TY - THES A1 - Langlhofer, Georg T1 - Über die Bedeutung intrazellulärer Subdomänen des Glycinrezeptors für die Kanalfunktion T1 - Investigations into the relevance of glycine receptor intracellular subdomains to receptor channel function N2 - Der zur Familie der pentameren ligandengesteuerten Ionenkanäle zugehörige Glycinrezeptor (GlyR) ist ein wichtiger Vermittler synaptischer Inhibition im Zentralnervensystem von Säugetieren. GlyR-Mutationen führen zur neurologischen Bewegungsstörung Hyperekplexie. Aufgrund fehlender struktureller Daten ist die intrazelluläre Loop-Struktur zwischen den Transmembransegmenten 3 und 4 (TM3-4 Loop) eine weitgehend unerforschte Domäne des GlyR. Innerhalb dieser Domäne wurden Rezeptortrunkierungen sowie Punktmutationen identifiziert. Rezeptortrunkierung geht mit Funktionslosigkeit einher, welche jedoch durch Koexpression des fehlenden Sequenzabschnitts zum Teil wiederhergestellt werden kann. Innerhalb dieser Arbeit wurde die Interaktion zwischen trunkierten, funktionslosen GlyR und sukzessiv verkürzten Komplementationskonstrukten untersucht. Dabei wurden als Minimaldomänen für die Interaktion das C-terminalen basische Motive des TM3-4 Loops, die TM4 sowie der extrazelluläre C-Terminus identifiziert. Die Rückkreuzung transgener Mäuse, die das Komplementationskonstrukt iD-TM4 unter Kontrolle des GlyR-Promotors exprimierten, mit der oscillator-Maus spdot, die einen trunkierten GlyR exprimiert und 3 Wochen nach der Geburt verstirbt, hatte aufgrund fehlender Proteinexpression keinen Effekt auf die Letalität der Mutation. Des Weiteren wurde die Bedeutsamkeit der Integrität beider basischer Motive 316RFRRKRR322 und 385KKIDKISR392 im TM3-4 Loop in Kombination mit der Loop-Länge für die Funktionalität und das Desensitisierungsverhalten des humanen GlyRα1 anhand von chimären Rezeptoren identifiziert. Eine bisher unbekannte Patientenmutation P366L innerhalb des TM3-4 Loops wurde mit molekularbiologischen, biochemischen und elektrophysiologischen Methoden charakterisiert. Es wurde gezeigt, dass die mutierten Rezeptorkomplexe in vitro deutlich reduzierte Glycin-induzierte Maximalströme sowie eine beschleunigte Schließkinetik aufweisen. P366L hat im Gegensatz zu bereits charakterisierten Hyperekplexiemutationen innerhalb des TM3-4 Loops keinen Einfluss auf die Biogenese des Rezeptors. P366 ist Teil einer möglichen Poly-Prolin-Helix, die eine Erkennungssequenz für SH3-Domänen darstellt. Ein potenzieller Interaktionspartner des TM3-4 Loops des GlyRα1 ist Collybistin, welches eine wichtige Rolle bei der synaptischen Rezeptorintegration spielt und die Verbindung zum Zytoskelett vermittelt. An der inhibitorischen Synapse verursacht P366L durch die Reduzierung postsynaptischer Chloridströme, das beschleunigte Desensitisierungsverhalten des GlyRα1 sowie ein verändertes Interaktionsmotiv Störungen der glycinergen Transmission, die zur Ausprägung phänotypischer Symptome der Hyperekplexie führen. N2 - The glycine receptor (GlyR) belongs to the superfamily of pentameric ligand-gated ion channels and mediates synaptic inhibition in the central nervous system of mammals. GlyR mutations lead to the neuromotor disorder hyperekplexia. Due to the lack of structural data, the intracellular loop between transmembrane segments 3 and 4 (TM3-4 Loop) is considered as the most unexplored domain of the GlyR. Within this domain receptor truncations as well as point mutations have been identified. Receptor truncation correlates with non-functionality that can be partially restored by coexpression of the missing sequence. In this work, the interaction between a truncated non-functional GlyR and successively truncated complementation constructs was investigated. The C-terminal basic motif of the TM3-4 loop, the TM4 and the C-Terminus were identified as the minimal domain required for