TY - THES A1 - Eidel, Matthias T. A. M. T1 - Training Effects of a Tactile Brain-Computer Interface System During Prolonged Use by Healthy And Motor-Impaired People T1 - Trainingseffekte eines Taktilen Brain-Computer Interface Systems bei längerer Nutzung von gesunden sowie motorisch eingeschränkten Personen N2 - Background - Brain-Computer Interfaces (BCI) enable their users to interact and communicate with the environment without requiring intact muscle control. To this end, brain activity is directly measured, digitized and interpreted by the computer. Thus, BCIs may be a valuable tool to assist severely or even completely paralysed patients. Many BCIs, however, rely on neurophysiological potentials evoked by visual stimulation, which can result in usability issues among patients with impaired vision or gaze control. Because of this, several non-visual BCI paradigms have been developed. Most notably, a recent study revealed promising results from a tactile BCI for wheelchair control. In this multi-session approach, healthy participants used the BCI to navigate a simulated wheelchair through a virtual apartment, which revealed not only that the BCI could be operated highly efficiently, but also that it could be trained over five sessions. The present thesis continues the research on this paradigm in order to - confirm its previously reported high performance levels and trainability - reveal the underlying factors responsible for observed performance increases - establish its feasibility among potential impaired end-users Methods - To approach these goals, three studies were conducted with both healthy participants and patients with amyotrophic lateral sclerosis (ALS). Brain activity during BCI operation was recorded via electroencephalography (EEG) and interpreted using a machine learning-based linear classifier. Wheelchair navigation was executed according to the classification results and visualized on a monitor. For offline statistical analysis, neurophysiological features were extracted from EEG data. Subjective data on usability were collected from all participants. Two specialized experiments were conducted to identify factors for training. Results and Discussion - Healthy participants: Results revealed positive effects of training on BCI performances and their underlying neurophysiological potentials. The paradigm was confirmed to be feasible and (for a non-visual BCI) highly efficient for most participants. However, some had to be excluded from analysis of the training effects because they could not achieve meaningful BCI control. Increased somatosensory sensitivity was identified as a possible mediator for training-related performance improvements. Participants with ALS: Out of seven patients with various stages of ALS, five could operate the BCI with accuracies significantly above chance level. Another ALS patient in a state of near-complete paralysis trained with the BCI for several months. Although no effects of training were observed, he was consistently able to operate the system above chance level. Subjective data regarding workload, satisfaction and other parameters were reported. Significance - The tactile BCI was evaluated on the example of wheelchair control. In the future, it could help impaired patients to regain some lost mobility and self-sufficiency. Further, it has the potential to be adapted to other purposes, including communication. Once visual BCIs and other assistive technologies fail for patients with (progressive) motor impairments, vision-independent paradigms such as the tactile BCI may be among the last remaining alternatives to interact with the environment. The present thesis has strongly confirmed the general feasibility of the tactile paradigm for healthy participants and provides first clues about the underlying factors of training. More importantly, the BCI was established among potential end-users with ALS, providing essential external validity. N2 - Hintergrund - Brain-Computer Interfaces (BCI) ermöglichen ihren Benutzern die Interaktion und Kommunikation mit der Außenwelt, ohne dabei die Funktionstüchtigkeit der Muskeln voraus zu setzen. Zu diesem Zweck wird die Gehirnaktivität vom Computer direkt gemessen, digitalisiert und schließlich interpretiert. BCIs könnten daher eine wertvolle Methode sein, schwer körperlich beeinträchtigten oder sogar vollständig gelähmten Patienten zu assistieren. Viele BCI Ansätze basieren allerdings auf neurophysiologischen Potentialen, welche mittels visueller Stimulation evoziert werden. Dies kann zur Folge haben, dass das BCI von Patienten mit Sehbehinderung oder fehlender Kontrolle über die eigene Blickrichtung nicht erfolgreich benutzt werden kann. Deshalb wurden bereits einige nicht-visuelle BCI Paradigmen entwickelt. Insbesondere eine aktuelle Studie über ein taktiles BCI zur Rollstuhlkontrolle lieferte vielversprechende Ergebnisse: In fünf Trainingssitzungen navigierten gesunde Studienteilnehmer per BCI einen simulierten Rollstuhl durch eine virtuelle Wohnung. Hierbei konnte gezeigt werden, dass das BCI System nicht nur sehr effizient genutzt werden konnte, sondern auch, dass sich die Kontrolle durch das Training über mehrere Sitzungen verbesserte. Die vorliegende Dissertation befasst sich mit der weiterführenden Erforschung eben dieses Paradigmas, insbesondere mit den Zielen: . die zuvor berichtete hohe Performanz und Trainierbarkeit zu bestätigen . aufzuklären, welche Faktoren der Steigerung der BCI-Leistung zugrunde liegen . die Anwendbarkeit des Paradigmas bei beeinträchtigten Endnutzern zu etablieren Methoden - Um diese Ziele zu erreichen wurden drei Studien sowohl mit gesunden als auch mit Teilnehmern mit amyotropher Lateralsklerose (ALS) durchgeführt. Während der BCI-Nutzung wurde die Gehirnaktivität per Elektroenzephalographie (EEG) aufgezeichnet und von einem linearen Klassifikator (basierend auf Maschinenlernverfahren) interpretiert. Die Navigation des Rollstuhls wurde entsprechend der Ergebnisse des Klassifikators umgesetzt und auf einem Bildschirm visualisiert. Zur späteren statistischen Analyse wurden aus den EEG Daten neurophysiologische Merkmale extrahiert. Zudem wurden Fragebogendaten zur Nutzbarkeit des Systems von allen Teilnehmern erhoben. Zwei Experimente zur Identifizierung von Trainingsfaktoren wurden durchgeführt. Ergebnisse und Diskussion - Gesunde Teilnehmer: Die Ergebnisse zeigten positive Effekte des Trainings auf die BCI Performanz und deren zugrundeliegenden neurophysiologischen Potentiale. Es konnte bestätigt werden, dass das Paradigma anwendbar und für die meisten Teilnehmer hocheffizient nutzbar war (im Vergleich zu anderen nicht-visuellen Ansätzen). Einige Teilnehmer mussten jedoch von der Analyse der Trainingseffekte ausgeschlossen werden, da sie keine ausreichende Kontrolle über das BCI ausüben konnten. Eine Steigerung der somatosensorischen Empfindlichkeitsschwelle wurde als ein möglicher Faktor für die Trainierbarkeit und Verbesserung der Performanz identifiziert. Teilnehmer mit ALS: Fünf von sieben Teilnehmern in verschiedenen ALS-Stadien konnten das BCI signifikant überzufällig benutzen. Ein weiterer ALS Patient mit nahezu vollständiger Lähmung trainierte den Umgang mit dem BCI über mehrere Monate hinweg. Er war beständig in der Lage, das System mit Genauigkeiten über dem Zufallsniveau zu steuern, jedoch konnten keine Trainingseffekte gezeigt werden. Fragebogendaten zur subjektiven Arbeitsbelastung, Zufriedenheit und einigen weiteren Parametern wurden ausführlich berichtet. Bedeutung - Das taktile BCI wurde am Beispiel der Rollstuhlkontrolle evaluiert. In