TY - THES A1 - Messerer, Regina T1 - Synthesis of Dualsteric Ligands for Muscarinic Acetylcholine Receptors and Cholinesterase Inhibitors T1 - Synthese von dualsteren Liganden für muskarinerge Acetylcholinrezeptoren sowie Inhibitoren der Cholinesterasen N2 - The study is dealing with the synthesis and pharmacological investigation of newly designed dualsteric ligands of muscarinic acetylcholine receptors belonging to the superfamily of G protein-coupled receptors. Such bipharmacophoric ligands combine the advantages of the orthosteric binding site (high-affinity) and of the topographically distinct allosteric binding site (subtype-selectivity) resulting in compounds with reduced side effects. This opens the way to a new therapeutic approach in the treatment of e.g. chronic pain, drug withdrawal, Parkinson`s and Alzheimer`s disease. Furthermore, the newly synthesized dualsteric compounds were pharmacologically investigated in order to get a better understanding of the activation and signaling processes in muscarinic acetylcholine receptors, especially with regard to partial agonism. The development of the “dynamic ligand binding” concept offers new perspectives for ligand binding and signaling at G protein-coupled receptors. GPCRs are no longer considered as simple on/off switches. Dualsteric ligands can bind in a dualsteric pose, reflecting an active receptor state as well as in a purely allosteric binding pose, characterized by an inactive receptor state resulting in partial agonism. The degree of partial agonism depends on the ratio of active versus inactive receptor populations. On this basis, orthosteric/orthosteric hybrid ligands consisting of the antagonist atropine and scopolamine, respectively, as well as of the agonist iperoxo and isoxazole, respectively, linked via different alkyl chain length were synthesized in order to investigate partial agonism (Figure 1). Figure 1: Structures of the synthesized iperoxo/isoxazole-atropine/scopolamine-hybrids. Furthermore, different sets of quaternary and tertiary homodimers consisting either of two iperoxo or two acetylcholine units were synthesized in order to study their extent on partial agonism (Figure 2). The two agonists were connected by varying alkyl chain length. Binding studies on CHO-hM2 cells of the quaternary compounds revealed that dimerization of the agonist results in a loss of potency. The iperoxo-dimers reached higher maximum effects on the Gi- as well as on the Gs pathway in comparison to the acetylcholine-dimers. Besides the choice of the orthosteric building block (potency of the agonist), the alkyl chain length is also crucial for the degree of partial agonism. Figure 2: Structures of the synthesized quat./tert. iperoxo/acetylcholine-homodimers. Quinolone-based hybrids connected to the superagonist iperoxo and to the endogenous ligand acetylcholine, respectively, linked through an alkyl chain of different length were synthesized in order to develop further partial agonists (Figure 3). FRET studies confirmed M1 subtype-selectivity as well as linker dependent receptor response. The greatest positive FRET signal was observed with quinolone-C6-iper resulting from a positive cooperativity between the two separated moieties, alloster and orthoster. However, the corresponding hybrids with a longer linker led to an inverse FRET signal indicating a different binding mode, e.g. purely allosteric, in contrast to the shorter linked hybrids. Furthermore, the flexible alkyl spacer was replaced by a rigidified linker resulting in the hybrid quinolone-rigid-iperoxo (Figure 3). FRET studies on the M1 receptor showed reduced FRET kinetics, resulting from interactions between the bulky linker and the aromatic lid, located between the orthosteric and allosteric binding site. A bitopic binding mode of the rigidified