interaction. Backcrossing of a transgenic mouse line expressing the complementation construct iD-TM4 under the control of the GlyR promotor, with the oscillator mouse spdot expressing a truncated GlyR leading to death 3 weeks after birth, was unsuccessful and did not influence the lethality of the mutation, most probably due to the lack of transgene protein expression. In addition the importance of the integrity of both basic motifs 316RFRRKRR322 and 385KKIDKISR392 within the TM3-4 loop in combination with loop length were shown to be essential for functionality and desensitization behavior of the human GlyRα1 using chimeric receptors. An unknown TM3-4 loop mutation P366L was characterized using biomolecular, biochemical and electrophysiological approaches. It was demonstrated that mutated receptor complexes display remarkably reduced glycine-induced maximal currents in addition to accelerated channel closing kinetics in vitro. In contrast to previously analyzed hyperekplexia mutations within the TM3-4 loop, P366L exhibits no influence on receptor biogenesis. P366 is located in a sequence probably forming a poly-proline helix, which serves as a recognition sequence for SH3 domains. One prospective interaction partner is collybistin, which plays a major role in the process of synaptic receptor integration and connects the receptor complex to the cytoskeleton. At the site of the inhibitory synapse, P366L causes reduced chloride currents, accelerated desensitization behavior of the GlyRα1 and an altered interaction motif leading to disturbed glycinergic neurotransmission that result in formation of phenotypic symptoms of hyperekplexia. KW - Glycinrezeptor KW - intrazelluläre Domäne KW - Hyperekplexie KW - intracellular domain KW - hyperekplexia KW - Bewegungsstörung KW - Synapse KW - Ionenkanal Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-140249 ER - TY - THES A1 - Janzen, Dieter T1 - Functional analysis of ion channels and neuronal networks in 2D and 3D \(in\) \(vitro\) cell culture models T1 - Funktionelle Analyse von Ionenkanälen und neuronalen Netzwerken in 2D und 3D \(in\) \(vitro\) Zellkulturmodellen N2 - In the central nervous system, excitatory and inhibitory signal transduction processes are mediated by presynaptic release of neurotransmitters, which bind to postsynaptic receptors. Glycine receptors (GlyRs) and GABAA receptors (GABAARs) are ligand-gated ion channels that enable synaptic inhibition. One part of the present thesis elucidated the role of the GlyRα1 β8 β9 loop in receptor expression, localization, and function by means of amino acid substitutions at residue Q177. This residue is underlying a startle disease phenotype in the spontaneous mouse model shaky and affected homozygous animals are dying 4-6 weeks after birth. The residue is located in the β8 β9 loop and thus part of the signal transduction unit essential for proper ion channel function. Moreover, residue Q177 is involved in a hydrogen network important for ligand binding. We observed no difference in ion channel trafficking to the cellular membrane for GlyRα1Q177 variants. However, electrophysiological measurements demonstrated reduced glycine, taurine, and β alanine potency in comparison to the wildtype protein. Modeling revealed that some GlyRα1Q177 variants disrupt the hydrogen network around residue Q177. The largest alterations were observed for the Q177R variant, which displayed similar effects as the Q177K mutation present in shaky mice. Exchange with structurally related amino acids to the original glutamine preserved the hydrogen bond network. Our results underlined the importance of the GlyR β8 β9 loop for proper ion channel gating. GlyRs as well as GABAARs can be modulated by numerous allosteric substances. Recently, we focused on monoterpenes from plant extracts and showed positive allosteric