naher Zukunft könnte es beeinträchtigten Patienten helfen, ihre verlorene Mobilität und Selbstständigkeit zurück zu erlangen. Zudem kann es für viele weitere Zwecke adaptiert werden, insbesondere zur Kommunikation. Sobald visuelle BCIs oder andere technische Hilfsmittel bei Patienten mit (progressiver) motorischer Lähmung scheitern, könnten nicht-visuelle Paradigmen wie das taktile BCI zu den letzten verbleibenden Alternativen gehören, die eine Interaktion mit der Außenwelt noch erlauben. Die vorliegende Arbeit hat die grundsätzliche Anwendbarkeit des taktilen Paradigmas für gesunde Benutzer klar bestätigt. Zudem liefert sie erste Hinweise darauf, welche Faktoren den beobachteten Trainingseffekten zugrunde liegen könnten. Das BCI hat sich zudem bei potentiellen End-Nutzern mit ALS bewährt, was der externen Validität der Studienergebnisse enorm zuträgt. KW - Myatrophische Lateralsklerose KW - Gehirn-Computer-Schnittstelle KW - Elektroencephalographie KW - Rollstuhl KW - Brain-Computer Interface KW - Amyotrophic Lateral Sclerosis KW - Wheelchair Navigation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-208511 ER - TY - THES A1 - Haertle, Larissa T1 - Gestationsdiabetes und fetale Programmierung: Epigenetische Untersuchungen mit verschiedenen Next Generation Sequencing Techniken T1 - Gestational Diabetes Mellitus and fetal programming: Epigenetic investigations with different Next Generation Sequencing Techniques N2 - Eine intrauterine Gestationsdiabetes (GDM) Exposition induziert in den betroffenen Nachkommen eine lebenslang erhöhte Prädisposition für metabolische und komplexe Erkrankungen. Die Krankheitssuszeptibilität wird dabei durch epigenetische Veränderungen vermittelt, die sich über die Regulation der Genaktivität auch auf das Expressionsniveau und den Phänotypen auswirken. Um neue Gene zu finden, die eine Rolle in der fetalen Programmierung spielen, wurden in dieser Arbeit genomweite Methylierungsmuster von Nabelschnurbluten (FCBs) aus GDM-Schwangerschaften und Kontrollen miteinander verglichen. Mit Illumina Infinium HumanMethylation 450K Arrays konnten signifikante Gruppenunterschiede für insgesamt 65 CpG-Stellen (52 davon genassoziiert) festgestellt werden, die multiplem Testen standhielten. Mittels Pyrosequenzierung wurden vier dieser Kandidaten-Loci (ATP5A1, MFAP4, PRKCH, SLC17A4), sowie ein Gen aus der Literatur (HIF3A) genauer untersucht und die Effekte erfolgreich validiert. Für das zugrundeliegende multivariate Regressionsmodell wurden die potenziellen Störfaktoren Gestationsalter, kindliches Geschlecht und mütterlicher BMI berücksichtigt. Der GDM-Effekt zeigte sich stärker in der insulinbehandelten Subgruppe (I-GDM) als in der diätisch behandelten (D GDM) und scheint insgesamt multifaktoriell bedingt zu sein, da viele Gene betroffen waren, jedoch alle mit einer vergleichsweise niedrigen Effekt-Größe. Zusätzlich konnten für den MEG3 Promotor, MEST und PEG3, drei von vier geprägten Genen, die mittels Deep Bisulfite Sequencings (DBS) analysiert wurden, ebenfalls signifikante Methylierungs-unterschiede zwischen der GDM- und Kontroll-Gruppe detektiert werden. Die identifizierten Gene stellen labile Zielregionen für die GDM-induzierte intrauterine Programmierung dar und können zukünftig nützliche Biomarker für Krankheitsdiagnosen und Prognosen sein. Mittels DBS können darüber hinaus Einzelmolekül-Analysen durchgeführt werden, für die in differentiell methylierten Regionen (DMRs) anhand eines informativen SNPs die parentale Allel-Herkunft bestimmt und bei der Berechnung von Epimutationsraten einbezogen werden kann. Epimutationen wurde als solche gewertet, wenn sie ein > 50 % abnormal (de)methyliertes Methylierungsprofil aufwiesen. Die DBS-Daten wurden mit zwei verschiedenen Sequenzierplattformen generiert (Roche GS Junior und Illumina MiSeq). Für Zweitere wurde ein eigenes, unabhängiges Library-Präparations-Protokoll entwickelt. In Nabelschnurblut, adultem Blut und Viszeralfett wurden für die paternal exprimierte MEST Promotor DMR und die maternal exprimierte MEG3 intergenic (IG) DMR hohe Epimutationsraten für das jeweils unmethylierte Allel detektiert. Die geprägten (methylierten) Allele wiesen dagegen nur niedrige Epimutationsraten auf. Da MEST und MEG3 invers geprägte Gene sind, war die Hypermethylierung des nicht geprägten Allels (HNA) demnach unabhängig von der parentalen Allel-Herkunft. Die HNA scheint außerdem erst nach der Fertilisation aufzutreten, da in Spermien nur sehr wenige Epimutationen gefunden wurden. Für die sekundäre MEG3 Promotor DMR (deren Prägung von der primären MEG3 IG-DMR reguliert wird) wurde ein deutlich schwächerer, wenngleich signifikanter HNA-Effekt im FCB gemessen, für die paternal exprimierte PEG3 Promotor DMR konnte dagegen kein signifikanter Unterschied zwischen den beiden parentalen Epimutationsraten festgestellt werden. Der HNA-Effekt für die MEST DMR, MEG3 IG-DMR und MEG3 Promotor DMR war weder mit GDM noch mit Adipositas assoziiert und zeigte allgemein eine große interindividuelle Varianz. Die Aufrechterhaltung differenzieller Methylierungsmuster in Imprinting Kontrollregionen (ICRs) scheint in manchen Entwicklungs-Zeitspannen von großer Bedeutung und damit streng kontrolliert zu sein, später jedoch redundant zu werden, was sich in der Anreicherung von stochastischen sowie umweltinduzierten Fehlern auf dem nicht geprägten Allel äußern kann. HNA-suszeptible geprägte Gene ähneln in mancherlei Hinsicht metastabilen Epiallelen. Diese Studie zeigt, dass sowohl stochastische Faktoren als auch Umweltstimuli während der frühen embryonalen Entwicklung u.a. über HNA-Effekte geprägte Gen-Netzwerke programmieren, die in Wachstumsprozesse involviert sind. Um tiefere Einblicke in allelspezifische Prägungsprofile zu erhalten, wären umfangreiche DBS HNA-Längsschnittstudien aller 50-100 human geprägten Gene in unterschiedlichen Gewebetypen und Differenzierungsstadien wünschenswert.   N2 - Intrauterine exposure to gestational diabetes mellitus (GDM) induces lifelong increased predisposition for metabolic and complex diseases in the exposed progeny. The elevated disease susceptibility is transmitted via epigenetic alterations that influence gene expression levels and phenotypes through regulation of gene activity. Genome-wide methylation profiles of fetal cord bloods (FCBs) were investigated in GDM and control pregnancies in order to identify new genes susceptible to fetal programming. After multiple testing correction, we found 65 significantly differentially methylated CpG sites between GDM and control groups (52 of which were gene associated) within the Illumina Infinium HumanMethylation 450K array data. Using pyrosequencing, we successfully confirmed the observed results in four of these candidate loci (ATP5A1, MFAP4, PRKCH, SLC17A4) and one gene from the literature (HIF3A). A multivariate regression model was adjusted for the confounding factors gestational age, fetal sex and maternal BMI. The GDM effect was stronger within the insulin treated subgroup (I-GDM) compared to the dietary subgroup (D GDM), suggesting that GDM is a multifactorial disease evidenced by changes of small effect size in multiple genes. Significant mean methylation differences were detected between the GDM group and controls in three out of four imprinted genes (MEG3 promoter, MEST and PEG3) that were analyzed with Deep Bisulfite Sequencing (DBS). The identified genes represent labile target regions for GDM-induced intrauterine programming and could represent future biomarkers for disease diagnosis and prognosis. Furthermore, DBS enables sequencing at a single allele