TY - THES A1 - Böck, Julia T1 - Differenzielle Methylierungsanalysen mittels verschiedener Next-Generation Sequencing-basierter Techniken: Die Bedeutung von differenziell methylierten Regionen in der menschlichen Hirnevolution und bei der Krebsentstehung T1 - Differential methylation analysis via various next-generation sequencing technologies: The impact of differentially methylated regions on human brain evolution and cancer development N2 - Die Evolution der Primaten zeigt eine Verbindung zwischen der zunehmenden Komplexität des sozialen Verhaltens und der Vergrößerung des humanen Gehirns, insbesondere des präfrontalen Cortex. Deshalb stellt der präfrontale Cortex bezüglich der Evolution des Menschen eine der interessantesten Strukturen im humanen Gehirn dar. Es wird angenommen, dass nicht allein die Größe, sondern auch die Funktion, vor allem das Zusammenspiel von Neuronen und nicht-neuronalen Zellen, wie z.B. Gliazellen, zur Differenzierung des menschlichen Gehirns von dem rezenter Primaten geführt hat. Daraus lässt sich schließen, dass die Gehirnfunktionen über eine ausgeglichene und gut aufeinander abgestimmte transkriptionelle Landschaft kontrolliert werden, die durch ein zugrundeliegendes genetisches und epigentisches Rückgrat organisiert ist. In dieser Studie wurden das Methylierungsprofil neuronaler und nicht-neuronaler Zellen des präfrontalen Cortex (Brodmann-Areal 10) von drei Menschen und drei Schimpansen miteinander verglichen. Die intra- und interspezifischen differenziell methylierten Regionen (DMRs) waren in bestimmten genomischen Regionen angereichert. Intraspezifische Methylierungsunterschiede zwischen neuronalen und nicht-neuronalen Zellen konnten dreimal häufiger beobachtet werden als interspezifische Unterschiede in den einzelnen Zelltypen. Rund 90% der humanen intraspezifischen DMRs wiesen eine Hypomethylierung in den neuronalen Zellen im Vergleich zu den nicht-neuronalen Zellen auf. In den intraspezifischen DMRs (Mensch und Schimpanse) waren Gene angereichert, die mit verschiedenen neuropsychiatrischen Erkrankungen assoziiert sind. Der Vergleich zwischen Menschen und Schimpanse in den neuronalen und nicht-neuronalen Zelltypen zeigte eine Anreicherung von Genen mit human-spezifischer Histonsignatur. In den nicht-neuronalen Zellen konnten mehr interspezifische DMRs (n=666) detektiert werden als in den neuronalen Zellen (n=96). Ungefähr 95% der nicht-neuronalen interspezifischen DMRs waren im Menschen, im Vergleich zum Schimpansen, hypermethyliert. Daraus ergibt sich der Eindruck, dass mehrere hundert der nicht-neuronalen Gene während der humanen Gehirnevolution einer Methylierungswelle unterlagen. Dies führt zu der Annahme, dass der Einfluss dieser Veränderungen in den nicht-neuronalen Zellen auf die Vergößerung des menschlichen Gehirns bisher stark unterschätzt wurde. Die bekannteste genetische Ursache für erblichen Brust- und Eierstockkrebs sind Mutationen in den Tumorsuppressorgenen (TSG) BRCA1 und BRCA2. Dennoch können nur rund 20-25% der familiären Brustkrebserkrankungen über Keimbahnmutationen in BRCA1/BRCA2 erklärt werden, besonders bei Frauen, deren Erkrankung vor dem vierzigsten Lebensjahr auftritt. Epigenetische Veränderungen, die zu einer aberranten Genexpression führen, spielen ebenfalls eine wichtige Rolle bei der Karzinogenese und der Entwicklung einer Brustkrebserkrankung. Es ist bekannt, dass TSG nicht nur durch den Verlust der Heterozygotie (engl. loss of heterozygosity, LOH) oder homozygote Deletionen, sondern auch durch transkriptionelle Stilllegung via DNA-Methylierung inaktiviert werden können. Im Rahmen dieser Arbeit wurde überprüft, welchen Einfluss aberrante Methylierungsmuster im Promotorbereich von TSG auf die Brustkrebskarzinogenese und die Expression der Gene haben. Für die Quantifizierung der Epimutationen wurden die Promotorbereiche von acht TSG (BRCA1, BRCA2, RAD51C, ATM, PTEN, TP53, MLH1, RB1) und des estrogene receptor (ESR1) Gens, welches eine Rolle in der Tumorprogression spielt, mittels Deep Bisulfite Amplicon Sequencing (DBAS) analysiert. Es wurden Blutproben von zwei unabhängigen BRCA1/BRCA2-mutationsnegativen Brustkrebs (BC)-Patientenkohorten, sowie von zwei unabhängigen alters-gematchten, gesunden Kontrollkohorten untersucht. BC-Kohorte 1 beinhaltet early-onset (EO) BC-Patientinnen. Kohorte 2 enthält BC-Patientinnen mit einem Risiko von >95% eine heterozygote Mutation in BRCA1/BRCA2 (high-risk, HR) zu tragen. Allele mit >50% methylierten CpGs werden als funktionell relevante Epimutationen erachtet, da bekannt ist, dass TSG über eine Methylierung im Promotorbereich transkriptionell stillgelegt werden. Im Vergleich zu ESR1 (Ø Methylierung, 3%), welches die Methylierungslevel eines durchschnittlichen Promotors wiederspiegelt, zeigten die TSG sehr geringe durchschnittliche Methylierungswerte von weniger als 1%. Zudem waren die durchschnittlichen Epimutationsraten (EMR; <0,0001-0,1%) der TSG sehr gering. Mit der Ausnahme von BRCA1, welches eine erhöhte EMR in der BC-Kohorte verglichen zu den Kontrollen (0,31% gegen 0,06%) zeigte, gab es keine signifikanten Gruppenunterschiede zwischen BC-Patientinnen und Kontrollen. Eine von 36 HR BC-Patientinnen zeigte im Vergleich zu den restlichen Proben eine stark erhöhte EMR von 14,7% in BRCA1. Rund ein Drittel (15/44) der EO BC-Patientinnen wiesen eine erhöhte Rate an Einzel-CpG Fehlern in mehreren TSG auf. Die nachfolgenden Expressionsanalysen ergaben eine erniedrigte Expression vieler TSG je analysierter Patientin. Diese Ergebnisse führen zu der Annahme, dass epigenetische Veränderungen in normalen Körperzellen als ein möglicher Indikator für einen gestörten Mechanismus, der für die Aufrechterhaltung des unmethylierten Status und der daraus resultierenden normalen Genexpression zuständig ist, angesehen werden können. Dies kann mit einem erhöhten BC-Risiko assoziiert werden. N2 - The increasing complexity of social behavior along the ascending scale of primates, peaking in human spoken language, is accompanied by an impressive expansion of the human brain, particularly of the prefrontal cortex. Hence, prefrontal cortex appears to be one of the most interesting structures of the human brain, at least from an evolutionary perspective. But not only size but also function, in particular the interplay of neurons and glia cells, are suspected to distinguish the human brain from great apes and other primates. It is plausible to assume that proper brain function is controlled by a coordinated and well balanced transcriptional landscape, orchestrated by the underlying genetic and epigenetic backbone. Using reduced representation bisulfite sequencing (RRBS), we have compared the methylation profiles of neuronal and non-neuronal cells from three human and three chimpanzee prefrontal cortices (Brodmann area 10). Bioinformatic analyses revealed a genome-wide significant enrichment of differentially methylated regions (DMRs) in specific genomic areas. Intraspecific methylation differences between neuronal and non-neuronal cells are about three times more abundant than the interspecific methylation differences. More than 90% of human intraspecific DMRs were hypomethylated in neuronal cells, compared to non-neuronal cells. Intraspecific DMRs showed enrichment of genes associated with different neuropsychiatric disorders. Comparison between humans and chimpanzees yielded enrichments of genes showing human-specific brain histon modification. Interspecific DMRs were much more frequent in non-neuronal cells (n=666) than in neurons (n=96). Approximately 95% of interspecific DMRs in non-neuronal cells were hypermethylated in humans, compared to chimpanzees. It can be assumed that several hundreds of non-neuronal genes underwent a wave of methylation during human brain evolution. The impact of these changes in non-neuronal cells on the extension of the human brain may have been largely underestimated so far. The most prominent genetic cause for inherited breast and ovarian cancer are mutations in the BRCA1 and BRCA2 tumor suppressor genes (TSG). However, BRCA1/BRCA2 germline mutations explain less than 50% of all familial breast cancers, even for women diagnosed before the age of 40 years. It has also been reported that epigenetic abnormalities, which contribute to changes in gene expression, play an important role in carcinogenesis and breast cancer development. To rapidly quantify the number of epimutations in different TSG, in both a qualitative and quantitative manner, we have developed a deep bisulfite sequencing assay targeting the promoter regions of eight TSG (BRCA1, BRCA2, RAD51C, ATM, PTEN, TP53, MLH1 and RB1) and the estrogene receptor (ESR1) gene, which plays a role in tumor progression. We have analyzed blood samples of two independent BRCA1/BRCA2-mutation negative breast cancer (BC) cohorts and two independent age-matched healthy control cohorts. BC cohort 1 represents patients with early-onset