modulation of GABAARs. Here, we focused on the effect of 11 sesquiterpenes and sesquiterpenoids (SQTs) on GABAARs. SQTs are compounds naturally occurring in plants. We tested SQTs of the volatile fractions of hop and chamomile, including their secondary metabolites generated during digestion. Using the patch-clamp technique on transfected cells and neurons, we were able to observe significant GABAAR modulation by some of the compounds analyzed. Furthermore, a possible binding mechanism of SQTs to the neurosteroid binding site of the GABAAR was revealed by modeling and docking studies. We successfully demonstrated GABAAR modulation by SQTs and their secondary metabolites. The second part of the thesis investigated three-dimensional (3D) in vitro cell culture models which are becoming more and more important in different part of natural sciences. The third dimension allows developing of complex models closer to the natural environment of cells, but also requires materials with mechanical and biological properties comparable to the native tissue of the encapsulated cells. This is especially challenging for 3D in vitro cultures of primary neurons and astrocytes as the brain is one of the softest tissues found in the body. Ultra-soft matrices that mimic the neuronal in vivo environment are difficult to handle. We have overcome these challenges using fiber scaffolds created by melt electrowriting to reinforce ultra-soft matrigel. Hence, the scaffolds enabled proper handling of the whole composites and thus structural and functional characterizations requiring movement of the composites to different experimental setups. Using these scaffold-matrigel composites, we successfully established methods necessary for the characterization of neuronal network formation. Before starting with neurons, a mouse fibroblast cell line was seeded in scaffold-matrigel composites and transfected with the GlyR. 3D cultured cells displayed high viability, could be immunocytochemically stained, and electrophysiologically analyzed. In a follow-up study, primary mouse cortical neurons in fiber-reinforced matrigel were grown for up to 21 days in vitro. Neurons displayed high viability, and quantification of neurite lengths and synapse density revealed a fully formed neuronal network already after 7 days in 3D culture. Calcium imaging and patch clamp experiments demonstrated spontaneous network activity, functional voltage-gated sodium channels as well as action potential firing. By combining ultra-soft hydrogels with fiber scaffolds, we successfully created a cell culture model suitable for future work in the context of cell-cell interactions between primary cells of the brain and tumor cells, which will help to elucidate the molecular pathology of aggressive brain tumors and possibly other disease mechanisms. N2 - Im zentralen Nervensystem wird die exzitatorische und inhibitorische Signaltransduktion durch die präsynaptische Ausschüttung von Neurotransmittern, die an postsynaptische Rezeptoren binden, gesteuert. Glycinrezeptoren (GlyRs) und GABAA-Rezeptoren (GABAARs) sind ligandengesteuerte Ionenkanäle, die die synaptische Inhibition ermöglichen. Ein Teil der vorliegenden Arbeit beschäftigt sich mit dem Einfluss des GlyRα1 β8 β9-Loops auf Expression, Lokalisation und Funktion des Rezeptors. Dazu wurde ein Aminosäureaustausch an Position Q177 durchgeführt, welche dem Startle-Krankheit-Phänotyp des spontanen Mausmodells shaky zugrunde liegt. Betroffene homozygote Tiere versterben 4-6 Wochen nach Geburt. Die Position befindet sich im β8 β9-Loop und ist damit Teil einer Signaltransduktionseinheit, die essenziell für die korrekte Rezeptorfunktion ist. Zudem ist Position Q177 teil eines Wasserstoffbrückennetzwerks, welches für die Ligandenbindung erforderlich ist. Wir konnten keinen Einfluss der GlyRα1Q177-Varianten auf