resolution and the calculation of allele specific epimutation rates by differentiating the parental origin of alleles via an informative SNP within differentially methylated regions (DMRs). Epimutations were characterized as alleles showing > 50 % aberrantly (de)methylated CpG sites. DBS data were generated using two different sequencing platforms (Roche GS Junior and Illumina MiSeq). An independent library preparation protocol was established for Illumina MiSeq sequencing. The paternally expressed MEST promoter DMR and the maternally expressed MEG3 intergenic (IG) DMR showed high epimutation rates for the unmethylated alleles in FCB, as well as adult blood and visceral adipose tissue. On the contrary, only minor epimutation rates were displayed by the imprinted (methylated) alleles. Thus, hypermethylation of the non-imprinted allele (HNA) was independent of parental origin, as MEST and MEG3 are opposingly imprinted genes. Very low epimutation rates in sperm indicate that the HNA effect arises after fertilization. A weak but significant HNA was also found for the secondary MEG3 promoter DMR (which is known to be regulated by the MEG3 IG-DMR). The paternally expressed PEG3 promoter DMR showed no HNA and no difference in parental epimutation rates. The observed HNA effect (for the MEST DMR, the MEG3 IG-DMR and the MEG3 promoter DMR) was neither associated with GDM nor obesity and exhibited a large interindividual variance. Maintenance of differential methylation profiles in imprinting control regions (ICRs) seems to be of great importance during some developmental periods and is therefore strictly controlled in germ cells. Later on, it might become redundant manifested in the accumulation of stochastic as well as environmentally-induced errors on the non-imprinted allele. There is evidence that HNA-susceptible imprinted genes resemble metastable epialleles in many aspects. Therefore, we suggest that stochastic as well as environmental stimuli program imprinted gene networks that are important for growth related processes during early development using HNA. Further longitudinal studies of all 50 – 100 imprinted genes would benefit in a deeper insight in allele-specific imprinting patterns of various human tissues. KW - Schwangerschaftsdiabetes KW - Genetisches Imprinting KW - Epigenetik KW - Next Generation Sequencing (NGS) KW - Fetale Programmierung Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-156465 ER - TY - THES A1 - Maierhofer, Anna T1 - Altersassoziierte und strahleninduzierte Veränderungen des genomweiten DNA-Methylierungs-Profils T1 - Age-associated and radiation-induced changes in genome-wide DNA methylation N2 - Der Prozess des Alterns ist ein komplexer multifaktorieller Vorgang, der durch eine sukzessive Verschlechterung der physiologischen Funktionen charakterisiert ist. Ein hohes Alter ist der Hauptrisikofaktor für die meisten Krankheiten, einschließlich Krebs und Herz-Kreislauf-Erkrankungen. Das Verständnis der epigenetischen Mechanismen, die in den Prozess des Alterns involviert sind, könnte zur Entwicklung pharmakologischer Interventionen beitragen, die nicht nur die Lebenserwartung erhöhen, sondern auch den Beginn des altersassoziierten funktionellen Abbaus verzögern könnten. Durch die Langzeit-Kultivierung primärer humaner Fibroblasten wurde ein in vitro Modell für das Altern etabliert, das die Identifizierung altersassoziierter DNA-Methylierungs-Veränderungen ermöglichte. Die in vitro Alterung konnte mit einer globalen Hypomethylierung und einer erhöhten DNA-Methylierung der ribosomalen DNA assoziiert werden. Darüber hinaus konnten DNA-Methylierungs-Veränderungen in Genen und Signalwegen, die für das Altern relevant sind, und ein erhöhtes epigenetisches Alter nachgewiesen werden. Das in vitro Modell für das Altern wurde verwendet, um neben den direkten Effekten ionisierender Strahlung auf die DNA-Methylierung auch deren Langzeit-Effekte zu untersuchen. Die Strahlentherapie ist ein entscheidendes Element der Krebstherapie, hat aber auch negative Auswirkungen und kann unter anderem das Risiko für die Entwicklung eines Zweittumors erhöhen. Bei externer Bestrahlung wird neben dem Tumor auch gesundes Gewebe ionisierender Strahlung ausgesetzt. Daher ist es wichtig zu untersuchen, wie Zellen mit intakten DNA-Reparatur-Mechanismen und funktionierenden Zellzyklus-Checkpoints durch diese beeinflusst werden. In der frühen Phase der DNA-Schadensantwort auf Bestrahlung wurden in normalen Zellen keine wesentlichen DNA-Methylierungs-Veränderungen beobachtet. Mehrere Populations-Verdoppelungen nach Strahlenexposition konnten dagegen eine globale Hypomethylierung, eine erhöhte DNA-Methylierung der ribosomalen DNA und ein erhöhtes epigenetisches Alter detektiert werden. Des Weiteren zeigten Gene und Signalwege, die mit Krebs in Verbindung gebracht wurden, Veränderungen in der DNA-Methylierung. Als Langzeit-Effekte ionisierender Strahlung traten somit die mit der in vitro Alterung assoziierten DNA-Methylierungs-Veränderungen verstärkt auf und ein epigenetisches Muster, das stark an das DNA-Methylierungs-Profil von Tumorzellen erinnert, entstand. Man geht davon aus, dass Veränderungen der DNA-Methylierung eine aktive Rolle in der Entwicklung eines Tumors spielen. Die durch ionisierende Strahlung induzierten DNA-Methylierungs-Veränderungen in normalen Zellen könnten demnach in die Krebsentstehung nach Strahlenexposition involviert sein und zu dem sekundären Krebsrisiko nach Strahlentherapie beitragen. Es ist bekannt, dass Patienten unterschiedlich auf therapeutische Bestrahlung reagieren. Die Ergebnisse dieser Arbeit weisen darauf hin, dass die individuelle Sensitivität gegenüber ionisierender Strahlung auch auf epigenetischer Ebene beobachtet werden kann. In einem zweiten Projekt wurden Gesamtblutproben von Patienten mit Werner-Syndrom, einer segmental progeroiden Erkrankung, und gesunden Kontrollen analysiert, um mit dem vorzeitigen Altern in Verbindung stehende DNA-Methylierungs-Veränderungen zu identifizieren. Werner-Syndrom konnte nicht mit einer globalen Hypomethylierung, jedoch mit einer erhöhten DNA-Methylierung der ribosomalen DNA und einem erhöhten epigenetischen Alter assoziiert werden. Das vorzeitige Altern geht demzufolge mit spezifischen epigenetischen Veränderungen einher, die eine Beschleunigung der mit dem normalen Altern auftretenden DNA-Methylierungs-Veränderungen darstellen. Im Rahmen dieser Arbeit konnte die Bedeutung epigenetischer Mechanismen im Prozess des Alterns hervorgehoben werden und gezeigt werden, dass sowohl exogene Faktoren, wie ionisierende Strahlung, als auch endogene Faktoren, wie das in Werner-Syndrom-Patienten mutiert vorliegende WRN-Gen, altersassoziierte DNA-Methylierungs-Veränderungen beeinflussen können. N2 - Aging is a complex, multifactorial process that is characterized by the successive deterioration of normal physiological functions. Age is the main risk factor for most diseases, including cancer. Understanding the epigenetic mechanisms that are involved in the aging process could contribute to the development of pharmacological interventions not only increasing lifespan but also delaying the onset of age-dependent functional decline. An in vitro model for aging was established by long-term culturing of primary human fibroblasts and used to identify age-associated changes in DNA methylation. In vitro aging could be linked to global hypomethylation, elevated DNA methylation of ribosomal DNA, a higher epigenetic age and alterations in DNA methylation of genes and pathways being relevant for aging. The in vitro model for aging allowed