hybrid is presumed. For further clarity, mutational studies are necessary. Figure 3: M1-selective hybrid compounds. Another aim of this work was the design and synthesis of new hybrid compounds, acting as agonists at the M1 and M2 receptor and as inhibitors for AChE and BChE in the context of M. Alzheimer. Several sets of hybrid compounds consisting of different pharmacophoric units (catalytic active site: phthalimide, naphthalimide, tacrine; peripheric anionic site: iperoxo, isoxazole) linked through a polymethylene chain of varying length were synthesized. Tac-C10-iper (Figure 4), consisting of tacrine and the superagonist iperoxo linked by a C10 polymethylene spacer, was found to have excellent anticholinesterase activity for both AChE (pIC50 = 9.81) and BChE (pIC50 = 8.75). Docking experiments provided a structural model to rationalize the inhibitory power towards AChE. Additionally, the tacrine related hybrids showed affinity to the M1 and M2 receptor. Such compounds, addressing more than one molecular target are favorable for multifactorial diseases such as Alzheimer. Figure 4: Structure of the most active compound regarding anticholinesterase activity. In summary, the choice of the pharmacophoric units, their connecting point as well as the nature, length, and flexibility of the linker play an important role for the activity of designed bivalent ligands. A shorter linker length cannot bridge both binding sites simultaneously in contrast to longer linker chains. On the other hand, too long linker chains can result in unwanted steric interactions. Further investigations with respect to structural variations of hybrid compounds, with or without quaternary ammonium groups, are necessary in the light of drug development. N2 - Die vorliegende Studie beschäftigt sich mit der Synthese und der pharmakologischen Untersuchung von neu entwickelten dualsteren Liganden des muskarinischen Acetylcholinrezeptors, welcher zur Superfamilie der G-Proteine gehört. In derartigen bipharmakophoren Liganden sind die Vorteile des orthosteren Bindemodus und des räumlich davon getrennten allosteren Bindemodus vereint. Der orthostere Bindemodus bewirkt eine hohe Affinität zum Rezeptor, während der allostere Bindemodus Subtypselektivität vermittelt. Dadurch weisen diese Verbindungen weniger Nebenwirkungen auf. Dies eröffnet einen neuen Therapieansatz in der medikamentösen Behandlung von z.B. chronischen Schmerzen, Drogenentzug, Morbus Parkinson und Morbus Alzheimer. Die neu synthetisierten, dualsteren Verbindungen wurden pharmakologisch untersucht, um ein besseres Verständnis über das Bindungsverhalten und die Signalweiterleitung an muskarinischen Acetylcholinrezeptoren zu erhalten, besonders in Hinblick auf Partialagonismus. Die Entwicklung des Konzeptes der „dynamischen Ligandenbindung“ bietet neue Perspektiven in Hinblick auf das Bindungsverhalten und die Signalweiterleitung an G-Protein gekoppelten Rezeptoren. Somit werden GPCRs nicht mehr nur in ihrem aktiven oder inaktiven Zustand betrachtet. Vielmehr können dualstere Liganden sowohl einen dualsteren Bindemodus, welcher den aktiven Rezeptorzustand widerspiegelt, als auch einen rein allosteren Bindemodus, welcher durch einen inaktiven Rezeptorzustand charakterisiert ist, einnehmen, was schließlich zu Partialagonismus führt. Die Stärke des resultierenden Partialagonismus hängt vom Verhältnis zwischen aktiver und inaktiver Rezeptorbesetzung ab. Auf Basis dessen wurden orthostere/orthostere Hybridverbindungen, bestehend aus einem Antagonisten, Atropin oder Scopolamin, und einem Agonisten, Iperoxo oder Isoxazol, die über eine Alkylkette unterschiedlicher Länge miteinander verknüpft sind, synthetisiert, um mit deren Hilfe den Partialagonismus zu steuern (Abbildung 1). Abbildung 1: Strukturen der synthetisierten Iperoxo/Isoxazol-Atropin/Scopolamin-Hybride. Es