den Transport des Rezeptors zur Zellmembran feststellen. Allerdings zeigten elektrophysiologische Messungen eine verringerte Wirksamkeit von Glycin, Taurin und β Alanin verglichen mit dem Wildtyp-Protein. Mithilfe von Proteinmodellierung konnte gezeigt werden, dass manche der GlyRα1Q177-Varianten das Wasserstoffbrückennetzwerk im Umfeld von Position Q177 stören. Die größten Effekte wurden bei der Q177R-Variante beobachtet, die sich ähnlich zur Q177K-Mutation der shaky-Maus verhielt. Der Austausch zu einer Aminosäure, die strukturell ähnlich zum ursprünglichen Glutamin ist, störte das Wasserstoffbrückennetzwerk hingegen nicht. Unsere Ergebnisse zeigen, wie wichtig der GlyR β8 β9-Loop für die Aufrechterhaltung der Rezeptorfunktion ist. Sowohl GlyRs als auch GABAARs können durch verschiedenste allosterische Substanzen moduliert werden. Zuletzt zeigten wir positive allosterische Modulation von GABAARs durch Monoteperne aus Pflanzenextrakten. Hier haben wir uns auf den Effekt von 11 Sesquiterpenen und Sesquiterpenoiden (SQTs) auf GABAARs fokussiert. SQTs sind natürlich in Pflanzen vorkommende Stoffe. Wir testeten SQTs aus dem flüchtigen Anteil von Hopfen und Kamille, sowie deren sekundäre Metaboliten, die während der Verdauung entstehen. Mithilfe der Patch-Clamp-Methode konnten wir in transfizierten Zellenlinien und neuronalen Primärzellen signifikante Modulation von GABAARs durch einige der SQTs beobachten. Außerdem wurde mithilfe von Docking-Simulationen eine mögliche Bindung von SQTs in der Neurosteroid-Bindungstasche gezeigt. Zusammengefasst haben wir erfolgreich die Modulation von GABAARs durch SQTs und deren sekundäre Metaboliten demonstriert. Der zweite Teil der vorliegenden Arbeit beschäftigt sich mit dreidimensionalen (3D) in vitro Zellkulturmodellen, die zunehmend an Bedeutung gewinnen. Die dritte Dimension erlaubt die Entwicklungen von komplexen Modellen, die sich der natürlichen Umgebung von Zellen annähern. Dafür werden Materialien benötigt, deren mechanische und biologische Eigenschaften denen des ursprünglichen Gewebes der eingeschlossenen Zellen ähneln. Dies ist insbesondere eine Herausforderung bei 3D in vitro Kulturen von primären Neuronen und Astrozyten, da das Gehirn eines der weichsten Gewebe des Körpers ist. Ultraweiche Matrizen, welche die neuronale Umgebung nachahmen, sind schwer zu handhaben. Wir haben dieses Problem gelöst, indem wir ultraweiches Matrigel mit Fasergerüsten verstärkten, die mithilfe von Melt Electrowriting gedruckt wurden. Somit können diese Matrigel-Faser-Komposite für strukturelle und funktionelle Experimente benutzt werden, die häufige Bewegung und Transport der Proben voraussetzen. Mit diesen Matrigel-Faser-Kompositen haben wir Methoden etabliert, die für die Charakterisierung von neuronalen Netzwerken erforderlich sind. Anstelle von Neuronen haben wir dafür eine Mausfibroblasten-Zelllinie benutzt und mit dem GlyR transfiziert. Zellen in den Matrigel-Faser-Komposite zeigten eine hohe Viabilität, konnten immunocytochemisch angefärbt werden, und mithilfe von elektrophysiologischen Methoden gemessen werden. Darauf aufbauend haben wir primäre kortikale Mausneurone in faserverstärktem Matrigel für bis zu 21 Tage wachsen lassen. Die Neurone zeigten eine hohe Viabilität und durch Quantifikation von Neuritenlänge und Synapsendichte konnte ein vollständig ausgeformtes Netzwerk nach 7 Tagen in 3D-Kultur demonstriert werden. Mithilfe von Calcium-Imaging und Patch-Clamp-Experimenten wurden spontane Netzwerkaktivität, funktionelle spannungsgesteuerte Natriumkanäle, sowie Aktionspotentiale nachgewiesen. Somit konnten wir durch Kombination von einem ultraweichen Hydrogel mit Fasergerüsten erfolgreich ein Zellkulturmodell entwickeln, das zukünftig für die Erforschung von Zell-Zell-Interaktionen zwischen primären Gehirnzellen und Tumorzellen benutzt werden