to analyse the long-term effects of ionizing radiation on DNA methylation in addition to their direct effects. Radiotherapy is an important element of cancer treatment but can also have negative effects and increase the risk of second cancers. Although radiotherapy is targeted to the tumour, it also affects the surrounding healthy tissue. Therefore, it is important to analyse the impacts of ionizing radiation on normal cells with intact DNA repair and cell cycle checkpoints. The early phase of DNA damage response to radiation does not seem to include great changes in DNA methylation in normal cells. In contrast, several population doublings after radiation exposure, global hypomethylation and DNA methylation changes of genes and pathways being linked to tumorigenesis were detected. Furthermore, DNA methylation of ribosomal DNA and the epigenetic age were increased. Thus, as long-term effects of ionizing radiation the age-associated changes in DNA methylation were enhanced and an epigenetic pattern strongly resembling the DNA methylation profile of tumour cells was observed. It is assumed that alterations in DNA methylation are not only side effects of carcinogenesis but rather play an active role during this process. Radiation-induced changes in DNA methylation could thus be involved in tumour development and contribute to the secondary cancer risk after radiotherapy. It is well known that patients react differently to therapeutic radiation. The results of this study suggest that individual radiation sensitivity is also reflected on epigenetic level. In a second project whole blood samples from patients with Werner syndrome, a segmental progeroid syndrome, and healthy controls were analysed to identify changes in DNA methylation associated with premature aging. Werner syndrome could not be linked to global hypomethylation, but to an increased epigenetic age and elevated methylation levels of ribosomal DNA. Hence, premature aging seems to be accompanied by specific alterations in DNA methylation representing an acceleration of the DNA methylation changes associated with normal aging. This work outlines the importance of epigenetic mechanisms in the aging process and shows that not only exogenous factors like ionizing radiation but also endogenous factors like Werner syndrome causing mutations in the WRN gene can influence age-associated changes in DNA methylation. KW - Methylierung KW - Ionisierende Strahlung KW - Altern KW - Progeria adultorum KW - Epigenetik KW - Epigenetische Uhr Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-174134 ER - TY - THES A1 - Mildner, Stephanie T1 - Temporal organization in \(Camponotus\) \(ants\): endogenous clocks and zeitgebers responsible for synchronization of task-related circadian rhythms in foragers and nurses T1 - Zeitliche Organisation bei Camponotus-Ameisen: innere Uhren und die verantwortlichen Zeitgeber für die Synchronisation von Aufgaben-bezogenen circadianen Rhythmen von Fourageuren und Brutpflegerinnen N2 - The rotation of the earth around its axis causes recurring and predictable changes in the environment. To anticipate those changes and adapt their physiology and behavior accordingly, most organisms possess an endogenous clock. The presence of such a clock has been demonstrated for several ant species including Camponotus ants, but its involvement in the scheduling of daily activities within and outside the ant nest is fairly unknown. Timing of individual behaviors and synchronization among individuals is needed to generate a coordinated collective response and to maintain colony function. The aim of this thesis was to investigate the presence of a circadian clock in different worker castes, and to determine the daily timing of their behavioral tasks within the colonies of two nectar-collecting Camponotus species. In chapter I, I describe the general temporal organization of work throughout the worker life in the species Camponotus rufipes. Continuous tracking of behavioral activity of individually- marked workers for up to 11 weeks in subcolonies revealed an age-dependent division of labor between interior and exterior workers. After eclosion, the fairly immobile young ants were frequently nurtured by older nurses, yet they started nursing the brood themselves within the first 48 hours of their life. Only 60% of workers switched to foraging at an age range of one to two weeks, likely because of the reduced needs within the small scale of the subcolonies. Not only the transition rates varied between subcolonies, but also the time courses of the task sequences between workers did, emphasizing the timed allocation of workers to different tasks in response to colony needs. Most of the observed foragers were present outside the nest only during the night, indicating a distinct timing of this behavioral activity on a daily level as well. As food availability, humidity and temperature levels were kept constant throughout the day, the preference for nocturnal activity seems to be endogenous and characteristic for C. rufipes. The subsequent monitoring of locomotor activity of workers taken from the subcolonies revealed the presence of a functional endogenous clock already in one-day old ants. As some nurses displayed activity rhythms in phase with the foraging rhythm, a synchronization of these in-nest workers by social interactions with exterior workers can be hypothesized. Do both castes use their endogenous clock to schedule their daily activities within the colony? In chapter II, I analyzed behavioral activity of C. rufipes foragers and nurses within the social context continuously for 24 hours. As time-restricted access to food sources may be one factor affecting daily activities of ants under natural conditions, I confronted subcolonies with either daily pulses of food availability or ad libitum feeding. Under nighttime and ad libitum feeding, behavioral activity of foragers outside the nest was predominantly nocturnal, confirming the results from the simple counting of exterior workers done in chapter I. Foragers switched to diurnality during daytime feeding, demonstrating the flexible and adaptive timing of a daily behavior. Because they synchronized their activity with the short times of food availability, these workers showed high levels of inactivity. Nurses, in contrast, were active all around the clock independent of the feeding regime, spending their active time largely with feeding and licking the brood. After the feeding pulses, however, a short bout of activity was observed in nurses. During this time period, both castes increasingly interacted via trophallaxis within the nest. With this form of social zeitgeber, exterior workers were able to entrain in-nest workers, a phenomenon observed already in chapter I. Under the subsequent monitoring of locomotor activity under LD conditions the rhythmic workers of both castes were uniformly nocturnal independent of the feeding regime. This endogenous activity pattern displayed by both worker castes in isolation was modified in the social context in adaption to task demands. Chapter III focuses on the potential factors causing the observed plasticity of daily rhythms in the social context in the ant C. rufipes. As presence of brood and conspecifics are likely indicators of the social context, I tested the effect of these factors on the endogenous rhythms of otherwise isolated individuals. Even in foragers, the contact to brood triggered an arrhythmic activity pattern resembling the arrhythmic behavioral activity pattern seen in nurses within the social context. As indicated