BC and BC cohort 2 patients with a high risk to carry a heterozygous mutation. Since it is well known that tumor suppressor genes are transcriptionally silenced by promoter methylation, alleles with >50% methylated CpGs are considered as functionally relevant epimutations. Compared to ESR1, which is representative for an average promoter, TSG exhibited very low (<1%) average methylation levels and also very low mean epimutation rates (EMR; <0.0001% to 0.1%). With exception of BRCA1, which showed an increased EMR in BC (0.31% vs. 0.06%), there was no significant difference between patients and controls detectable. One of 36 HR BC patients showed a dramatically increased EMR (14.7%) in BRCA1. We identified in approximately one third (15 of 44) of EO BC patients increased rates of single CpG methylation errors in multiple TSG. Both EO and HR BC patients exhibited global underexpression of blood TSG. We propose that epigenetic abnormalities in normal body cells are indicative of disturbed mechanisms for maintaining low methylation and appropriate expression levels and may be associated with an increased BC risk. KW - Epigenetik KW - Gehirn KW - Brustkrebs KW - differenzielle Methylierung KW - familiärer Brustkrebs KW - Next-Generation Sequencing KW - Methylierung KW - Evolution KW - menschliche Hirnevolution Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164220 ER - TY - THES A1 - Müller, Heike Milada T1 - Anpassung an Trocken- und Salzstress: Untersuchungen an Modellpflanzen und Extremophilen T1 - Adaptation to drought and salt stress: studies on model plants and extremophiles N2 - Die wahrscheinlich größten Probleme des 21. Jahrhunderts sind der Klimawandel und die Sicherstellung der Nahrungsmittelversorgung für eine steigende Zahl an Menschen. Durch die Zunahme von extremen Wetterbedingungen wie Trockenheit und Hitze wird der Anbau konventioneller, wenig toleranter Nutzpflanzen erschwert und die dadurch notwendige, steigende Bewässerung der Flächen führt darüber hinaus zu einer zusätzlichen Versalzung der Böden mit für Pflanzen toxischen Natrium- und Chlorid-Ionen. Kenntnisse über Anpassungsstrategien salztoleranter Pflanzen an Salzstress, aber auch detailliertes Wissen über die Steuerung der Transpiration und damit des Wasserverlusts von Pflanzen sind daher wichtig, um auch künftig ertragreiche Landwirtschaft betreiben zu können. In dieser Arbeit habe ich verschiedene Aspekte der pflanzlichen Stressphysiologie bearbeitet, die im Folgenden getrennt voneinander zusammengefasst werden. I. Funktionelle Unterschiede der PYR/PYL-Rezeptoren von Schließzellen Entscheidend für den Wasserstatus von Pflanzen ist die Kontrolle des Wasserverlusts durch Spaltöffnungen (Stomata), die von einem Paar Schließzellen gebildet werden. Externe Faktoren wie Licht, Luftfeuchtigkeit und CO2, sowie interne Faktoren wie das Phytohormon Abszisinsäure (ABA) regulieren über Signalkaskaden die Stomaweite und dadurch den Wasserverlust. Die zugrunde liegenden Signalkaskaden überlappen teilweise. Vor allem der Stomaschluss durch erhöhtes CO2 und ABA weisen viele Gemeinsamkeiten auf und die Identifizierung des Konvergenzpunktes beider Signale ist immer noch aktueller Gegenstand der Forschung. Von besonderem Interesse sind dabei die in Schließzellen exprimierten ABA-Rezeptoren der PYR/PYL-Familie. Denn obwohl bislang nicht nachgewiesen werden konnte, dass CO2 zu einem Anstieg des ABA-Gehalts von Schließzellen führt deuten einige Studien darauf hin, dass die ABA-Rezeptoren selbst am CO2-Signalweg beteiligt sind. Durch Untersuchungen der Stomareaktion von Arabidopsis ABA-Rezeptormutanten konnte ich in dieser Arbeit zeigen, dass die in Schließzellen exprimierten ABA-Rezeptoren der PYR/PYL-Familie funktionale Unterschiede aufweisen. Fünffach-Verlustmutanten der ABA-Rezeptoren PYR1, PYL2, 4, 5 und 8 (12458) waren in ihrem ABA-induzierten Stomaschluss beeinträchtigt und nur die Komplementation mit PYL2 und in geringerem Maße PYR1 konnte die ABA-Sensitivität wiederherstellen. Die Stomata von 12458-Verlustmutanten waren außerdem insensitiv gegenüber erhöhtem CO2, was auf eine Beteiligung der ABA-Rezeptoren am CO2-induzierten Stomaschluss hindeutet und diese Sensitivität konnte nur durch die Komplementation mit PYL4 oder PYL5, nicht aber mit PYL2 wiederhergestellt werden. Somit konnten in dieser Arbeit erstmals funktionelle Unterschiede der PYR/PYLs beim Stoma-Schluss nachgewiesen werden. Alle externen und internen Stomaschluss-Signale haben außerdem Einfluss auf die Genexpression der Schließzellen und führen zu individuellen expressionellen Adaptionen. In vorangegangenen Microarray Studien konnte gezeigt werden, dass jeder Stimulus auch die Expression eines distinkten Sets an ABA-Rezeptoren beeinflusst. Im Rahmen dieser Arbeit konnte ich außerdem zeigen, dass die Expression der ABA-Rezeptoren bereits auf kleine Änderungen der ABA-Konzentration der Schließzellen reagiert und dass diese sich außerdem in ihrer Sensitivität gegenüber ABA unterschieden. Geringe Änderungen der ABA-Konzentration von Schließzellen haben demnach Auswirkungen auf deren Rezeptor-zusammensetzung. Darüber hinaus konnte ich zeigen, dass die Rezeptoren die Expression unterschiedlicher nachgeschalteter Gene beeinflussen, was darauf hindeutet, dass Anpassungen des Rezeptorpools durch geringe Änderungen des ABA-Gehalts von Schließzellen schlussendlich auf genexpressioneller Ebene zur längerfristigen Adaption an externe Bedingungen führen und die Rezeptoren auch hier funktional verschieden sind. II. Stomatäre Besonderheiten der toleranten Dattelpalme (Phoenix dactylifera) Dattelpalmen kommen natürlicherweise an besonders trockenen und heißen Standorten vor, an denen es aufgrund der harschen Bedingungen nur sehr wenigen Pflanzen möglich ist überhaupt zu wachsen. Ein naheliegender Grund für die herausragende Toleranz dieser Art gegenüber wasserlimitierenden Bedingungen ist eine Anpassung der stomatären Regulation zu Gunsten des Wasserhaushalts. In dieser Arbeit konnte ich durch vergleichende Untersuchungen der lichtabhängigen Transpiration sowie dem ABA-induzierten Stomaschluss grundlegende Unterschiede in der Stomaphysiologie der Dattelpalmen und der eher sensitiven Modellpflanze Arabidopsis thaliana nachweisen. Blattgaswechselmessungen zeigten, dass Dattelpalmen in der Lage sind die Spaltöffnungen bei niedrigen Lichtintensitäten, bei denen Arabidopsis bereits deutlich geöffnete Stomata aufwies, geschlossen zu halten. Der bedeutendste Unterschied in der Stomaphysiologie von Dattelpalmen und Arabidopsis lag aber im ABA-induzierten Stomaschluss. Während über die Petiole verabreichtes ABA bei Arabidopsis innerhalb von 15 Minuten zu einem vollständigen Stomaschluss führte, konnte ich in dieser Arbeit zeigen, dass der ABA-induzierte Stomaschluss der Datteln nitratabhängig ist. ABA allein führte nur zu einem sehr langsamen Stomaschluss der innerhalb einer Stunde nicht vollständig abgeschlossen war. Nur in Gegenwart von Nitrat führte die ABA-Gabe in den Transpirationsstrom der Fiederblätter der Datteln zu einem schnellen und vollständigen Stomaschluss. In Arabidopsis wird der in Schließzellen vorkommende Anionenkanal AtSLAC1 durch eine über den ABA-Signalweg vermittelte Phosphorylierung aktiviert, was schlussendlich zur Aktivierung spannungsabhängiger Kationenkanäle und zum Ausstrom von Kalium aus den Schließzellen führt. Es konnte gezeigt werden, dass die Nitratabhängigkeit der ABA-Antwort der Schließzellen von Dattelpalmen auf Eigenschaften von PdSLAC1 zurückzuführen ist und dieser Kanal nur in Anwesenheit von extrazellulärem Nitrat aktivierbar ist. Mittlerweile konnte, unter anderem basierend auf diesen Ergebnissen, eine Tandem-Aminosäuresequenz identifiziert werden, die die SLAC-Homologe monokotyler Pflanzen wie der Dattelpalme von der dikotyler Pflanzen unterscheidet und zumindest teilweise für die nitratabhängige Aktivierung des Stomaschlusses vieler monokotyler verantwortlich ist. III. Die Salztoleranz von Phoenix dactylifera und Chenopodium quinoa Sowohl Dattelpalmen als auch C. quinoa weisen, verglichen mit den meisten anderen Pflanzen, eine hohe Toleranz gegenüber NaCl-haltigen Böden auf. In dieser Arbeit habe ich die Salztoleranz beider Arten untersucht, um so Strategien zu identifizieren, die diesen Pflanzen diese gesteigerte Toleranz ermöglichen. Dattelpalmen können natürlicherweise auf salzigen Böden wachsen. Makroskopisch weisen diese Pflanzen aber keine Anpassungen wie bspw. Salzdrüsen auf und bislang ist unklar wie Dattelpalmen mit dem NaCl aus dem Boden umgehen. In dieser Arbeit konnte ich zeigen, dass der Natriumgehalt der Fiederblätter der Datteln durch eine sechswöchige Bewässerung mit 600mM NaCl, was ungefähr der Konzentration von Meerwasser entspricht, nicht zunimmt. Demnach sind Datteln so genannte „Exkluder“, also Pflanzen, die eine übermäßige Natriumaufnahme in photosynthetisch aktives Gewebe vermeiden. Der Natriumgehalt der Wurzeln dagegen