kann. Damit kann die molekulare Pathologie von aggressiven Hirntumoren und möglicherweise anderen Krankheitsmechanismen weiter aufgeklärt werden. KW - Zellkultur KW - Ionenkanal KW - Aminobuttersäure KW - Glycin KW - Rezeptor KW - 3D cell culture KW - neuronal network KW - ion channel KW - glycine receptor KW - GABA receptor KW - 3D-Zellkultur KW - Nervennetz KW - Glycinrezeptor KW - GABA-Rezeptor Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-251700 ER - TY - THES A1 - Rauschenberger, Vera T1 - Stiff-person syndrome - Pathophysiological mechanisms of glycine receptor autoantibodies T1 - Stiff-Person Syndrom - Pathophysiologische Mechanismen von Glyzinrezeptor Autoantikörpern N2 - The Stiff-person syndrome (SPS) is a rare autoimmune disease that is characterized by symptoms including stiffness in axial and limb muscles as well as painful spasms. Different variants of SPS are known ranging from moderate forms like the stiff-limb syndrome to the most severe form progressive encephalomyelitis with rigidity and myoclonus (PERM). SPS is elicited by autoantibodies that target different pre- or postsynaptic proteins. The focus of the present work is on autoantibodies against the glycine receptor (GlyR). At start of the present thesis, as main characteristic of the GlyR autoantibody pathology, receptor cross-linking followed by enhanced receptor internalization and degradation via the lysosomal pathway was described. If binding of autoantibodies modulates GlyR function and therefore contributes to the GlyR autoantibody pathology has not yet been investigated. Moreover, not all patients respond well to plasmapheresis or other treatments used in the clinic. Relapses with even higher autoantibody titers regularly occur. In the present work, further insights into the disease pathology of GlyRα autoantibodies were achieved. We identified a common GlyRα1 autoantibody epitope located in the far N-terminus including amino acids A1-G34 which at least represent a part of the autoantibody epitope. This part of the receptor is easily accessible for autoantibodies due to its location at the outermost surface of the GlyRα1 extracellular domain. It was further investigated if the glycosylation status of the GlyR interferes with autoantibody binding. Using a GlyRα1 de-glycosylation mutant exhibited that patient autoantibodies are able to detect the de-glycosylated GlyRα1 variant as well. The direct modulation of the GlyR analyzed by electrophysiological recordings demonstrated functional alterations of the GlyR upon autoantibody binding. Whole cell patch clamp recordings revealed that autoantibodies decreased the glycine potency, shown by increased EC50 values. Furthermore, an influence on the desensitization behavior of the receptor was shown. The GlyR autoantibodies, however, had no impact on the binding affinity of glycine. These issues can be explained by the localization of the GlyR autoantibody epitope. The determined epitope has been exhibited to influence GlyR desensitization upon binding of allosteric modulators and differs from the orthosteric binding site for glycine, which is localized much deeper in the structure at the interface between two adjacent subunits. To neutralize GlyR autoantibodies, two different methods have been carried out. Transfected HEK293 cells expressing GlyRα1 and ELISA plates coated with the GlyRα1 extracellular domain were used to efficiently neutralize the autoantibodies. Finally, the successful passive transfer of GlyRα1 autoantibodies into zebrafish larvae and mice was shown. The autoantibodies detected their target in spinal cord and brain regions rich in GlyRs of zebrafish and mice. A passive transfer of human GlyRα autoantibodies to zebrafish larvae generated an impaired escape behavior in the animals compatible with the abnormal startle response in SPS or PERM