in chapter I and II, social interaction could be one crucial factor for the synchronization of in nest activities. When separate groups were entrained to phase-shifted light-dark-cycles and monitored afterwards under constant conditions in pairwise contact through a mesh partitioning, both individuals shifted parts of their activity towards the activity period of the conspecific. Both social cues modulated the endogenous rhythms of workers and contribute to the context dependent plasticity in ant colonies. Although most nursing activities are executed arrhythmically throughout the day (chapter II), previous studies reported rhythmic translocation events of the brood in Camponotus nurses. As this behavior favors brood development, the timing of the translocations within the dark nest seems to be crucial. In chapter IV, I tracked translocation activity of all nurses within subcolonies of C. mus. Under the confirmed synchronized conditions of a LD-cycle, the daily pattern of brood relocation was based on the rhythmic, alternating activity of subpopulations with preferred translocation direction either to the warm or to the cold part of the temperature gradient at certain times of the day. Although the social interaction after pulse feeding had noticeable effects on the in-nest activity in C. rufipes (chapter I and II), it was not sufficient to synchronize the brood translocation rhythm of C. mus under constant darkness (e.g. when other zeitgebers were absent). The free-running translocation activity in some nurses demonstrated nevertheless the involvement of an endogenous clock in this behavior, which could be entrained under natural conditions by other potential non-photic zeitgebers like temperature and humidity cycles. Daily cycling of temperature and humidity could not only be relevant for in-nest activities, but also for the foraging activity outside the nest. Chapter V focuses on the monitoring of field foraging rhythms in the sympatric species C. mus and C. rufipes in relation to abiotic factors. Although both species had comparable critical thermal limits in the laboratory, foragers in C. mus were strictly diurnal and therefore foraged under higher temperatures than the predominant nocturnal foragers in C. rufipes. Marking experiments in C. rufipes colonies with higher levels of diurnal activity revealed the presence of temporally specialized forager subpopulations. These results suggest the presence of temporal niches not only between the two Camponotus species, but as well between workers within colonies of the same species. In conclusion, the temporal organization in colonies of Camponotus ants involves not only the scheduling of tasks performed throughout the worker life, but also the precise timing of daily activities. The necessary endogenous clock is already functioning in all workers after eclosion. Whereas the light-dark cycle and food availability seem to be the prominent zeitgebers for foragers, nurses may rely more on non-photic zeitgeber like social interaction, temperature and humidity cycles. N2 - Die Drehung der Erde um ihre eigene Achse erzeugt wiederkehrende und vorhersehbare Umweltschwankungen. Um diese Schwankungen zu antizipieren und Physiologie sowie Verhalten entsprechend anzupassen, besitzen fast alle Organismen eine innere Uhr. Bei einigen Ameisenarten, Camponotus Ameisen eingenommen, wurde die Präsenz einer inneren Uhr bereits bestätigt. Wie diese Uhr allerdings zur zeitlichen Abstimmung der Tagesaktivitäten innerhalb und außerhalb des Ameisennestes genutzt wird, war bis jetzt weitestgehend unbekannt. Für die Koordination einer kollektiven Verhaltensantwort und die Aufrechterhaltung der Kolonie ist dabei nicht nur die zeitliche Steuerung vom Verhalten Einzelner notwendig, sondern auch eine Synchronisation zwischen den Arbeiterinnen. Das Ziel dieser Doktorarbeit war es, die mögliche Präsenz einer inneren Uhr in verschiedenen Arbeiterkasten zu untersuchen, und die zeitliche Koordination von Tagesaktivitäten dieser Kasten innerhalb der Kolonien zweier Camponotus Ameisenarten zu bestimmen. In Kapitel I beschreibe ich die grundlegende zeitliche Organisation der Arbeitsteilung im Laufe des Arbeiterinnenlebens in der Art Camponotus rufipes. Mithilfe einer lückenlosen Verfolgung der Tagesaktivitäten von individuell markierten Tieren in Subkolonien über bis zu 11 Wochen konnte eine altersabhängige Arbeitsteilung zwischen Innen- und Außendienstarbeiterinnen nachgewiesen werden. Nach dem Schlüpfen wurden die eher unbeweglichen jungen Ameisen oft durch ältere Brutpflegerinnen versorgt, engagierten sich dann aber schon innerhalb der ersten 48 Stunden ihres Lebens selbst in der Brutpflege. Wahrscheinlich wegen der verminderten Notwendigkeit zur ausgedehnten Futtersuche innerhalb der kleinen Versuchskolonien wechselten nur 60% der Innendienstarbeiterinnen nach ein bis zwei Wochen zum Fouragieren außerhalb der Kolonie. Nicht nur variierte der Prozentsatz des Verhaltensübergangs von Brutpflegerin zur Sammlerin zwischen den Subkolonien, sondern auch innerhalb der Subkolonien unterschieden sich Arbeiterinnen im Zeitverlauf der Aufgabenfolge. Diese Ergebnisse betonen die gezielte, zeitliche Zuweisung von Arbeiterinnen zu einer bestimmten Arbeiterkaste je nach Bedarf der Kolonie. In diesem Experiment waren die Sammlerinnen vorwiegend nur während der Nachtphase außerhalb der Kolonie aktiv, was wiederum eine genaue zeitliche Koordination des Sammelverhaltens auf Tagesbasis zeigt. Da die Futterverfügbarkeit sowie Temperatur- und Luftfeuchte über den Tag hinweg konstant gehalten wurden, scheint die bevorzugte Nachtaktivität endogen und charakteristisch für C. rufipes zu sein. Durch das anschließende Monitoring der Lokomotoraktivität von Arbeiterinnen aus diesen Subkolonien konnte gezeigt werden, dass schon einen Tag alte Ameisen eine funktionierende innere Uhr besitzen. Der Aktivitätsrhythmus mancher Brutpflegerinnen war dabei in Phase mit dem Sammelrhythmus der Kolonie, weswegen man von einer Synchronisation dieser Inndienstarbeiterinnen durch soziale Interaktion mit Außendienstarbeiterinnen ausgehen kann. Doch nutzen beide Kasten ihre innere Uhr auch, um ihre Tagesaktivitäten innerhalb der Kolonie zeitlich abzustimmen? In Kapitel II habe ich die Verhaltensaktivität von C. rufipes Futtersammlerinnen und Brutpflegerinnen in ihrem sozialen Umfeld kontinuierlich für 24 Stunden verfolgt. Da der beschränkte Zugriff zu Futterquellen einer der Faktoren sein könnte, der die Tagesaktivitäten von Ameisen in der Natur beeinflusst, wurden Subkolonien entweder nur pulsartig oder ad libitum gefüttert. Während der Nacht- und ad libitum Fütterung waren Sammlerinnen vorwiegend nachtaktiv, was die Ergebnisse der simplen Zählung von Außendiensttieren in Kapitel I bestätigt. Während der Tagesfütterung wurden die Sammlerinnen tagaktiv, was die flexible und adaptive zeitliche Anpassung dieses täglichen Verhaltens veranschaulicht. Unabhängig von der Fütterungszeit waren Brutpflegerinnen rund um die Uhr aktiv, wobei sie die größte Zeit mit Fütterung und Säuberung der Brut verbrachten. Jedoch konnte kurz nach den Fütterungspulsen ein kurzer Aktivitätsanstieg verzeichnet werden, welcher auf die erhöhte Interaktion durch Trophallaxis mit den Sammlerinnen zurückzuführen ist. Wie bereits schon in Kapitel I angedeutet, können Außendiensttiere mithilfe dieses sozialen Zeitgebers Arbeiterinnen im Nest synchronisieren. Im anschließenden Monitoring der Lokomotoraktivität unter Licht-Dunkel-Bedingungen waren alle rhythmischen Arbeiterinnen einheitlich nachtaktiv, unabhängig von der vorausgegangen