nahm unter Salzstress aber zu. Diese Zunahme war allerdings in unterschiedlichen Bereichen der Wurzeln verschieden stark. Flammenphotometrische Messungen ergaben einen vom Wurzelansatz ausgehenden graduellen Anstieg des Natriumgehalts, der an der Wurzelspitze am höchsten war. Darüber hinaus konnte eine Induktion von PdSOS1, einem putativen Na+/H+-Antiporter in diesen unteren, natriumhaltigen Bereichen nachgewiesen werden. Eine hohe SOS1-Aktivität gilt bereits in anderen toleranten Arten als Schlüsselmerkmal für deren Toleranz und die gesteigerte Expression von PdSOS1 deutet auf eine erhöhte Natrium-Exportrate aus der Wurzel zurück in den Boden in diesen unteren Bereichen hin, was schlussendlich den Ausschluss von Natrium vermitteln könnte. In sensitiven Arten führt Salzstress häufig zu einer Abnahme der Kaliumkonzentration des Gewebes. Interessanterweise war dies weder für das Blatt- noch das Wurzelgewebe der Dattelpalmen der Fall. Der Kaliumgehalt beider Gewebe blieb trotz der Bewässerung der Pflanzen mit Salzwasser konstant. Auf expressioneller Ebene konnte ich darüber hinaus zeigen, dass PdHAK5, ein putativer hochaffiner Kaliumtransporter, der unter Kontrollbedingungen überwiegend in den oberen Wurzelabschnitten exprimiert wurde, durch den Salzstress dort reprimiert wurde. PdKT, ebenfalls ein putatives Kalium-Transportprotein dagegen, wurde nicht durch die Salzbehandlung beeinflusst, was zusammengenommen darauf hindeutet, dass das Aufrechterhalten des Kaliumgehalts bei Salzstress durch die differentielle Regulation verschiedener Kaliumaufnahmesysteme gewährleistet wird. Der effiziente Ausschluss von Natrium zusammen mit dem hohen K+/Na+-Verhältnis könnten demnach Schlüsselmerkmale für die hohe Salztoleranz von Phoenix dactylifera darstellen. Quinoa ist, ähnlich wie die Dattelpalme, eine salztolerante Nutzpflanze. Im Gegensatz zu Dattelpalmen weist Quinoa allerdings besondere Strukturen auf der Epidermis auf, die so genannten epidermalen Blasenhaare (englisch: epidermal bladder cells, EBCs). Die Funktion dieser ballonartig vergrößerten Zellen als externe Salzspeicher wird seit längerem diskutiert. Flammenphotometrische Messungen des Natriumgehalts von Quinoa unter Salzstressbedingungen ergaben, dass Quinoa anders als Dattelpalmen, Natrium in die oberirdischen, photosynthetisch aktiven Organe aufnimmt. Auch die Zunahme des Natriumgehalts der EBCs konnte ich nachweisen. Junge Blätter haben eine hohe Dichte an intakten EBCs, was deren Funktion als externe Salzspeicher besonders zum Schutz dieser jungen Blätter nahelegt. mRNA-Sequenzierungen ergaben darüber hinaus, dass die EBCs bereits unter Kontrollbedingungen viele in grundlegende Stoffwechselprozesse involvierte Gene sowie membranständige Transportproteine differentiell exprimieren. Diese Unterschiede im Transkriptom der EBCs zum Blattgewebe zeigen, dass katabole Stoffwechselwege nur eine untergeordnete Rolle in den hochspezialisierten EBCs spielen und deren Stoffwechsel auf dem Import energiereicher Zucker und Aminosäuren basiert. Mittels qPCR-Messungen und RNA-Sequenzierungen konnte ich die gewebespezifische Expression verschiedener Transportproteine nachweisen, die eine gerichtete Aufnahme von Natrium in EBCs ermöglichen könnten. Besonders die differentielle Expression eines Natriumkanals der HKT1-Familie deutet auf dessen Beteiligung an der Natriumbeladung der EBCs hin. CqHKT1.2 wurde ausschließlich in EBCs exprimiert und die elektrophysiologische Charakterisierung dieses Transportproteins ergab eine spannungsabhängige Natriumleitfähigkeit. Dieser Natriumkanal kann demnach die Natriumaufnahme bei Membranspannungen nahe dem Ruhepotential in die EBCs vermitteln und die Deaktivierung des CqHKT1.2 bei depolarisierenden Membranspannungen kann darüber hinaus einen Efflux von Na+ aus den EBCs verhindern. Auch das Expressionsmuster eines putativen Na+/H+-Antiporters (CqSOS1) der nur sehr gering in EBCs aber deutlich höher in Blattgewebe exprimiert wurde, deutet auf eine indirekte Beteiligung dieses SOS1 an der Beladung der EBCs hin. Bereits charakterisierte SOS1-Proteine anderer Pflanzen zeigten unter physiologischen Bedingungen eine Natriumexport-Aktivität. CqSOS1 könnte demnach den Export von Natrium aus Mesophyll- und Epidermiszellen der Blätter in den Apoplasten vermitteln, welches dann über CqHKT1.2 in die EBCs aufgenommen wird. Trotz der Natriumaufnahme in die oberirdischen Teile und die EBCs führte die Salzbehandlung ähnlich wie bei den Datteln nicht zu einer Abnahme des bemerkenswert hohen Kaliumgehalts. Mittels qPCR-Untersuchungen konnte ich die Expression verschiedener HAK-Orthologe nachweisen, deren Aktivität die Aufrechterhaltung des Kaliumgehalts unter Salzstress vermitteln könnten. Frühere Studien konnten zeigen, dass Salzstress bei Quinoa wie bei vielen salztoleranten Arten zu einem Anstieg der Konzentration von kompatiblen gelösten Substanzen und besonders von Prolin führt. In dieser Arbeit konnte ich die hohe Expression eines Prolintransporters in EBCs nachweisen, was eher auf einen importbasierten Anstieg der Prolinkonzentration als auf die Synthese innerhalb der EBCs schließen lässt. Zusammengefasst ergaben der Anstieg des Natriumgehalts der EBCs in Verbindung mit den Ergebnissen der RNA-Sequenzierung und den ergänzenden qPCR Messungen, dass die EBCs von Quinoa bereits unter Kontrollbedingen für die Aufnahme von überschüssigen Ionen unter Salzstress spezialisierte Zellen sind, deren Spezialisierung auf dem Import von energiereichreichen Zucken und anderen Substanzen basiert. N2 - The greatest problem faced by the 21st century are climate change and maintaining the food security for an increasing number of people. The increase in extreme weather events, such as drought and heat, makes it difficult to cultivate conventional crops that are not stress tolerant. As a result, increasing irrigation of arable land leads to additional salinization of soils with plant-toxic sodium and chloride ions. Knowledge about the adaptation strategies of salt-tolerant plants to salt stress as well as detailed knowledge about the control of transpiration and thus of the water loss of these plants are therefore important in order to be able to guarantee productive agriculture in the future. In this work, I have worked on various aspects of plant stress physiology, which will be summarized separately below. I. Functional differences of guard cell PYR / PYL receptors A tight regulation of the transpirational water loss through stomata, which are formed by a pair of guard cells, is crucial for regulating the water status of plants. External factors such as light, humidity and CO2 as well as internal factors such as the phytohormone ABA regulate the stoma width and thus the loss of water via individual signal cascades. However, the underlying signaling cascades partly overlap. In particular, the cascades involved in stomatal closure due to increasing CO2 and ABA overlap and the identification of a convergence point of both signals is still the subject of ongoing research. In this context, the ABA receptors of the PYR/PYL family that are expressed in guard cells are of particular interest. Although it has not yet been demonstrated that CO2 leads to an increase in the ABA content of guard cells, some studies indicate that the ABA receptors themselves are involved in the CO2 signaling pathway By studying the stomatal response of Arabidopsis ABA receptor mutants, I demonstrated that the PYR / PYL family ABA receptors expressed in guard cells show functional differences. Pentuple knock out mutants of the ABA receptors PYR1, PYL2, 4, 5, and 8 (12458) showed impairment in ABA-induced stomatal closure, and only complementation with PYL2 and, to a lesser extent, PYR1 could restore ABA sensitivity. Additionally, the stomata of the 12458 knockout mutants were also insensitive to elevated CO2 and the sensitivity could only be restored be the complementation with the receptors PYL4 and PYL5 suggesting an involvement of the ABA receptors in the CO2-induced stomatal closure. Furthermore, all external and internal stimuli that lead to stomatal closure influence the gene expression of guard cells leading to individual adaptions on the gene expression level. Previous microarray studies have shown that each stimulus also affects the expression of a distinct set of ABA receptors. In this work, I showed that the expression of ABA receptors already responded to small changes in the ABA concentration of guard cells and that the receptor expression also differed in their sensitivity to ABA. Small changes in the ABA concentration of guard cells could therefore influence their receptor composition. In addition, I was able to show that the receptors affect the expression of different downstream genes, suggesting that adjustments of the receptor pool by small changes in the ABA content of guard cells ultimately lead to long-term adaptations to external conditions at the