patients. N2 - Das Stiff-person Syndrom (SPS) ist eine seltene Autoimmunerkrankung, die sich durch Symptome wie Steifheit in Muskeln des Rumpfes und der Gliedmaßen sowie schmerzhafte Spasmen auszeichnet. Vom SPS sind verschiedene Varianten bekannt, die von mäßigen Formen, wie dem Stiff-limb Syndrom (limb von engl. Extremitäten), bis zur schwersten Variante, der progressiven Enzephalomyelitis mit Steifheit und Myoklonus (PERM, vom engl. progressive encephalomyelitis with rigidity and myoclonus), reichen. Ausgelöst wird das SPS durch Autoantikörper, die an verschiedene prä- und postsynaptische Proteine binden. Der Fokus in dieser Arbeit liegt dabei auf Autoantikörpern, die gegen den Glyzinrezeptor (GlyR) gerichtet sind. Zu Beginn dieser Thesis galten als Hauptcharakteristika der Pathologie von Autoantikörpern die Quervernetzung von Rezeptoren gefolgt von einer verstärkten Rezeptor Internalisierung und dem Abbau über das Lysosom. Allerdings wurde bisher noch nicht untersucht, ob die GlyR Funktion durch eine Autoantikörperbindung verändert wird. Darüber hinaus sprechen nicht alle Patienten gut auf Plasmapheresen oder andere Therapien an. Rückfälle mit noch viel höheren Autoantikörpertitern treten regelmäßig auf. Die vorliegende Arbeit erweitert die Kenntnisse der pathophysiologischen Mechanismen, die durch GlyRα Autoantikörper ausgelöst werden. Wir konnten ein Epitop der GlyRα1 Autoantikörper im N-terminalen Bereich ausfindig machen, wobei die Aminosäuren A1-G34 zumindest einen Teil des Epitops bilden. Dieser GlyR Bereich kann durch die Autoantikörper sehr leicht erreicht werden, weil er sich an der Oberfläche der extrazellulären Domäne des GlyRs befindet. Weiterhin wurde untersucht, ob die Glykosylierung des GlyRs die Autoantikörperbindung beeinflusst. Mit Hilfe von Mutanten, bei denen die Glykosylierungsstelle entfernt wurde, konnte gezeigt werden, dass Patientenautoantikörper die nicht-glykosylierte Variante des GlyRα1 ebenfalls detektieren können. Elektrophysiologische Messungen ergaben, dass die Funktionalität des GlyRs durch die Bindung von Autoantikörpern beeinträchtigt wird. Erhöhte EC50 Werte zeigen, dass Autoantikörper die Wirksamkeit von Glyzin in niedrigeren Konzentrationen auf den Rezeptor verringern. Außerdem beeinflussen die Autoantikörper die Desensitisierung des Rezeptors. Allerdings waren die Glyzin-Wirksamkeit in sättigenden Konzentrationen und die Affinität von Glyzin zum Rezeptor unverändert. Diese Ergebnisse können durch die Lokalisierung des GlyR Autoantikörper-Epitops erklärt werden. Das ermittelte Epitop ist bekannt dafür, dass dort allosterische Modulatoren binden können und dadurch die Desensitisierung beeinflusst wird. Außerdem unterscheidet sich das Epitop von der orthosterischen Bindestelle von Glyzin, welche viel tiefer in der Struktur an der Grenze zweier benachbarter Untereinheiten liegt. Um die GlyR Autoantikörper zu neutralisieren, wurden zwei verschiedene Methoden entwickelt. Transfizierte HEK293 Zellen, die den GlyRα1 exprimieren, und ELISA Platten, die mit der extrazellulären Domäne des GlyRα1 beschichtet waren, wurden zur effizienten Neutralisation der Autoantikörper verwendet. Abschließend konnte in der vorliegenden Arbeit die erfolgreiche passive Übertragung von GlyRα1 Autoantikörpern in Zebrafischlarven und Mäusen gezeigt werden. In Zebrafischen und Mäusen detektierten die Autoantikörper ihr Antigen im Rückenmark und in Gehirnregionen, in denen der GlyR zahlreich exprimiert ist. Ein passiver Transfer von menschlichen GlyRα Autoantikörpern in Zebrafischlarven beeinträchtigte das Fluchtverhalten der Tiere, welches kompatibel mit dem krankhaften Startle Reflex in SPS- oder PERM-Patienten ist. KW - Glycinrezeptor KW - Autoantikörper KW - Pathophysiologie KW - Stiff-person syndrome KW - Stiff-Person Syndrom KW - Pathophysiologische Mechanismen KW - pathophysiological mechanisms Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-209588 ER - TY - THES A1 - Fuhl, Isabell T1 - Untersuchung der synaptischen Lokalisation des heteromeren Glycin-Rezeptors in einem neuen Mausmodell der \(Startle\) Erkrankung - mit Fokus auf die GlyR-β-Untereinheit - T1 - Investigation of the synaptic localisation of the heteromeric glycine receptor in a new mouse model of startle disease - with a focus on the GlyR-β subunit N2 - Der Glycin-Rezeptor ist Teil der inhibitorischen liganden-gesteuerten Ionenkanäle im ZNS und wird am stärksten im adulten Rückenmark sowie im Hirnstamm exprimiert. In der Nerv-Muskel-Synapse sind GlyR für die rekurrente Hemmung der Motoneuronen wichtig und steuern das Gleichgewicht zwischen Erregung und Hemmung der Muskelzellen. Für die glycinerge Neurotransmission sind neben den präsynaptischen GlyR 𝛼1 insbesondere postsynaptische GlyR 𝛼1/𝛽 verantwortlich. Durch Mutationen des GlyR entsteht das Erkrankungsbild der Hyperekplexie mit übersteigerter Schreckhaftigkeit, Muskelsteifheit und Apnoe. Hauptursächlich dafür sind Mutationen im GLRA1-Gen. Die shaky Maus stellt ein gutes Modell zur Erforschung dieser seltenen Erkrankung dar. Die shaky Missense-Mutation Q177K in der extrazellulären 𝛽8-𝛽9 Schleife der Glycin- Rezeptor-𝛼1-Untereinheit zeigte strukturell ein gestörtes Wasserstoffbrückennetzwerk. Funktionell konnten eingeschränkt leitfähige Ionenkanäle identifiziert werden. Der letale Phänotyp äußert sich beim homozygoten shaky Tier durch Schrecksymptome mit einem einhergehenden zunehmenden Gewichtsverlust. Die Quantifizierung der Oberflächenexpression deutete auf einen Verlust synaptischer GlyR 𝛼1/𝛽 hin. Aussagen bezüglich der GlyR-𝛽-Untereinheit, die Teil des synaptischen GlyR Komplexes ist, waren aufgrund fehlender stabiler Antikörper bisher nicht möglich. Das neuartige KI- Mausmodell Glrb eos exprimiert endogen fluoreszierende 𝛽 -Untereinheiten und ermöglicht damit erstmalig eine Betrachtung der GlyR- 𝛽-Expression in Tiermodellen der Startle Erkrankung. Ziel dieser Arbeit war es, die Auswirkungen der shaky Mutation auf die Interaktion mit der 𝛽 -Untereinheit und Gephyrin zu erforschen. Dafür wurden Markerproteine der glycinergen Synapse in Rückenmarksneuronen der Kreuzung Glrb eos x Glra1 sh gefärbt und quantifiziert. Die durchgeführte Gewichtsbestimmung der Nachkommen im zeitlichen Verlauf zeigte keinen Einfluss der eingefügten mEos4b-Sequenz auf das Körpergewicht der Tiere und schließt damit funktionelle Einschränkungen bedingt durch die mEos4b-Sequenz aus. Zur Verstärkung des 𝛽 eos-Signals wurde ein Antikörper verwendet. Die Quantifizierung der GlyR- 𝛽- Untereinheit an Rückenmarksneuronen zeigte für homozygote shaky Tiere im Vergleich zum Wildtyp signifikant reduzierte 𝛽eos Oberflächenexpressionen in Gephyrin Clustern sowie signifikant erniedrigte Kolokalisationen von Gephyrin/𝛼1, 𝛽eos/𝛼1 und 𝛽eos/Gephyrin. Die mutierte GlyR-𝛼1- Untereinheit wurde hingegen vermehrt an der Oberfläche in shaky Tieren exprimiert. Die Ergebnisse der Rückenmarksschnitte unterstützen diese Befunde aus den Primärneuronen. Die Untersuchung der Präsynapse erbrachte für Glrb eos/eos x Glra1 sh/sh eine signifikant verminderte Synapsin und Synapsin/𝛼1 Expression. Die Ergebnisse dieser Arbeit erweitern die Daten früherer Arbeiten zur shaky Maus und zeigen einen starken Verlust synaptischer GlyR 𝛼 1/ 𝛽 an der Oberfläche von Motoneuronen. Ein möglicher kompensatorischer Versuch durch erhöhte 𝛼1 Expression bleibt infolge der Funktionsbeeinträchtigung dieser mutierten GlyR- 𝛼 1 Rezeptoren erfolglos mit letalem Ausgang. In vorherigen Arbeiten wurde vermutet, dass die Mutation in der extrazellulären Bindungsstelle in der Lage ist, Konformationsänderungen in die TM3-TM4-Schleifenstruktur zu übertragen und dadurch die Gephyrin Bindung und synaptische