wurden verschiedene quartäre sowie tertiäre Homodimere, welche entweder aus zwei Iperoxo-Einheiten oder aus zwei Acetylcholin-Einheiten bestehen, synthetisiert, um deren Ausmaß in Bezug auf Partialagonismus untersuchen zu können (Abbildung 2). Die beiden Agonisten wurden über unterschiedlich lange Alkylketten miteinander verknüpft. Bindungsstudien an CHO-hM2 Zellen der quartären Verbindungen zeigten, dass die Dimerisierung eines Agonisten zu einer verringerten Wirkstärke führt. Die Dimere von Iperoxo erreichten sowohl auf dem Gi- als auch auf dem Gs-Signalweg höhere Maximaleffekte als die Dimere von Acetylcholin. Neben der Wahl des orthosteren Bausteins (Wirkstärke des Agonisten) spielt auch die Länge der Alkylkette eine entscheidende Rolle für die Stärke des Partialagonismus. Abbildung 2: Strukturen der synthetisierten quart./tert. Iperoxo/Acetylcholin-Homodimere. Um weitere Partialagonisten zu entwickeln, wurden Chinolon-basierte Verbindungen, die mit dem Superagonisten Iperoxo oder mit dem endogenen Liganden Acetylcholin über eine Alkylkette mit unterschiedlicher Länge verknüpft sind, synthetisiert (Abbildung 3). FRET-Messungen bestätigen, dass es sich bei den Hybriden um M1-subtypselektive Substanzen handelt und das FRET-Signal von der Länge der Zwischenkette abhängig ist. Das stärkste positive FRET-Signal wurde mit der Verbindung Chinolon-C6-Iper erzielt, welches durch positive Kooperativität zwischen den beiden Liganden, Alloster und Orthoster, zustande kommt. Im Gegensatz zu den kurzkettigen Hybriden beobachtete man bei den langkettigen Hybriden ein inverses FRET-Signal, welches auf einen anderen Bindemodus zum Rezeptor hindeutet, z.B. könnte es sich um eine rein allostere Bindung handeln. Außerdem wurde die flexible Alkylkette durch einen starren Linker ersetzt, welches im Hybrid Chinolon-rigide-Iperoxo verwirklicht ist (Abbildung 3). FRET-Messungen dieser starren Hybridverbindung am M1-Rezeptor zeigten eine verzögerte FRET-Kinetik, welche vermutlich auf Wechselwirkungen zwischen dem starren Linker und dem aromatischen Deckel, der sich zwischen der orthosteren und der allosteren Bindestelle befindet, zurückzuführen ist. Es wird vermutet, dass das starre Hybrid bitopisch in den Rezeptor bindet. Um diese Annahme bestätigen zu können, müssten Mutationsstudien durchgeführt werden. Abbildung 3: M1-selektive Hybridverbindungen. Ein weiteres Ziel dieser Arbeit war das Wirkstoffdesign und die Synthese von neuen Hybridverbindungen, die als Agonisten am M1- und am M2-Rezeptor sowie als Inhibitoren der AChE als auch der BChE im Hinblick auf die Alzheimer`sche Krankheit wirken sollen. Verschiedenartige Hybridverbindungen, bestehend aus unterschiedlichen pharmakophoren Gruppen (katalytische, aktive Seite: Phthalimid, Naphthalimid, Tacrin; periphere, anionische Seite: Iperoxo, Isoxazol), die über eine Polymethylenkette unterschiedlicher Länge miteinander verknüpft sind, wurden synthetisiert. Tac-C10-Iper (Abbildung 4), bestehend aus Tacrin und dem Superagonisten Iperoxo, welche über eine C10 Polymethylenkette miteinander verknüpft sind, zeigte exzellente Anticholinesterase-Aktivitäten sowohl für die AChE (pIC50 = 9.81) als auch für die BChE (pIC50 = 8.75). Docking-Experimente lieferten ein Strukturmodell, welches die inhibitorische Aktivität in Bezug auf die AChE begründet. Zusätzlich zeigten die aus Tacrin bestehenden Hybride Affinität zum M1- als auch zum M2-Rezeptor. Solche Verbindungen, die mehr als ein Zielmolekül adressieren, sind für multifaktorielle Krankheiten, wie z.B. die Alzheimer`sche Krankheit, von Vorteil. Abbildung 4: Struktur der aktivsten Substanz in Bezug auf die Anticholinesterase-Aktivität. Zusammenfassend kann festgestellt werden, dass sowohl die Wahl des Pharmakophors, deren Verbindungsstelle als auch die Zusammensetzung, Länge und Flexibilität des Linkers eine große Rolle für die Aktivität der entwickelten bivalenten Verbindungen spielen. Kurzkettige Linker können im Gegensatz zu längeren Zwischenketten nicht beide Bindestellen gleichzeitig überbrücken. Andererseits können zu lange Zwischenketten unerwünschte sterische Wechselwirkungen hervorrufen. Weitere Untersuchungen in Bezug auf strukturelle Veränderungen der Hybridverbindungen, mit oder ohne quartäre Ammoniumgruppen, sind in Bezug auf die Arzneimittelentwicklung notwendig.   