gene expression level. II. Specific features of the stomata of the extremely tolerant date palm (Phoenix dactylifera) Date palms naturally occur in particularly dry and hot locations, where due to the harsh conditions only very few plant species are able to grow at all. One possible reason for the outstanding tolerance of this species to water-limiting conditions is an adaptation of the stomatal regulation in favor of maintaining water balance. In this work, I was able to demonstrate fundamental differences in the stomatal physiology of date palm and the rather sensitive model plant Arabidopsis thaliana by comparative studies of light-dependent transpiration and ABA-induced stoma closure. Leaf gas exchange measurements showed that date palm can keep the stomata closed at low light intensities, where Arabidopsis already had clearly opened stomata. However, the most significant difference in the stomatal physiology between date palm and Arabidopsis was found in the ABA-induced stomatal closure. While ABA fed via the petiole resulted in complete stomatal closure within 15 minutes in Arabidopsis, I showed that ABA-induced stomatal closure is nitrate-dependent in date palm. ABA alone only resulted in a very slow stomatal closure that was not fully completed within one hour. Only in the presence of nitrate did the feeding of ABA into the transpiration stream of date palm pinates lead to a rapid and complete stomatal closure. In Arabidopsis, the guard cell-expressed anion channel AtSLAC1 is activated by ABA signaling-mediated phosphorylation, triggering voltage-dependent cation channels to open and ultimately channeling potassium out of the guard cells. It could be shown that the nitrate dependence of the ABA response of the date palm guard cells is due to properties of PdSLAC1 and that this channel can only be activated in the presence of extracellular nitrate. Based on these results, a tandem amino acid sequence has now been identified, that distinguishes the SLAC homologues of monocotyledonous plants (including date palm) from dicotyledonous plants (including Arabidopsis) and is at least partially responsible for the nitrate-dependent activation of the stoma conductance of many monocots. III. The strategies behind the salt tolerance of P. dactylifera and Chenopodium quinoa Both date palms and C. quinoa have a high tolerance to NaCl-containing soils compared to most other plant species. In this work, I studied the salt tolerance of both species to identify strategies that allow these plants to grow under salt stress conditions. Date palm naturally grows on saline soils along the coast of the Arabian Peninsula. However, they do not possess any macroscopic adaptations such as salt glands. So far it is unclear how date palms handle excessive NaCl from the soil. In this work, I was able to show that the sodium content of date palm pinates does not increase after a six-week irrigation with 600mM NaCl, which is roughly the concentration of seawater. Accordingly, date palm is a so-called "excluder", i.e. a plant that avoids excessive sodium uptake into photosynthetically-active tissue. The sodium content of roots, however, increased under salt stress. But this increase was different in different areas of the roots. Flame photometric measurements revealed a gradual increase in sodium content from upper to lower parts of the roots, which was highest at the root tip. In addition, induction of PdSOS1, a putative Na+/H+ antiporter in these lower sodium-containing regions has been demonstrated. High SOS1 activity is already considered to be a key feature of tolerance in other species, and increased expression of PdSOS1 indicates increased sodium export rates from the root back into the soil in these lower areas, which could ultimately mediate the exclusion of sodium. In sensitive plant species, salt stress often leads to a decrease in the potassium concentration of the tissue. Interestingly, this was not the case for date palm leaf or root tissue. The potassium content of both tissues remained constant despite irrigation of the plants with salt water. On the expression level, I also showed that PdHAK5, a putative high-affinity potassium transporter predominantly expressed in the upper root sections under control conditions, was repressed by the salt stress there. In contrast, PdKT, also a putative potassium transport protein, was not affected by the salt treatment, suggesting that maintenance of potassium content in salt stress is ensured by the differential regulation of various potassium uptake systems. The efficient exclusion of sodium together with the high K+/Na+ ratio could therefore be key features of the high salt tolerance of Phoenix dactylifera. Quinoa, like the date palm, is a salt-tolerant crop but in contrast to date palms quinoa has special structures on the epidermis, the so-called epidermal bladder cells (EBCs). The function of these balloon-like enlarged cells as external salt dumpers has been proposed. Flame photometric measurements of the sodium content of quinoa under salt stress conditions showed that quinoa, unlike date palm, absorbs sodium in the above-ground, photosynthetically active parts. I was also able to prove the increase in the sodium content of the EBCs. Young leaves are equipped with a high density of intact EBCs, suggesting their function as external salt stores, especially for the protection of these young leaves. In addition, mRNA sequencing revealed that the EBCs, already under control conditions, differentially express many genes involved in basic metabolic processes as well as membrane-bound transport proteins. These differences in the transcriptome of EBCs to leaf tissue show that catabolic pathways such as photosynthesis play only a minor role in the highly specialized EBCs and their metabolism is based on the import of high energy compounds such as sugars or amino acids. Using qPCR measurements and RNA sequencing, I was able to demonstrate the tissue-specific expression of various transport proteins, which could allow unidirectional uptake of sodium in EBCs. In particular, the differential expression of a sodium channel of the HKT1 family indicates its involvement in the sodium loading of the EBCs. CqHKT1.2 was expressed exclusively in EBCs and the electrophysiological characterization of this transport protein revealed a voltage-dependent sodium conductivity. Thus, this sodium channel can mediate sodium uptake into EBCs at normal membrane voltages, and deactivation of CqHKT1.2 at depolarized membrane voltages can prevent efflux of Na+ out of the EBCs. The expression pattern of a putative Na+/H+ antiporter (CqSOS1), which is expressed only very low in EBCs but significantly higher in leaf tissue, indicates an indirect involvement of this SOS1 in the loading of the EBCs. SOS1 proteins from other plant species that have already been characterized showed a sodium export activity under physiological conditions. Thus, CqSOS1 could mediate the export of sodium from mesophyll and epidermis cells of the leaves in the apoplasts, which is then absorbed into the EBCs via CqHKT1.2. Similar to the results of date palm, the sodium uptake into the above ground parts and the EBCs of quinoa during the salt treatment did not lead to a decrease in the remarkably high potassium content of quinoa. Using qPCR studies, I was able to demonstrate the expression of various HAK orthologues, the activity of which could mediate the maintenance of potassium levels under salt stress. Previous studies have shown that salt stress in quinoa, as in many tolerant species, leads to an increase in the concentration of compatible solutes and particularly proline. In this work, I was able to demonstrate the high expression of a proline transporter in EBCs, suggesting an import-based increase in proline concentration rather than synthesis within the EBCs. In summary, the increase in sodium in EBCs together with the RNA-Seq analyses and the complementary qPCR measurements revealed that the Quinoa EBCs under control conditions are already equipped for the uptake of excess ions under salt stress, with a metabolism that strongly depends on the import of high-energy compounds such as sugars and amino acids. KW - Botanik KW - Salzresistenz KW - Dürreresistenz KW - abiotische Stresstoleranz von Pflanzen KW - abiotic stress tolerance of plants Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-179005 ER - TY - THES A1 - Schäfer, Nadine T1 - Eine vergleichende biophysikalische Analyse von Hitze- und Trockentoleranzstrategien der Wüstenpflanze Phoenix dactylifera und Nutzpflanzen der gemäßigten Klimazonen T1 - A comparative biophysical analysis of heat and drought tolerance strategies of the desert plant Phoenix dactylifera and crops of temperate climates N2 - Der Klimawandel geht einher mit einem Anstieg der globalen Durchschnittstemperatur und einem dadurch induzierten Wassermangel. Diese beiden abiotischen