Fütterungszeit. Damit werden die endogenen Aktivitätsmuster, die beide Kasten in Isolation zeigen, im sozialen Kontext in Anpassung an die speziellen Anforderungen an die Kasten modifiziert. Schwerpunkt des Kapitels III ist die Untersuchung der potentiellen Faktoren, die die gezeigte Plastizität der Tagesrhythmen bei Ameisen der Art C. rufipes bedingen. Da unter anderem das Vorhandensein von Brut und Artgenossinnen sozialen Kontext signalisieren können, wurde der Effekt dieser Faktoren auf die endogenen Rhythmen von ansonsten isolierten Individuen untersucht. Selbst in Sammlerinnen verursachte der Kontakt zu Brut ein arrhythmisches Aktivitätsmuster, welches dem Verhaltensmuster von Brutpflegerinnen innerhalb der Kolonie gleicht. Wie schon in Kapitel I und II deutlich wurde, könnten soziale Interaktionen einen wesentlichen Beitrag zur Synchronisation der Nestaktivitäten leisten. Dazu wurden Gruppen getrennt voneinander mit phasenverschobenen Licht-Dunkel-Zyklen entraint, und Tiere anschließend in paarweisem Kontakt durch ein Netzgitter aufgezeichnet. Beide Individuen verschoben einen Teil ihrer Aktivität in die Aktivitätsperiode des Partners. Damit modulierten beide getesteten sozialen Faktoren die endogenen Rhythmen der Arbeiterinnen, was letztendlich zur kontextabhängigen Plastizität der Rhythmen in Ameisenkolonien beiträgt. Obwohl Brutpflegerinnen die meisten Verhaltensweisen arrhythmisch während des ganzen Tages ausüben (Kapitel II), zeigten vorangegangene Studien rhythmische Brutverlagerungen bei Brutpflegerinnen der Camponotus-Arten. Da dieses Verhalten die Brutentwicklung fördert, scheint das Timing der Verlagerungen innerhalb des ansonsten dunklen Nestes essentiell zu sein. In Kapitel IV verfolgte ich die Verlagerungsaktivität von allen Brutpflegerinnen in Subkolonien der Art C. mus. Unter den gesichert synchronisierten Bedingungen eines LD-Zykluses basierte das Brutverlagerungsmuster auf der rhythmischen, abwechselnden Aktivität von zwei Subpopulationen mit bevorzugter Verlagerungsrichtung in entweder den warmen oder kalten Bereich des Temperaturgradienten zu bestimmten Tageszeiten. Obwohl die soziale Interaktion nach Pulsfütterung einen deutlichen Einfluss auf die Nestaktivität bei C. rufipes hatte (Kapitel I und II), reichte diese Interaktion nicht aus um den Brutverlagerungsrhythmus bei C. mus innerhalb des dunklen Nests (d.h. unter Abwesenheit sonstiger Zeitgeber) zu synchronisieren. Nichtsdestotrotz zeigte der Freilauf der Brutverlagerungsrhythmen in einigen Brutpflegerinnen die Beteiligung einer inneren Uhr, welche durch anderweitige nicht-photische Zeitgeber wie Temperatur- und Feuchtigkeitszyklen synchronisiert werden könnte. Tageszyklen in Temperatur und Feuchtigkeit könnten nicht nur relevant sein für Aktivitäten innerhalb des Nests, sondern auch für die Fouragieraktivität außerhalb des Nests. In Kapitel V wurden Fouragierrhythmen im Freiland bei den sympatrisch vorkommenden Ameisenarten C. mus und C. rufipes in Abhängigkeit von abiotischen Faktoren betrachtet. Obwohl die beiden Arten unter Laborbedingungen ähnliche kritische Temperaturgrenzen aufzeigten, waren die Fourageure der Art C. mus strikt tagaktiv und sammelten deswegen unter höheren Temperaturen Futter als die vorwiegend nachtaktiven Fourageure der Art C. rufipes. Bei C. rufipes Kolonien mit erhöhter Tagaktivität wiesen Markierexperimente das Vorkommen von zeitlich spezialisierten Fourageur-Subpopulationen nach. Damit deuten die Ergebnisse nicht nur das Vorkommen von unterschiedlichen zeitlichen Nischen innerhalb der beiden Camponotus-Arten an, sondern auch zwischen Arbeiterinnen von Kolonien derselben Art. Zusammenfassend gesehen umspannt die zeitliche Organisation in Kolonien der Camponotus-Ameisen nicht nur die zeitliche Planung der Aufgaben, die über das Arbeiterinnenleben hinweg ausgeführt werden, sondern auch das genaue Terminierung von Tagesaktivitäten. Bereits nach dem Schlüpfen besitzen allen Arbeiterinnen eine funktionsfähige und für die zeitliche Organisation notwendige innere Uhr. Während der Licht-Dunkel-Zyklus und Futterverfügbarkeit die bedeutenden Zeitgeber für Fourageure zu sein scheinen, könnten Brutpflegerinnen eher auf nicht-photische Zeitgeber wie soziale Interaktion, Temperatur- und Feuchtigkeitszyklen angewiesen sein. KW - circadian clocks KW - behavioral rhythms KW - Camponotus KW - zeitgeber KW - division of labor KW - temporal organization KW - zeitliche Organisation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149382 ER - TY - THES A1 - Chouhan, Nitin Singh T1 - Time-odor learning in \(Drosophila\) \(melanogaster\) T1 - Olfaktorisches Zeitgedächtnis bei \(Drosophila\) \(melanogaster\) N2 - Endogenous clocks help animals to anticipate the daily environmental changes. These internal clocks rely on environmental cues, called Zeitgeber, for synchronization. The molecular clock consists of transcription-translation feedback loops and is located in about 150 neurons (Helfrich-Förster and Homberg, 1993; Helfrich-Förster, 2005). The core clock has the proteins Clock (CLK) and Cycle (CYC) that together act as a transcription activator for period (per) and timeless (tim) which then, via PER and TIM block their own transcription by inhibiting CLK/CYC activity (Darlington et al., 1998; Hardin, 2005; Dubruille and Emery, 2008). Light signals trigger the degradation of TIM through a blue-light sensing protein Cryptochrome (CRY) and thus, allows CLK/CYC to resume per and tim transcription (Emery et al., 1998; Stanewsky et al., 1998). Therefore, light acts as an important Zeitgeber for the clock entrainment. The mammalian clock consists of similarly intertwined feedback loops. Endogenous clocks facilitate appropriate alterations in a variety of behaviors according to the time of day. Also, these clocks can provide the phase information to the memory centers of the brain to form the time of day related associations (TOD). TOD memories promote appropriate usage of resources and concurrently better the survival success of an animal. For instance, animals can form time-place associations related to the availability of a biologically significant stimulus like food or mate. Such memories will help the animal to obtain resources at different locations at the appropriate time of day. The significance of these memories is supported by the fact that many organisms including bees, ants, rats and mice demonstrate time-place learning (Biebach et al. 1991; Mistlberger et al. 1997; Van der Zee et al. 2008; Wenger et al. 1991). Previous studies have shown that TOD related memories rely on an internal clock, but the identity of the clock and the underlying mechanism remain less well understood. The present study demonstrates that flies can also form TOD associated odor memories and further seeks to identify the appropriate mechanism. Hungry flies were trained in the morning to associate odor A with the sucrose reward and subsequently were exposed to odor B without reward. The same flies were exposed in the afternoon to odor B with and odor A without reward. Two cycles of the 65 reversal training on two subsequent days resulted in the significant retrieval of specific odor memories in the morning and afternoon tests. Therefore, flies were able to modulate their odor preference according to the time of day. In contrast, flies trained in a non-reversal manner were unable to form TOD related memories. The study also demonstrates that flies are only able to form time-odor memories when the two reciprocal training cycles occur at a minimum 6 h interval. This work also highlights the role of the internal state of