KW - Cholinesteraseinhibitor KW - Muscarinrezeptor KW - Ligand KW - GTP-bindende Proteine KW - dualsteric ligands KW - muscarinic acetylcholine receptor KW - cholinesterase inhibitors KW - receptors KW - coupled KW - gprotein KW - inhibitors KW - cholinesterase Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149007 ER - TY - THES A1 - Kauk, Michael T1 - Investigating the Molecular Mechanism of Receptor Activation at Muscarinic Receptors by Means of Pathway-Specific Dualsteric Ligands and Partial Agonists T1 - Molekulare Grundlagen der Rezeptoraktivierung von muskarinergen Acetylcholin Rezeptoren durch dualstere Liganden und Partialagonisten N2 - G protein-coupled receptors (GPCRs) form the biggest receptor family that is encoded in the human genome and represent the most druggable target structure for modern therapeutics respectively future drug development. Belonging to aminergic class A GPCRs muscarinic Acetylcholine receptors (mAChRs) are already now of clinical relevance and are also seen as promising future drug targets for treating neurodegenerative diseases like Alzheimer or Parkinson. The mAChR family consist of five subtypes showing high sequence identity for the endogenous ligand binding region and thus it is challenging until now to selectively activate a single receptor subtype. A well accepted method to study ligand binding, dynamic receptor activation and downstream signaling is the fluorescence resonance energy transfer (FRET) application. Here, there relative distance between two fluorophores in close proximity (<10 nm) can be monitored in a dynamic manner. The perquisite for that is the spectral overlap of the emission spectrum of the first fluorophore with the excitation spectrum of the second fluorophore. By inserting two fluorophores into the molecular receptor structure receptor FRET sensors can serve as a powerful tool to study dynamic receptor pharmacology. Dualsteric Ligands consist of two different pharmacophoric entities and are regarded as a promising ligand design for future drug development. The orthosteric part interacts with high affinity with the endogenous ligand binding region whereas the allosteric part binds to a different receptor region mostly located in the extracellular vestibule. Both moieties are covalently linked. Dualsteric ligands exhibit a dynamic ligand binding. The dualsteric binding position is characterized by a simultaneous binding of the orthosteric and allosteric moiety to the receptor and thus by receptor activation. In the purely allosteric binding position no receptor activation can be monitored. In the present work the first receptor FRET sensor for the muscarinic subtype 1 (M1) was generated and characterized. The M1-I3N-CFP sensor showed an unaltered physiological behavior as well as ligand and concentration dependent responses. The sensor was used to characterize different sets of dualsteric ligands concerning their pharmacological properties like receptor activation. It was shown that the hybrids consisting of the synthetic full agonist iperoxo and the positive allosteric modulator of BQCA type is very promising. Furthermore, it was shown for orthosteric as well as dualsteric ligands that the degree of receptor activation is highly dependent on the length of and the chemical properties of the linker moiety. For