Stressfaktoren führen zu einer Reduzierung der landwirtschaftlichen Erträge und Biomassen von Kulturpflanzen. Daher ist eine Anpassung der betroffenen Pflanzenarten an das sich ändernde Klima erforderlich, um die landwirtschaftliche Produktivität in Zukunft aufrechtzuerhalten. Gegenwärtig ist unser Wissen über Strategien zur Toleranz gegenüber abiotischem Stress sowie über Genom- und Transkriptionsinformationen auf wenige Modellorganismen von Angiospermen beschränkt, so dass diese Informationen die Basis für die Forschung an Trockenheit und Hitzestress darstellen. Die Untersuchung der Stressadaption innerhalb und zwischen verschiedenen Pflanzengattungen ist von besonderer Relevanz. Vor diesem Hintergrund habe ich im Rahmen meiner Doktorarbeit die Überlebensstrategie der extremophilen Wüstenpflanze Phoenix dactylifera (Dattelpalme) im Vergleich zu zwei Mesophilen, der Kulturpflanze Hordeum vulgare (Gerste) und der Modellpflanze Arabidopsis thaliana, untersucht. Dattelpalmen sind nicht sukkulente Wüstenpflanzen, die auch unter extremen Trocken- und Hitzebedingungen in den Wüsten der Arabischen Halbinsel wachsen und ertragreich Früchte produzieren. In Phoenix dactylifera ist bislang weder die Molekularbiologie und –physiologie der Schließzellen, vor allem der Anionenkanäle, verstanden, noch wurde der Hitzeschutz ihrer Zuckertransportproteine untersucht. Um die stomatäre Reaktion auf das Trockenstresshormon ABA (Abscisinsäure) zu verstehen, klonierten wir die Hauptkomponenten des schnellen ABA-Signalwegs von Schließzellen und analysierten den Öffnungsmechanismus der Anionenkanäle aus der Dattelpalme und der Gerste vergleichend zu dem Anionenkanal aus Arabidopsis im heterologen Expressionssystem der Xenopus Oozyten. Beide monokotyledonen Pflanzenarten (Gerste und Dattelpalme) besitzen stomatäre Komplexe, die aus Schließzellen und Nebenzellen bestehen. Dies unterscheidet die Monokotyledonen von den Dikotyledonen, die normalerweise Stomakomplexe aufweisen, die nur aus einem Paar Schließzellen gebildet werden. Interessanterweise schlossen sich Dattelpalmen- und Gerstenstomata als Reaktion auf das Trockenstresshormon ABA nur in Gegenwart von extrazellulärem Nitrat. Der heterolog-exprimierte Anionenkanal PdSLAC1 wird durch die ABA-Kinase PdOST1 aktiviert und diese Aktivierung wird durch die Koexpression der PP2C-Phosphatase ABI1 gehemmt. Daher wird PdSLAC1 wie seine Orthologen aus Gerste und Arabidopsis durch ein ABA-abhängiges Phosphorylierungs-/Dephosphorylierungsnetzwerk gesteuert. PdOST1 aktivierte den Anionenkanal PdSLAC1 jedoch nur in Gegenwart von extrazellulärem Nitrat - eine elektrische Eigenschaft, die PdSLAC1 mit HvSLAC1 der Gerste gemein hat, sich jedoch von AtSLAC1 unterscheidet. Angesichts der Tatsache, dass in Gegenwart von Nitrat ABA den Stomaschluss verstärkt und beschleunigt, deuten unsere Ergebnisse darauf hin, dass bei Dattelpalmen und Gerste Nitrat als Ligand zum Öffnen von SLAC1 benötigt wird. Dies initiiert die Depolarisation der Schließzellen und leitet schließlich den Stomaschluss ein, um den Wasserverlust der Pflanzen unter Trockenstressbedingungen zu minimieren. Um die monokotyledone spezifische Nitratabhängigkeit von SLAC1 zu verstehen, führten wir ortsgerichtete Mutagenesestudien auf Basis eines 3D-Modells durch, welche zudem vergleichende Studien an Chimären von Monokotylen- und Dikotylen-SLAC1 Anionenkanälen umfassten. Unsere Struktur-Funktions-Forschung identifizierte zwei Aminosäurenreste auf der Transmembrandomäne 3 (TMD3), die eine wesentliche Rolle bei der Nitrat-abhängigen Regulierung von SLAC1 Anionenkanälen monokotyledoner Pflanzen spielen. Die phylogenetische Analyse ergab schließlich, dass während der Evolution die für Monokotlyedonen spezifische Nitrat-abhängige Regulierung erst nach der Trennung in Monokotyledonen und Dikotyledonen auftrat. Durch die Nitrat-sensitive Regulierung von SLAC1 Anionenkanälen beruht der schnelle Stomaschluss von Monokotyledonen auf dem Zusammenspiel des Trockenstresshormons ABA und dem Stickstoffhaushalt der Pflanze. Da der ABA-Signalweg von Arabidopsis umfassend untersucht wurde, könnte die Entdeckung des monokotyledonen spezifischen Nitrat-abhängigen Motivs in TMD3 nun als Stellschraube zur Verbesserung der Züchtungsprogramme dikotyledoner Nutzpflanzen dienen. Wüstenpflanzen leiden nicht nur unter Trockenheit, sondern auch unter extremem Hitzestress. Wir konnten zeigen, dass hitzebelastete Dattelpalmen große Mengen der flüchtigen Kohlenwasserstoffverbindung Isopren (2-Methyl-1,3-Butadien) produzieren und emittieren. Durch die vorübergehende Freisetzung von Isopren kann die Pflanze die Photosynthese auch bei extremen Temperaturen betreiben. Es ist jedoch nicht bekannt, ob und wie Isopren in Hitzeperioden auch Transportprozesse durch biologische Membranen schützt. Um den Einfluss von Isopren auf den Transmembrantransport zu untersuchen, identifizierten und klonierten wir den Protonen-gekoppelten Saccharosetransporter 1 (PdSUT1) der Dattelpalme und verglichen seine elektrischen Eigenschaften mit ZmSUT1 (Zea mays Sucrose Transporter 1) im heterologen Expressionssystem der Xenopus Oozyten. Interessanterweise waren das elektrische Verhalten, die kinetischen Eigenschaften und die Temperaturabhängigkeit beider Transporter ähnlich. Die Anwendung von Isopren veränderte jedoch massiv die Affinität von ZmSUT1 zu seinem Substrat Saccharose, während die Affinität des Transporters der Dattelpalme nur schwach beeinflusst wurde. Es wird angenommen, dass die Membranfluidität unter Hitzestress erniedrigt ist, welches durch Interkalierung von Isopren mit den Fettsäureketten biologischer Membrane einhergeht. Dies und die Unempfindlichkeit von PdSUT1 gegenüber Isopren deuten darauf hin, dass der Saccharosetransporter PdSUT1 aus der Wüstenpflanze auch bei hohen Temperaturen Saccharose mit hoher Affinität transportiert. Zukünftige Studien müssen nun klären, ob der flüchtige Kohlenwasserstoff Isopren einen direkten Einfluss auf den Transporter selbst hat oder Isopren in die Membran integriert und damit indirekt die Eigenschaften von Transportproteinen beeinflusst. Unabhängig von der Wirkungsweise von Isopren sollte nicht unerwähnt bleiben, dass PdSUT1 gegenüber Isopren weniger empfindlich ist als sein Ortholog ZmSUT1 aus Mais. Dies kann auf eine Anpassung des Saccharosetransporters an die extremen Hitzeperioden und die damit einhergehende Isoprenemission von Dattelpalmen zurückzuführen sein. N2 - Low water availability and heat stress present major barriers to achievíng high biomass and full yield potential in crops. Global climate change is accompanied by a subtle increase in the severity of these abiotic stresses. Thus, the adaptation of crop species to the changing climate is required in order to sustain agricultural productivity in the future. Currently, our knowledge of plant strategies for abiotic stress tolerance as well as genomic and transcriptional information is limited to a few model angiosperms, providing a starting point for the understanding of responses to drought and/or heat stress, within and across species. In the framework of my PhD thesis, we followed a different strategy to learn about abiotic stress tolerance: we studied the survival strategy of the extremophilic desert plant Phoenix dactylifera (date palm) in comparison to the crop Hordeum vulgare (barley) and the model plant Arabidopsis thaliana, both from temperate zones. Date palms grow and produce fruits even under extreme drought and heat conditions in the deserts of the Arabian Peninsula. Neither the molecular biology and physiology of guard cells nor the heat protection of transport protein mediated sugar and ion transport processes have been studied so far in this non-succulent desert plant, Phoenix dactylifera. To understand the stomatal response to the water stress phytohormone ABA (abscisic acid), we cloned the major components for guard cell fast abscisic acid signaling and analysed the anion channel opening mechanism of the date palm side by side with barley and Arabidopsis in Xenopus oocytes. Both monocot plant species (barley and date palm) possess stomatal complexes consisting of guard cells and subsidiary cells. This distinguishes monocot species from dicots, which usually exhibit stomatal complexes formed by a pair of guard cells only. Interestingly, date palm and barley stomata closed in response to the drought stress hormone ABA only in the presence of extracellular nitrate. Heterologously expressed Phoenix SLAC1-type anion channel PdSLAC1 is activated by the ABA kinase PdOST1 and this activation is inhibited by the coexpression of PP2C phosphatase ABI1 – thus like its counterparts from barley and Arabidopsis, PdSLAC1 is controlled by an ABA-dependent phosphorylation/dephosphorylation network. However, PdOST1 did activate the desert plant anion channel PdSLAC1 only in the presence of extracellular nitrate – an electrical property that PdSLAC1 shares