flies in establishing timeodor memories. Prolonged starvation motivates flies to appropriate their search for the food. It increases the cost associated with a wrong choice in the T-maze test as it precludes the food discovery. Accordingly, an extended starvation promotes the TOD related changes in the odor preference in flies already with a single cycle of reversal training. Intriguingly, prolonged starvation is required for the time-odor memory acquisition but is dispensable during the memory retrieval. Endogenous oscillators promote time-odor associations in flies. Flies in constant darkness have functional rhythms and can form time-odor memories. In contrast, flies kept in constant light become arrhythmic and demonstrated no change in their odor preference through the day. Also, clock mutant flies per01 and clkAR, show compromised performance compared to CS flies when trained in the time-odor conditioning assay. These results suggest that flies need a per and clk dependent oscillator for establishing TOD related memories. Also, the clock governed rhythms are necessary for the timeodor memory acquisition but not for the retrieval. Pigment-Dispersing Factor (PDF) neuropeptide is a clock output factor (Park and Hall, 1998; Park et al., 2000; Helfrich-Förster, 2009). pdf01 mutant flies are unable to form significant time-odor memories. PDF is released by 8 neurons per hemisphere in the fly brain. This cluster includes the small (s-LNvs) and large (l-LNvs) ventral lateral neurons. Restoring PDF in these 16 neurons in the pdf01 mutant background rescues the time-odor learning defect. The PDF neuropeptide activates a seven transmembrane G-protein coupled receptor (PDFR) which is broadly expressed in the fly brain (Hyun et al., 2005). The present study shows that the expression of PDFR in about 10 dorsal neurons (DN1p) is sufficient for robust time-odor associations in flies. 66 In conclusion, flies use distinct endogenous oscillators to acquire and retrieve time-odor memories. The first oscillator is light dependent and likely signals through the PDF neuropeptide to promote the usage of the time as an associative cue during appetitive conditioning. In contrast, the second clock is light independent and specifically signals the time information for the memory retrieval. The identity of this clock and the underlying mechanism are open to investigation. N2 - Die endogenen circadianen Uhren helfen Tieren, die täglichen Veränderungen der Umwelt zu antizipieren. Diese internen Uhren stützen sich auf externe Umweltreize, sogenannte Zeitgeber, die den Tagesrhythmus vorgeben. Im Fliegengehirn bilden etwa 150 Neuronen die zentrale innere Uhr (Helfrich-Förster and Homberg, 1993; Helfrich- Förster, 2005). Diese Neuronen exprimieren die molekulare Uhr, die aus Transkriptions- Translations-Feedback-Schleifen besteht. Die Uhr besitzt die Proteine Clock (CLK) und Cycle (CYC), die zusammen die Transkription von period (per) und timeless (tim) aktivieren. PER und TIM bilden dann ein Heterodimer um die Transkription von clk und cyc zu blockieren (Darlington et al., 1998; Hardin, 2005; Dubruille and Emery, 2008). Lichtsignale lösen den Abbau von TIM durch das für blaues Licht sensitive‚ 'Sensing Protein Cryptochrome‘ (CRY) aus, daß wiederum CLK und CYC freisetzt um die per und tim Transkription wieder aufzunehmen (Emery et al., 1998; Stanewsky et al., 1998). Daher wirkt Licht als wichtiger Zeitgeber. Die innere Uhr der Säuger besteht aus ähnlich miteinander verflochtenen Rückkopplungsschleifen. Die internen Uhren ermöglichen und erleichtern Verhaltensveränderungen in einer Vielzahl von Situation, entsprechend der Tageszeit. Zudem wird die Information den jeweiligen Speicherorten im Gehirn bereit gestellt, um zeitbezogene Gedächtnisbildung zu ermöglichen. Zeitabhängige Gedächtnisbildung sorgt für eine angemessene Nutzung der Ressourcen und sichert gleichzeitig das Überleben des Tieres. Zum Beispiel können Tiere Zeit-Ort-Assoziationen im Zusammenhang mit der Verfügbarkeit einer biologisch wichtigen Ressource, wie Nahrung oder Paarungspartnern bilden. Solche Assoziationen helfen dem Tier Ressourcen an verschiedenen Orten, abhängig von der Tageszeit, zu erschließen. Die Wichtigkeit dieser Fähigkeit wird durch die Tatsache gestützt, daß zum Beispiel Bienen, Ameisen, Ratten und Mäuse ein zeitlich abhängiges Ortgedächtnis bilden können (Biebach et al. 1991; Mistlberger et al. 1997; Van der Zee et al. 2008; Wenger et al. 1991). Frühere Studien haben gezeigt, daß zeitbezogene Erinnerungen auf einer internen Uhr beruhen. Die genaue Identität dieser Uhr und die zugrunde liegenden Mechanismen sind jedoch nicht ausreichend bekannt. In der vorliegenden Studie wird gezeigt, daß Fliegen in der Lage sind ein zeitabhängiges olfaktorisches Gedächtnis zu bilden. Zudem wird versucht die zugrunde liegenden molekularen Mechanismen zu identifizieren. Hungrige Fliegen werden zu verschiedenen Tageszeiten konditioniert verschiedene Gerüche mit einer Saccharose-Belohnung zu assoziieren. Morgens ist Geruch A mit Zucker gepaart während Geruch B ohne Zucker präsentiert wird, am Nachmittag ist Geruch B belohnt, Geruch A nicht. Dieses reziproke Training wird an zwei aufeinander folgenden Tagen durchgeführt. Am dritten Tag werden die Fliegen entweder am Morgen oder Nachmittag auf ihre Geruchspräferenz zwischen A und B getestet. Die Fliegen modulieren ihre Geruchspräferenz abhängig von der Tageszeit. Im Gegensatz dazu sind Fliegen, die nicht mittels eines reziproken Trainings konditioniert wurden, nicht in der Lage, ein zeitabhängiges olfaktorisches Gedächtnis zu bilden. Die Ergebnisse zeigen auch, daß Fliegen nur dann in der Lage sind zeitbezogene Erinnerungen zu bilden, wenn die beiden reziproken Trainingszyklen mindestens 6 h voneinander getrennt durchgeführt werden. Die Arbeit ebeleuchtet zudem die Rolle des internen Zustands der Fliegen im Kontext des zeitabhängigen olfaktorischen Gedächtnisses. Länger andauernder Hunger motiviert die Fliegen stärker ihre Suche nach Nahrung zeitlich anzupassen. Schon ein Zyklus reziproken Trainings reicht für die Bildung Zeit-spezifischen Geruchsgedächtnisses aus. Die Erhöhung der Kosten, die mit einer falschen Wahl in einem T-maze-Test verbunden ist, kann offenbar zeitabhängige Änderungen der Geruchspräferenzen in Fliegen begünstigen. Erstaunlicherweise begünstigt der Hunger speziell die Gedächtnisbildung, ist jedoch für den Test nicht erforderlich. Endogene circadiane Oszillatoren werden für das zeitabhängige olfaktorische Gedächtnis der Fliegen gebraucht. Fliegen, die im Dauerdunkel gehalten wurden, zeigen rhythmisches Verhalten so wie zeitbezogenes olfaktorisches Gedächtnis. Im Gegensatz dazu sind im Dauerlicht aufgezogene Fliegen arrhythmisch und zeigen kein Zeit-spezifisches Geruchsgedächtnis. Zudem sind auch die arrhythmischen Mutanten per01 und clkAR in der Zeit-Geruchskonditionierung gestört. Diese Ergebnisse legen nahe, daß Fliegen einen per- und clk-abhängigen Oszillator benötigen, der von externen Lichtsignalen abhängig ist, um ein zeitabhängiges olfaktorisches Gedächtnis zu bilden. Außerdem wird der durch die innere Uhr vorgegebene Rhythmus nur während der Gedächtnisbildung und nicht für das Abrufen des Gelernten benötigt. Pigment dispersing factor (PDF) ist ein Neuropeptid, das von Neuronen der inneren Uhr gebildet wird (Park and Hall, 1998; Park et al., 2000; Helfrich-Förster, 2009). Die pdf01-Mutante ist nicht in der Lage ein signifikantes zeitbezogenes olfaktorisches Gedächtnis zu bilden. PDF wird von jeweils einer Gruppe von 8 Neuronen pro Hemisphäre, die die kleinen und großen