Verankerung zu stören. Die Daten dieser Arbeit stützen diese Annahme und weisen darüber hinaus auf eine gestörte Rezeptorkomplexbindung hin. Die vorliegende Arbeit trägt somit zum besseren Verständnis der Startle Erkrankung auf synaptischer Ebene bei. N2 - The glycine receptor belongs to the inhibitory ligand-gated ion channels in the CNS and is most strongly expressed in the adult spinal cord and brainstem. In the nerve-muscle synapse, GlyR are important for recurrent inhibition of motor neurons and control the balance between excitation and inhibition of muscle cells. In addition to the presynaptic GlyR 𝛼1, postsynaptic GlyR 𝛼1/ 𝛽 in particular are responsible for glycinergic neurotransmission. Mutations of the GlyR lead to the clinical symptoms of hyperekplexia with excessive startle responses, muscle stiffness and apnea. The main causes are mutations in the GLRA1 gene. The shaky mouse is a good model for studying this rare disease. The shaky missense mutation Q177K, located in the extracellular 𝛽8-𝛽9 loop of the glycine receptor 𝛼1 subunit, showed a disrupted hydrogen bond network at the structural level. Functionally restricted conductive ion channels could be identified. The lethal phenotype in the homozygous shaky mouse is manifested by startle symptoms with accompanied increasing weight loss. Quantification of surface expression indicated a loss of synaptic GlyR 𝛼1/𝛽. So far, statements regarding the GlyR-𝛽-subunit which is part of the synaptic receptor complex had not been possible due to the lack of stable antibodies. The novel KI mouse model Glrb eos endogenously expresses fluorescent β-subunits and thus allows an observation of GlyR 𝛽-expression in animal models of startle disease for the first time. The aim of this study was to explore the effects of the shaky mutation on the interaction with the 𝛽-subunit and gephyrin. To this aim, marker proteins of the glycinergic synapse were stained and quantified in spinal cord neurons of Glrb eos x Glra1 sh. The performed weight determination of the littermates over time showed no influence of the inserted mEos4b-sequence on the bodyweight of the animals, thus ruling out functional limitations caused by the mEos4b-sequence. An antibody was used to amplify the 𝛽eos signal. Quantification of the GlyR-𝛽- subunit at spinal cord neurons demonstrated significantly reduced 𝛽eos surface expressions in gephyrin clusters as well as significantly decreased colocalisations of gephyrin/α1, 𝛽eos/𝛼1 and 𝛽eos/gephyrin for homozygous shaky animals compared to wild type. The mutant GlyR- 𝛼1 subunit exhibited enhanced expression at the surface in isolated spinal cord neurons from shaky animals. Results from spinal cord tissues supported these findings from primary neurons. Examination of presynapses revealed significantly decreased synapsin and synapsin/ 𝛼1 expression for Glrb eos/eos x Glra1 sh/sh. The results of this study extend the data of previous studies on the shaky mouse, showing a severe loss of synaptic GlyR 𝛼1/𝛽 at the surface of motor neurons. A potential compensatory attempt through increased α1 expression remains unsuccessful with a lethal outcome due to the functional impairment of these mutated GlyR 𝛼1 receptors. Previous studies have suggested that the mutation in the extracellular binding site is able to transduce conformational changes in the TM3-TM4 loop structure, thereby disrupting gephyrin binding and synaptic integration. The data in this study support this hypothesis and furthermore indicate a disrupted receptor complex binding. The present study thus contributes to a better understanding of Startle disease at the synaptic level. KW - Glycinrezeptor KW - glycine receptor KW - shaky mouse KW - startle disease KW - Hyperekplexie KW - Mausmodell KW - inhibitory snapse Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-348328 ER -