with the barley SLAC1 but distinguishes both monocot SLAC1 channels from AtSLAC1. Given that, in the presence of nitrate, ABA enhanced and accelerated stomatal closure, our findings indicate that the guard cell osmotic motor driving stomatal closure in date palm and barley uses nitrate as the signal to open the major anion channel SLAC1. This initiates guard cell depolarization and finally stomatal closure to prevent plant wilting under drought stress conditions. To understand the monocot-specific SLAC1 nitrate dependency, we performed a 3D-model- based site-directed mutagenesis study including chimeric channels between monocot and dicot SLAC1 anion channels. Our structure-function research identified two residues on transmembrane domain 3 (TMD3) that play an essential role in nitrate-dependent gating of monocot SLAC1-type anion channels. Phylogenetic analysis finally revealed that during evolution the monocot specific nitrate-dependent gating was established after the split between monocots and dicots. Thus, the success of monocot species may in part rely on the integration of drought signals (ABA) and the nitrogen nutrition status of the plant via nitrate-sensitive gating of SLAC1 anion channels. Since the Arabidopsis ABA-signaling pathway has been extensively studied, the discovery of the monocot-specific nitrate dependent motif on TMD3 could now serve as a set screw to improve the breeding programs of dicot agricultural crops. Desert plants not only suffer from drought but also from extreme heat stress. We could show that heat-stressed date palms produce and emit high amounts of the volatile hydrocarbon compound isoprene (2-Methyl-1,3-Butadien). The temporary release of isoprene allows the plant to perform photosynthesis even under extreme temperatures. However, it is not known whether and how isoprene also protects transport processes across biological membranes in periods of heat. To study the influence of isoprene on transmembrane transport, we identified and cloned the date palm proton-coupled sucrose transporter 1 (PdSUT1) and compared its electrical properties with ZmSUT1 (Zea mays Sucrose Transporter 1) in the heterologous expression system of Xenopus oocytes. Interestingly, the electrical behavior, the kinetic properties and the temperature dependence of both carriers were similar. However, the response to isoprene application massively altered the affinity of ZmSUT1 to its substrate sucrose while the affinity of the date palm transporter was only weakly affected. The intercalation of isoprene with the fatty acid chains of biological membranes is believed to decrease the membrane fluidity under heat stress. This and the insensitivity of PdSUT1 towards isoprene may indicate that the desert plant sucrose transporter PdSUT1 transports sucrose with high affinity even at high temperatures. Future studies must now clarify whether the volatile hydrocarbon isoprene has a direct influence on the carrier itself or isoprene integrates into the membrane and thus indirectly influences the properties of transport proteins. Regardless of the mode of action of isoprene, it remains to be noted that PdSUT1 is less sensitive to isoprene than its orthologue from maize. This may be an adaptation of the sucrose carrier to the extreme heat periods and the accompanying isoprene emission from date palms. KW - Dattelpalme KW - Gerste KW - Elektrophysiologie KW - Hitzestress KW - Schließzelle KW - Anionenkanal KW - Zuckertransporter KW - SLAC1 KW - SUT1 KW - Signaltransduktion KW - ZmSUT1 KW - Phoenix dactylifera KW - Hordeum vulgare KW - Zea mays Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-186491 ER - TY - THES A1 - Anwar, Ammarah T1 - Natural variation of gene regulatory networks in \(Arabidopsis\) \(thaliana\) T1 - Natürliche Variation genregulatorischer Netzwerke in \(Arabidopsis\) \(thaliana\) N2 - Understanding the causal relationship between genotype and phenotype is a major objective in biology. The main interest is in understanding trait architecture and identifying loci contributing to the respective traits. Genome-wide association mapping (GWAS) is one tool to elucidate these relationships and has been successfully used in many different species. However, most studies concentrate on marginal marker effects and ignore epistatic and gene-environment interactions. These interactions are problematic to account for, but are likely to make major contributions to many phenotypes that are not regulated by independent genetic effects, but by more sophisticated gene-regulatory networks. Further complication arises from the fact that these networks vary in different natural accessions. However, understanding the differences of gene regulatory networks and gene-gene interactions is crucial to conceive trait architecture and predict phenotypes. The basic subject of this study – using data from the Arabidopsis 1001 Genomes Project – is the analysis of pre-mature stop codons. These have been incurred in nearly one-third of the ~ 30k genes. A gene-gene interaction network of the co-occurrence of stop codons has been built and the over and under representation of different pairs has been statistically analyzed. To further classify the significant over and under- represented gene-gene interactions in terms of molecular function of the encoded proteins, gene ontology terms (GO-SLIM) have been applied. Furthermore, co- expression analysis specifies gene clusters that co-occur over different genetic and phenotypic backgrounds. To link these patterns to evolutionary constrains, spatial location of the respective alleles have been analyzed as well. The latter shows clear patterns for certain gene pairs that indicate differential selection. N2 - Das Verständnis des kausalen Zusammenhangs zwischen Genotyp und Phänotyp ist ein wichtiges Ziel in der Biologie. Das Hauptinteresse liegt darin, die Merkmalsarchitektur zu verstehen und Loci zu identifizieren, die zu den jeweiligen Merkmalen beitragen. Genome-wide association mapping (GWAS) ist ein Werkzeug, um diese Zusammenhänge aufzuklären und wurde erfolgreich in vielen verschiedenen Arten eingesetzt. Die meisten Studien konzentrieren sich jedoch auf marginale Markereffekte und ignorieren epistatische und Gen-Umwelt-Interaktionen. Diese Wechselwirkungen sind problematisch zu erklären, werden aber wahrscheinlich einen wichtigen Beitrag zu vielen Phänotypen leisten, die nicht durch unabhängige genetische Effekte, sondern durch ausgefeiltere genregulatorische Netzwerke reguliert werden. Eine weitere Komplikation ergibt sich aus der Tatsache, dass sich diese Netzwerke in verschiedenen natürlichen Akzessionen unterscheiden. Das Verständnis der Unterschiede zwischen genregulatorischen Netzwerken und Gen-Gen- Interaktionen ist jedoch entscheidend, um die Merkmalsarchitektur zu konzipieren und Phänotypen vorherzusagen. Das grundlegende Thema dieser Studie – unter Verwendung von Daten aus dem Arabidopsis 1001 Genomes Project – ist die Analyse von vorzeitigen Stop-Codons. Diese sind in fast einem Drittel der ~ 30k-Gene aufgetreten. Ein Gen-Gen- Interaktionsnetzwerk des gleichzeitigen Auftretens von Stop-Codons wurde aufgebaut und die Über- und Unterrepräsentation verschiedener Paare wurde statistisch analysiert. Um die signifikante über- und unterrepräsentierte Gen-Gen-Interaktion in Bezug auf den biologischen Prozess der kodierten Proteine weiter zu klassifizieren, wurden genonkologische Begriffe (GO-SLIM) verwendet. Darüber hinaus spezifiziert die Koexpressionsanalyse Gencluster, die über verschiedene genetische und phänotypische Hintergründe hinweg gleichzeitig auftreten. Um diese Muster mit evolutionären Einschränkungen in Verbindung zu bringen, wurde auch die räumliche Lage der jeweiligen Allele analysiert. Letzteres zeigt klare Muster für bestimmte Genepaare, die auf eine differentielle Selektion hinweisen. KW - Arabidopsis thaliana KW - Co-occurrence matrix KW - co-expression coefficient KW - gene expression networks KW - non-sense mutations KW - phenotype KW - local adaptation KW - variations in genome KW - Ackerschmalwand Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-291549 ER - TY - THES A1 - López Arboleda, William Andrés T1 - Global Genetic Heterogeneity in Adaptive Traits T1 - Globale genetische Heterogenität in adaptiven Merkmalen N2 - Genome Wide Association Studies (GWAS) have revolutionized the way on how genotype-phenotype relations are assessed. In the 20 years long history of GWAS, multiple challenges from a biological, computational, and statistical point of view have been faced. The implementation of this technique using the model plant species Arabidopsis thaliana, has enabled the detection of many association for multiple traits. Despite a lot of studies implementing GWAS have discovered new candidate genes for multiple traits, different samples are used across studies. In many cases, either globally diverse samples or samples composed of