dualsteric ligands a bell-shaped activation characteristic was reported for the first time, suggesting that there is an optimal linker length for dualsteric ligands. The gained knowledge about hybrid design was then used to generate and characterize the first photo-switchable dualsteric ligand. The resulting hybrids were characterized with the M1-I3N-CFP sensor and were described as photo-inactivatable and dimmable. In addition to the ligand characterization the ligand application methodology was further developed and improved. Thus, a fragment-based screening approach for dualsteric ligands was reported in this study for the first time. With this approach it is possible to investigate dualsteric ligands in greater detail by applying either single ligand fragments alone or in a mixture of building blocks. These studies revealed the insights that the effect of dualsteric ligands on a GPCR can be rebuild by applying the single building blocks simultaneously. The fragment-based screening provides high potential for the molecular understanding of dualsteric ligands and for future screening approaches. Next, a further development of the standard procedure for measuring FRET by sensitized emission was performed. Under normal conditions single cell FRET is measured on glass coverslips. After coating the coverslips surface with a 20 nm thick gold layer an increased FRET efficiency up to 60 % could be reported. This finding was validated in different approaches und in different configurations. This FRET enhancement by plasmonic surfaces was until yet unreported in the literature for physiological systems and make FRET for future projects even more powerful. N2 - G Protein gekoppelte Rezeptoren (GPCRs) bilden die größte Proteinfamilie, die im humanen Genom verschlüsselt ist. Sie sind nicht nur die Zielstruktur für eine Vielzahl von derzeit gebräuchlichen Medikamenten, sondern gehören auch zu den vielversprechendsten Therapieansätzen für die moderne Medikamentenentwicklung. Muskarinerge Acetylcholin Rezeptoren (mAChRs) gehören zu den aminergen Klasse A GPCRs und sind bereits heute von klinischer Relevanz. Die muskarinerge Rezeptorfamilie wird von fünf Subtypen gebildet, die sich besonders durch eine hohe Sequenzidentität in der endogenen Ligandenbindestelle (orthostere Bindestelle) auszeichnen. Aus diesem Grund ist es mit den herkömmlich verwendeten Medikamenten nicht möglich, einen ganz bestimmten Subtyp zu therapieren, ohne auch andere Subtypen zu beeinflussen und so unerwünschte Nebenwirkungen zu erhalten. Eine Möglichkeit Ligandenbindung, dynamische Rezeptoraktivierung oder Signalweiterleitung von GPCRs nach pharmakologischen Gesichtspunkten zu charakterisieren, stellt der Floreszenz Resonanz Energietransfer (FRET) dar. Mit Hilfe dieser Methode kann über kleine Entfernungen (<10 nm) die relative Orientierung von zwei Fluorophoren mit überlappenden Spektralbereichen mit hoher zeitlicher Auflösung verfolgt werden. Integriert man das Fluorophorpaar mit Hilfe gentechnischer Methoden in die Molekülstruktur des Rezeptors, kann man dessen Konformationsänderung bzw. Aktivierung infolge einer Ligandenbindung aufzeichnen. Dualstere Liganden sind eine Substanzklasse von hohem zukünftigen klinischen Potential und zeichnen sich durch die Verknüpfung mehrerer pharmakologisch aktiver Untereinheiten aus. Der orthostere Molekülteil interagiert mit der endogenen Ligandenbindestelle und der allostere Molekülteil interagiert mit einem zweiten Rezeptorabschnitt, der häufig in den extrazellulären Schlaufen des Rezeptors zu finden ist. Diese allosteren Bindestellen zeichnet sich durch eine vergleichsweise geringe Sequenzidentität aus, weswegen allostere Modulatoren auch selektiv an Subtypen binden können. Aufgrund des Aufbaus können dualstere Liganden auf vielfältige Weise mit dem Rezeptor