapse KW - Synaptische Transmission KW - Synaptische Vesikel KW - active zone KW - presynaptic KW - mossy fiber synapse KW - RIM1α KW - CA3 KW - high-pressure freezing/freeze substitution KW - electron tomography KW - acute brain slices Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-303126 ER - TY - THES A1 - Frömbling, Greta Eliza T1 - Verstärkung der Wirkung von TTFields auf Glioblastomzellen durch Inhibition des mitotischen Spindelkontrollpunktes T1 - Augmentation of the effects of TTFields on glioblastoma cells by mitotic checkpoint inhibition N2 - TTFields sind eine Therapieoption des GBM, welche als alternierende elektrische Felder den Aufbau des mitotischen Spindelapparates stören. Gleichzeitig überwacht der SAC, mit seiner Schlüsselkomponente der Kinase MPS1, eine korrekte Anheftung der Spindelfasern an die Kinetochore der Chromosomen. Eine Inhibition des SAC durch den Inhibitor MPS1-IN-3 in Kombination mit Vincristin führt zu einem synergistischen Effekt auf das Tumorwachstum in vitro und in vivo. Aus diesen Erkenntnissen folgerten wir die Hypothese, dass eine SAC-Inhibition die Wirkung von TTFields verstärken könnte. Um dies zu testen, wurden Zellen der Zelllinien U87 und GaMG über 72h mit TTFields, MPS1-IN-3 oder einer Kombination aus den beiden behandelt. Anschließend wurden die Zellen gezählt, es wurde eine Analyse des Zellzyklus vorgenommen und apoptotische Zellen wurden via TUNEL-Assay detektiert. Die Kombinationsbehandlung aus TTFields und MPS1-IN-3 führte zu einer Reduktion der Zellzahl (U87: -54,3% vs. TTFields, p=0,0046; -52,9% vs. MPS1-IN-3, p=0,0026; GaMG: -74,3% vs. TTFields, p=0,0373; -84% vs. MPS1-IN-3, p<0,00001). Nur 28,1% mehr Zellen als ausgesät waren bei der Zelllinie U87 zu finden (TTFields: 179,1%; MPS1-IN-3: 168,3%), während es bei GaMG-Zellen sogar 62% weniger Zellen als ausgesät waren. Im Zellzyklus zeigte sich eine Abnahme der Zellen von der G1-Phase (U87: -59,9% vs. TTFields, p=0,0007; -42,1% vs. IN-3, p=0,0426; GaMG: -45,1% vs. TTFields, p=0,0276; -51,6% vs. IN-3, p=0,0020), während es zu einem massiven Anstieg von toten Zellen kam (U87: 2,9fach vs. TTFields, p=0,0022; 2,2fach vs. IN-3, p=0,0046; GaMG: 5,6fach vs. TTFields, p=0,0078; 7,8fach vs. IN-3, p=0,0005). Diese Zellen ließen sich im TUNEL-Assay als durch Apoptose zu Grunde gegangene Zellen weiter identifizieren (U87: 5,4fach vs. TTFields, p=0,0489; 6,2fach vs. IN-3, p=0,0278; GaMG: 8,9fach vs. IN-3, p=0,0110). Diese Ergebnisse sind erste und wichtige Hinweise für eine Verstärkung der Wirkung von TTFields durch eine Inhibition des SAC und liefern eine gute Grundlage für weitere Forschung zur Verbesserung der Therapie des GBM. N2 - TTFields are -in addition to the standard therapy- approved for GBM therapy. TTFields are alternating electric fields at a low intensity, which cause disruption of the mitotic spindle fibers. Whether spindle fibers are properly attached to the kinetochores is surveilled by the SAC. An inhibition of the kinase MPS1, a key component of the SAC, in combination with Vincristine treatment, results in a synergistic effect on GBM growth in vitro an in vivo (Tannous, Kerami et al. 2013). We hypothesized that a combination of inhibition of SAC in combination with TTFields increases TTFields efficacy. Cells of the cell lines U87 and GaMG were treated either with TTFields alone, the inhibitor MPS1-IN-3 alone or in combination of both. After 72h cells were counted, an analysis of the cell cycle was performed and apoptotic cells were detected by using a TUNEL-Assay. The combined treatment of TTFields and inhibition of SAC led to a significant decrease of cells (U87: -54.3% vs. TTFields, p=0.0046; -52.9% vs. MPS1- IN-3, p=0.0026; GaMG: -74.3% vs. TTFields, p=0.0373; -84% vs. MPS1-IN-3, p<0.00001). U87 cells proliferated only by 28.1% compared to the cells seeded at the beginning, while cells of the GaMG cell line diminished by 62% compared to the number of cells seeded (TTFields: 179.1%; MPS1-IN-3: 168.3%). The cell cycle analysis showed -among other effects- a reduction of the cells in phase G1 (U87: - 59.9% vs. TTFields, p=0.0007; -42.1% vs. IN-3, p=0.0426; GaMG: -45.1% vs. TTFields, p=0.0276; -51.6% vs. IN-3, p=0.0020), and an increase of dead cells (U87: 2.9x vs. TTFields, p=0.0022; 2.2x vs. IN-3, p=0.0046; GaMG: 5.6x vs. TTFields, p=0.0078; 7.8x vs. IN-3, p=0.0005). Those dead cells were identified by the TUNEL- Assay as cells, which had undergone apoptosis (U87: 5.4x vs. TTFields, p=0.0489; 6.2x vs. IN-3, p=0.0278; GaMG: 8.9x vs. IN-3, p=0.0110). These results strengthen the hypothesis that TTFields’ efficacy is increased by a combined treatment with an inhibition of the SAC and provide a basis for further research to improve GBM therapy. KW - Tumortherapiefeld KW - TTF KW - Tumor Treating Fields KW - TT-Fields KW - Glioblastomtherapie KW - therapy of glioblastoma Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-216863 ER -