accessions from a geographically restricted area are used. With the aim of comparing GWAS outcomes between populations from different geographic areas, this thesis describes the performance of GWAS in different European samples of A. thaliana. Here, association mapping results for flowering time were compared. Chapter 2 describes the analyses of random resampling from this original sample. The aim was to establish reduced subsamples to later carry out GWAS and compare the outcomes between these subsamples. In Chapter 3, the European sample was split into eight equally-sized local samples representing different geographic regions. Next, GWAS was carried out and an attempt was made to clarify the differences in GWAS outcomes. Chapter 4 contains the results of a collaboration with Prof. Dr. Wolfgang Dröge- Laser, in which my mainly task was the analysis of RNAseq data from A. thaliana plants infected by pathogenic fungi. Finally, Appendix A presents a very short description of my participation in the GHP Project on Access to Care for Cardiometabolic Diseases (HPACC) at the university of Heidelberg. N2 - Die genomweiten Assoziationsstudien (GWAS) haben die Art und Weise revolutionierten, wie genotypische-phänotypische Zusammenhänge untersucht werden. In der 20-jährigen Geschichte dieser Analysen, gab es zahlreiche biologische, mathematische und statistische Herausforderungen. Die Anwendung dieser Methodik in der Modellpflanze Arabidopsis thaliana ermöglichte die Erkennung neuer Zusammenhänge für zahlreicher Merkmale. Obwohl viele Studien, die GWAS implementieren, neue Kandidatengene für verschiedene Merkmale entdeckt haben, werden in den verschiedenen Analysen oft unterschiedliche Populationen verwendet. Es werden entweder global unterschiedliche Accessionen oder alternative welche aus einem geografisch begrenzten Gebiet als Population für die Anaylsen verwendet. Mit dem Ziel, GWAS-Ergebnisse zwischen Populationen aus verschiedenen geografischen Gebieten zu vergleichen, beschreibt diese Arbeit die Eigenschaften der Analyse in verschiedenen europäischen Populationen von A. thaliana. Verglichen wurden die Ergebnisse der Assoziationskartierung für die Blütezeit. Kapitel 2 beschreibt die Analysen von zufälligen Populationen im Vergleich zur gesamten europäischen Population. Ziel war es, reduzierte Stichproben zu erstellen, um später GWAS durchzuführen und die Ergebnisse zwischen diesen Stichproben zu vergleichen. In Kapitel 3 wurde die europäische Population in acht gleich große lokale Subpopulationen aufgeteilt. Diese repräsentieren verschiedene geografische Regionen. Als nächstes wurde GWAS durchgeführt und die Unterschiede in den jeweilgen GWAS-Ergebnissen beschrieben. Kapitel 4 behinhaltet die Ergebnisse aus einer Zusammenarbeit mit Prof. Dr. Wolfgang Dröge-Laser: Hier war meine Hauptaufgabe die Analyse von RNAs Sequenzierungsdaten von mit pathogenen Pilzen befallenen A. thaliana-Pflanzen. Schließlich enthält Anhang A eine zusammenfassende Beschreibung meiner Mitarbeit am GHP-Projekt zum Zugang zur Versorgung bei kardiometabolischen Erkrankungen (HPACC) an der Universität Heidelberg KW - Genotype-phenotype relationship KW - GWAS KW - adaptive traits KW - local adaptation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-242468 ER - TY - THES A1 - Freudenthal, Jan Alexander T1 - Quantitative genetics from genome assemblies to neural network aided omics-based prediction of complex traits T1 - Quantitative Genetik von Genomassemblierungen bis zur genomischen Vorhersage von phänotypischen Merkmalen mit Hilfe von künstlichen neuronalen Netzwerken N2 - Quantitative genetics is the study of continuously distributed traits and their ge- netic components. Recent developments in DNA sequencing technologies and computational systems allow researchers to conduct large scale in silico studies. However, going from raw DNA reads to genomic prediction of quantitative traits with the help of neural networks is a long and error-prone process. In the course of this thesis, many steps involved in this process will be assessed in depth. Chap- ter 2 will feature a study that compares the landscape of chloroplast genome as- sembly tools. Chapter 3 will present a software to perform genome-wide associa- tion studies using modern tools, which allow GWAS-Flow to outperform current state of the art software packages. Chapter 4 will give an in depth introduc- tion to machine learning and the nature of quantitative traits and will combine those to genomic prediction with artificial neural networks and compares the re- sults to those of algorithms based on linear mixed models. Finally, in Chapter 5 the results from the previous chapters are summarized and used to elucidate the complex nature of studies concerning quantitative genetics. N2 - Quantitative Genetik beschäftigt sich mit kontinuierlich verteilten Merkmalen und deren genetischer Komponenten. In den letzten Jahren gab es vielfältige Entwicklungen in der Computertechnik und der Genomik, insbesondere der DNA Sequenzierung, was Forschern erlaubt großflächig angelegte in silico Studien durchzuführen. Jedoch ist es ein komplexer Prozess von rohen Sequenzdaten bis zur genomischen Vorhersage mit Hilfe von neuronalen Netzwerken zu kommen. Im Rahmen der vorliegenden Studien werden viele Schritte, die an diesem Prozess beteiligt sind beleuchtet. Kapitel 2 wird einen Vergleich zwischen einer Vielzahl an Werkzeugen zur Assemblierung von Chloroplasten Genomen ziehen. Kapitel 3 stellt eine neu entwickelte Software zur genom-weiten Assoziationskartierung vor, die bisherigen Programmen überlegen ist. Kapitel 4 stellt maschinelles Lernen und die genetischen Komponenten von quantitativen Merkmalen vor und bringt diese im Kontext der genomischen Vorhersagen zusammen. Zum Schluss in Kapitel 5 werden die vorherigen Ergebnisse im Gesamtkontext der quantitativen Genetik erläutert. KW - Genetics KW - GWAS KW - Genomic Selection KW - Quantitative Genetics Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-199429 ER - TY - THES A1 - von Rüden, Martin Frederik T1 - The Venus flytrap - Role of oxylipins in trap performance of Dionaea muscipula T1 - Die Venus Fliegenfalle – Die Rolle von Oxilipinen im Fallenverhalten von Dionaea muscipula N2 - A part of the plant kingdom consists of a variety of carnivorous plants. Some trap their prey using sticky leaves, others have pitfall traps where prey cannot escape once it has fallen inside. A rare trap type is the snap-trap: it appears only twice in the plant kingdom, in the genera Aldrovanda and Dionaea. Even Charles Darwin himself described Dionaea muscipula, the Venus flytrap, with the following words “This plant, commonly called Venus' fly-trap, from the rapidity and force of its movements, is one of the most wonderful in the world”. For a long time now, the mechanisms of Dionaea’s prey recognition, capture and utilization are of interest for scientists and have been studied intensively. Dionaea presents itself with traps wide-open, ready to catch insects upon contact. For this, the insect has to touch the trigger hairs of the opened trap twice within about 20-30 seconds. Once the prey is trapped, the trap lobes close tight, forming a hermetically sealed “green stomach”. Until lately, there was only limited knowledge about the molecular and hormonal mechanisms which lead to prey capture and excretion of digestive fluids. It is known that the digestion process is very water-consuming; therefore, the interplay of digestion-inducing and digestion inhibiting substances was to be analyzed in this work, to elucidate the fine-tuning of the digestive pathway. Special attention was given to the impact of phytohormones on mRNA transcript levels of digestion-related proteins after various stimuli as well as their effect on Dionaea’s physiological responses. Jasmonic acid (JA) and its isoleucine-conjugated form, JA-Ile, are an important signal in the jasmonate pathway. In the majority of non-carnivorous plants, jasmonates are critical for the defense against herbivory and pathogens. In Dionaea, this defense mechanism has been restructured towards offensive prey catching. One question in this work was how the frequency of trigger hair bendings is related to the formation of jasmonates and the induction of the digestion process. Upon contact of a prey with the trigger hairs in the inside of the trap, the trap closes and jasmonates are produced biosynthetically. JA-Ile interacts with the COI1- receptor, thereby activating the digestion pathway which leads to the secretion of digestive fluid and production of transporters needed to take up prey-derived nutrients. In this work it could be shown that the number of trigger hair bendings is positively correlated with the level and duration of transcriptional induction of several digestive enzymes/hydrolases. Abscisic acid (ABA) acts, along with many other functions, as the plant “drought stress hormone”. It