interagieren und dieser Bindemechanismus wurde als dynamische Ligandenbindung beschrieben. Zum einen können beide Molekülteile gleichzeitig mit dem Rezeptor interagieren und ihn aktivieren (dualsterer Bindemodus) und zum anderen findet man einen rein allosteren Bindemodus, der den Rezeptor nicht aktiviert. Der orthostere Molekülteil ist vor allem für die Rezeptoraktivierung zuständig, die sich durch eine hohe Affinität auszeichnet und der allostere Molekülteil kann selektive Rezeptorinteraktionen vermitteln. Da dualstere Moleküle immer Eigenschaften beider Untereinheiten besitzen, werden dualstere Liganden als sehr vielversprechend erachtet, zukünftig subtypselektive Medikamente darzustellen. In dieser Arbeit wurde der erste Rezeptor FRET Sensor für den muskarinergen Subtyp 1 (M1) beschrieben und es konnte gezeigt werden, dass sich dieser Rezeptorsensor in seiner physiologischen Funktion nicht von dem wild Typ unterscheidet. Des Weiteren können mit Hilfe dieses Sensors liganden- und konzentrationsabhängige Rezeptorantworten aufgezeichnet werden. Der M1-I3N-CFP wurde dazu genutzt verschiedene Reihen dualsterer Liganden zu charakterisieren und auf ihre aktivierenden Eigenschaften bezüglich des M1 zu testen. Es wurde gezeigt, dass die Kombination aus dem synthetischen und hochpotenten Agonisten Iperoxo als Orthoster und dem in der Literatur als M1 selektiven positiven allosteren Modulator beschriebenen BQCA als Alloster sehr vielversprechend ist. Es konnte gezeigt werden, dass die rezeptoraktivierenden Eigenschaften sowohl von orthosteren wie auch von dualsteren Liganden stark von der Linkerlänge abhängig sind. Für dualstere Liganden konnte so ein glockenförmiger Zusammenhang zwischen Linkerlänge und Rezeptoraktivierung herausgearbeitet werden. Des Weiteren wurde gezeigt, dass bestimmte Hybride, die den M1 aktivieren, an anderen Subtypen keine Effekte hervorrufen und somit als subtypselektiv beschrieben werden können. Im Anschluss wurde mit Hilfe des gewonnenen Wissens über Iperoxo/BQCA Hybride, das Moleküldesign der dualsteren Liganden weiterentwickelt. So wurden in dieser Arbeit die ersten photo-schaltbaren bzw. photo-dimmbaren dualsteren Liganden beschrieben und charakterisiert. Des Weiteren wurde in dieser Arbeit die herkömmliche Charakterisierung von dualsteren Liganden weiterentwickelt. Es konnte zum ersten Mal gezeigt werden, dass es möglich ist, die Aktivierung eines Rezeptors durch einen dualsteren Liganden nachzustellen, indem die einzelnen Fragmente des ursprünglichen Liganden gleichzeitig appliziert werden. Diese auf Fragmenten basierende Charakterisierung ist die erste Anwendung dieser Art und birgt großes Potential für die zukünftige Suche nach neuen Wirkstoffen. Neben der Untersuchung von pharmakologischen Schwerpunkten wurde auch die Weiterentwicklung der Rezeptor FRET Methodik beschrieben. Die herkömmliche Anwendung der Rezeptor FRET Sensoren geschieht auf Objektträgern aus Quarzglas. In dieser Arbeit wurde diese Anwendung dahingehend weiterentwickelt, dass die Objektträger mit einer 20 nm dicken Goldschicht beschichtet wurden, um den Einfluss von Plasmonoberflächen auf physiologisch relevante FRET Messungen zu untersuchen. Es konnte gezeigt werden, dass mit Hilfe der Goldbeschichtung und in Abhängigkeit des Versuchsaufbaus die Energietransfereffizienz um bis zu 60 % gesteigert werden konnte. Diese Entdeckung zeigt Potential zukünftig die FRET-Reichweite zu erhöhen und so bisher nicht charakterisierbare Sachverhalte aufklären zu können. KW - G-Protein gekoppelte Rezeptoren KW - Muscarinrezeptor KW - Dualsteric Ligands KW - Partial Agonists KW - Dualstere Liganden KW - Partialagonismus Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173729 N1 - Online-Version enthält nicht den Appendix (Volltexte der Originalveröffentlichungen der Zeitschriftenaufsätze) ER -