is synthesized either by roots as the primary sensor for water shortage or by guard cells in the leaves. ABA affects a network of several thousand genes whose regulation prepares the plant for drought and initiates protective measurements. It was known from previous work that the application of ABA for 48 hours increased the required amount of trigger hair bendings to achieve trap closure. As the digestion process is very water-intensive, the question arose how exactly the interplay between the jasmonate- and the ABA-pathway is organized, and if ABA could stop the running digestion process once it had been activated. In the present work it could be shown that the application of ABA on intact traps prior to mechanically stimulating the trigger hairs (mechanostimulation) already significantly reduced the transcription of digestive enzymes for an incubation time as short as 4 h, showing that already short-term exposure to ABA counteracts the effects of jasmonates when it comes to initiating the digestion process, but does not inhibit trap closure. Incubation for 24 and 48 hours with 100 μM active ABA had no effect on trap reopening, only very high levels of 200 μM of active ABA inhibited trap reopening but also led to tissue necrosis. As the application of ABA could reduce the transcription of digestive hydrolases, it is likely that Dionaea can stop the digestion process, if corresponding external stimuli are received. Another factor, which only emerged later, was the effect of the wounding-induced systemic jasmonate burst. As efficient as ABA was in inhibiting marker hydrolase expression after mechanostimulation in intact plants, the application of ABA on truncated traps was not able to inhibit mechanostimulation-induced marker hydrolase expression. One reason might be that the ABA-signal is perceived in the roots, and therefore truncated traps were not able to react to it. Another reason might be that the wounding desensitized the tissue for the ABAsignal. Further research is required at this point. Inhibitors of the jasmonate pathway were also used to assess their effect on the regulation of Dionaea´s hunting cycle. Coronatine-O-methyloxime proved to be a potent inhibitor of mechanostimulation-induced expression of digestive enzymes, thus confirming the key regulatory role of jasmonates for Dionaea´s prey consumption mechanism. In a parallel project, the generation of in vitro cultures from sterilized seeds and single plant parts proved successful, which may be important for stock-keeping of future transgenic lines. Protoplasts were generated from leaf blade tissue and transiently transformed, expressing the reporter protein YFP after 24 h of incubation. In the future this might be the starting point for the generation of transgenic lines or the functional testing of DNA constructs. N2 - Ein Teil des Pflanzenreiches besteht aus einer Vielfalt fleischfressender Pflanzen. Einige fangen ihre Beute mit klebrigen Blättern, andere haben Grubenfallen, aus denen die Beute nicht mehr entkommen kann, wenn sie erst einmal hineingefallen ist. Ein seltener Fallentyp ist die Klappfalle: Sie kommt im Pflanzenreich nur zweimal vor, in den Gattungen Aldrovanda und Dionaea. Charles Darwin selbst beschrieb Dionaea muscipula, die Venusfliegenfalle, als "eine der schönsten Pflanzen der Welt". Die Mechanismen der Erkennung, des Fangs und der Nutzbarmachung von Beutetieren durch Dionaea sind seit langem von Interesse für die Wissenschaft und wurden intensiv untersucht. Dionaea hat weit geöffnete Fallen, die bei Kontakt Insekten fangen können. Dazu muss das Insekt innerhalb von ca. 20-30 Sekunden zweimal die Triggerhaare der geöffneten Falle berühren. Sobald die Beute gefangen ist, schließen sich die Fallenhälften fest und bilden einen hermetisch verschlossenen sogenannten „grünen Magen“. Bis vor einigen Jahren gab es nur wenige Informationen über die molekularen und hormonellen Mechanismen, die zu Beutefang und Sekretion von Verdauungsflüssigkeiten führen. Es ist bekannt, dass der Verdauungsprozess sehr viel Wasser verbraucht; daher sollte in dieser Arbeit das Zusammenspiel von verdauungsauslösenden und verdauungshemmenden Substanzen untersucht werden, um die Feinabstimmung des Verdauungsweges aufzuklären. Ein besonderes Augenmerk wurde auf den Einfluss von Phytohormonen auf die mRNATranskriptzahlen von Verdauungsproteinen nach verschiedenen Stimuli sowie auf deren Auswirkungen auf die physiologischen Reaktionen von Dionaea gelegt. Jasmonsäure (JA) und ihre mit Isoleucin konjugierte Form, JA-Ile, sind ein wichtiges Signal in pflanzlichen Signaltransduktionsprozessen. In der Mehrzahl der nicht-karnivoren Pflanzen sind Jasmonate entscheidend für die Abwehr von Herbivoren und Pathogenen. In Dionaea wurde dieser Abwehrmechanismus für den offensiven Beutefang umstrukturiert. Eine Frage in dieser Arbeit war also, wie die Häufigkeit der Triggerhaarberührungen mit der Bildung von Jasmonaten und dem Verdauungsvorgang miteinander in Verbindung steht. Beim Kontakt von Beute mit den Triggerhaaren im Inneren der Falle schließt sich diese, und es werden durch Biosynthese Jasmonate gebildet. JA-Ile interagiert mit dem COI1-Rezeptor und aktiviert so den Verdauungsweg, der zur Sekretion von Verdauungsflüssigkeit und zur Produktion von Transportern führt, welche zur Aufnahme von aus Beute gewonnenen Nährstoffen benötigt werden. In dieser Arbeit konnte gezeigt werden, dass die Anzahl der Triggerhaarberührungen positiv mit der Höhe und der Dauer der Transkriptionsinduktion mehrerer Verdauungsenzyme bzw. Verdauungshydrolasen korreliert. Abscisinsäure (ABA) fungiert neben vielen anderen Funktionen als pflanzliches „Trockenstresshormon“. Es wird entweder von Wurzeln als primärem Sensor für Wassermangel oder von Schließzellen in den Blättern synthetisiert. ABA beeinflusst ein Netzwerk von mehreren tausend Genen, deren Regulation die Pflanze auf Dürre vorbereitet und entsprechende Schutzmaßnahmen einleitet. Aus früheren Arbeiten war bekannt, dass die 48-stündige Inkubation einer Dionaea-Falle mit ABA die erforderliche Anzahl an Triggerhaarberührungen erhöhte, die für einen Fallenschluss notwendig sind. In der vorliegenden Arbeit konnte gezeigt werden, dass das Aufbringen von ABA auf intakte Fallen vor der mechanischen Stimulierung der Triggerhaare (Mechanostimulation) die Expression von Verdauungsenzymen bereits bei einer Inkubationszeit von nur 4 Stunden signifikant reduzierte. Das zeigte eindeutig, dass die kurzzeitige Einwirkung von ABA bereits die Effekte von Jasmonaten blockiert, wenn es um den Beginn des Verdauungsprozesses geht, aber keinen Einfluss auf den Fallenschluss hat. Eine Inkubation für 24 und 48 Stunden mit 100 μM aktiver ABA hatte keine Auswirkung auf das Wiederöffnen der Falle, nur sehr hohe Konzentrationen von 200 μM aktiver ABA hemmten das Wiederöffnen der Falle, führten aber auch zu Gewebenekrose. Da ABA die Transkription der Verdauungsenzyme reduzieren konnte, ist es wahrscheinlich, dass Dionaea den Verdauungsvorgang stoppen kann, wenn entsprechende externe Signale empfangen werden. Ein weiterer Einflussfaktor, welcher erst später erkannt wurde, war die Auswirkung des verwundungsbedingten, sprunghaften systemischen Anstiegs der Jasmonatkonzentration auf die Wirkung von extern aufgegebenen Phytohormonen. So wirksam ABA bei der Hemmung der Markerhydrolasen-Expression nach Mechanostimulation in intakten Pflanzen war, so konnte diese Inhibition nach Anwendung von ABA auf abgeschnittenen Fallen nicht mehr beobachtet werden. Ein Grund könnte sein, dass das ABA-Signal in den Wurzeln wahrgenommen wird und daher abgeschnittene Fallen nicht darauf reagieren konnten. Ein anderer Grund könnte sein, dass die Verwundung das Gewebe für das ABA-Signal desensibilisiert hat. An dieser Stelle besteht weiterer Forschungsbedarf. Ebenfalls wurden Inhibitoren des Jasmonat-Weges verwendet, um ihre Wirkung auf die Regulation des Beutefangzyklus von Dionaea zu untersuchen. Coronatine-O-methyloxim erwies sich als wirksamer Inhibitor der durch Mechanostimulation induzierten Expression von Verdauungsenzymen und bestätigte damit die zentrale regulatorische Rolle von Jasmonaten für den Beutefangmechanismus von Dionaea. Ein parallel laufendes Projekt war die Erzeugung von in vitro-Kulturen aus sterilisiertem Saatgut und einzelnen Pflanzenteilen, das sich als sehr erfolgreich erwies, was für die Erzeugung zukünftiger transgener Linien wichtig sein kann. Ebenfalls wurden Protoplasten aus Blattgewebe erzeugt, diese wurden transient transformiert und exprimierten YFP nach einer Inkubationszeit von 24 Stunden. In Zukunft könnte dies der Ausgangspunkt für die Generierung transgener Linien sein und der Funktionsüberprüfung von DNA-Konstrukten sein. KW - Venusfliegenfalle KW - Protoplast KW - Abscisinsäure KW - Jasmonsäure KW - Antibiotikum KW - Dionaea KW - Herbicid KW - Celaflor Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-273854 ER -