ventral-lateralen Neuronen umfaßt, sezerniert. Die Wiederherstellung der Expression von PDF in diesen 16 Neuronen im pdf01 Mutanten Hintergrund, rettet das zeitabhängige olfaktorische Gedächtnis. Das PDF-Neuropeptid aktiviert einen sieben-Transmembran-G-Protein- gekoppelten Rezeptor (PDFR), der weit verbreitet im Fliegenhirn exprimiert wird (Hyun et al., 2005). Diese Studie zeigt, daß die Expression von PDFR in ~ 10 dorsalen Neuronen (DN1p) für eine robuste zeitabhängige olfaktorische Gedächtnisbildung in Fliegen ausreicht. Zusammenfassend läßt sich sagen, daß Fliegen verschiedene endogene Oszillatoren benutzen um ein zeitabhängiges olfaktorische Gedächtnis zu bilden und abzurufen. Der erste Oszillator ist lichtabhängig und wahrscheinlich durch das PDF- Neuropeptid vermittelt. Es ermöglicht die Verwendung der Information 'Zeit' als assoziatives Signal während der appetitiven Konditionierung. Im Gegensatz dazu ist die zweite Uhr lichtunabhängig und vermittelt speziell die Zeitinformation für die Gedächtnisabfrage. Die Identität der zweiten Uhr und der zugrunde liegende Mechanismus sowie die zugrunde liegende Kommunikation zwischen den Neuronen, bedarf weiterer Untersuchungen. KW - Learning and memory KW - Circadian rhythms KW - Odor-feeding-time memory KW - Taufliege KW - Tagesrhythmus KW - Geruchswahrnehmung KW - Konditionierung KW - Molekulargenetik Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-145675 ER - TY - THES A1 - Kay, Janina T1 - The circadian clock of the carpenter ant \(Camponotus\) \(floridanus\) T1 - Die circadiane Uhr der Rossameise \(Camponotus\) \(floridanus\) N2 - Due to the earth´s rotation around itself and the sun, rhythmic daily and seasonal changes in illumination, temperature and many other environmental factors occur. Adaptation to these environmental rhythms presents a considerable advantage to survival. Thus, almost all living beings have developed a mechanism to time their behavior in accordance. This mechanism is the endogenous clock. If it fulfills the criteria of (1) entraining to zeitgebers (2) free-running behavior with a period of ~ 24 hours (3) temperature compensation, it is also referred to as “circadian clock”. Well-timed behavior is crucial for eusocial insects, which divide their tasks among different behavioral castes and need to respond to changes in the environment quickly and in an orchestrated fashion. Circadian rhythms have thus been studied and observed in many eusocial species, from ants to bees. The underlying mechanism of this clock is a molecular feedback loop that generates rhythmic changes in gene expression and protein levels with a phase length of approximately 24 hours. The properties of this feedback loop are well characterized in many insects, from the fruit fly Drosophila melanogaster, to the honeybee Apis mellifera. Though the basic principles and components of this loop are seem similar at first glance, there are important differences between the Drosophila feedback loop and that of hymenopteran insects, whose loop resembles the mammalian clock loop. The protein PERIOD (PER) is thought to be a part of the negative limb of the hymenopteran clock, partnering with CRYPTOCHROME (CRY). The anatomical location of the clock-related neurons and the PDF-network (a putative in- and output mediator of the clock) is also well characterized in Drosophila, the eusocial honeybee as well as the nocturnal cockroach Leucophea maderae. The circadian behavior, anatomy of the clock and its molecular underpinnings were studied in the carpenter ant Camponotus floridanus, a eusocial insect Locomotor activity recordings in social isolation proved that the majority of ants could entrain to different LD cycles, free-ran in constant darkness and had a temperature-compensated clock with a period slightly shorter than 24 hours. Most individuals proved to be nocturnal, but different types of activity like diurnality, crepuscularity, rhythmic activity during both phases of the LD, or arrhythmicity were also observed. The LD cycle had a slight influence on the distribution of these activities among individuals, with more diurnal ants at shorter light phases. The PDF-network of C. floridanus was revealed with the anti-PDH antibody, and partly resembled that of other eusocial or nocturnal insects. A comparison of minor and major worker brains, only revealed slight differences in the number of somata and fibers crossing the posterior midline. All in all, most PDF-structures that are conserved in other insects where found, with numerous fibers in the optic lobes, a putative accessory medulla, somata located near the proximal medulla and many fibers in the protocerebrum. A putative connection between the mushroom bodies, the optic lobes and the antennal lobes was found, indicating an influence of the clock on olfactory learning. Lastly, the location and intensity of PER-positive cell bodies at different times of a 24 hour day was established with an antibody raised against Apis mellifera PER. Four distinct clusters, which resemble those found in A. mellifera, were detected. The clusters could be grouped in dorsal and lateral neurons, and the PER-levels cycled in all examined clusters with peaks around lights on and lowest levels after lights off. In summary, first data on circadian behavior and the anatomy and workings of the clock of C. floridanus was obtained. Firstly, it´s behavior fulfills all criteria for the presence of a circadian clock. Secondly, the PDF-network is very similar to those of other insects. Lastly, the location of the PER cell bodies seems conserved among hymenoptera. Cycling of PER levels within 24 hours confirms the suspicion of its role in the circadian feedback loop. N2 - Durch die Rotation der Erde um die Sonne, entstehen rhythmische, tägliche und saisonale Änderungen in der Beleuchtung, Temperatur und vielen anderen Umweltfaktoren. Die Anpassung an diese Umweltrhythmen stellt einen großen Überlebensvorteil dar. Deshalb haben fast alle bekannten Lebewesen einen Mechanismus zur Steuerung ihres Verhaltens in Relation zu diesen Änderungen entwickelt. Dieser Mechanismus ist die innere Uhr, die auch als zirkadiane Uhr bezeichnet wird wenn sie die folgenden Kriterien erfüllt: (1) Entrainment auf Zeigeber (2) Freilaufendes Verhalten mit einer Periodenlänge von ungefähr 24 Stunden (3) Temperatur-Kompensation. Den korrekten Zeitpunkt für ein bestimmtes Verhalten einzuhalten ist äußerst wichtig für soziale Insekten. Sie verteilen ihre Aufgaben unter verschiedenen Verhaltens-Kasten und müssen in der Lage sein schnell und organisiert auf Umweltänderungen zu reagieren. Deshalb stellen sie interessante Objekte für das Studium circadianen Verhaltens dar, welches schon in vielen eusozialen Spezies wie Ameisen und Bienen beobachtet wurde. Der der inneren Uhr zugrunde liegende Mechanismus ist eine molekulare Rückkopplungsschleife, die rhythmische Veränderungen in der Expression von Genen und dem Akkumulationsniveau von Proteinen in einem 24 Stunden Zyklus hervorruft. Die Eigenschaften dieser Rückkopplungsschleife sind in vielen Organismen, von der Taufliege Drosophila melanogaster, bis zur Hongbiene Apis mellifera, bereits gut charakterisiert. Obwohl die Gemeinsamkeiten der zugrunde liegenden Prinzipien und Bestandteile stark auffallen, gibt es wichtige Unterschiede zwischen der Rückkopplungsschleife von Drosophila und der eher mammal organisierten Rückkopplungsschleifen hymenopterer Insekten. Das PERIOD (PER) Protein ist vermutlich ein Bestandteil des hemmenden Teils der Schleife und verbindet sich mit CRYPTOCHROME (CRY). Die anatomischen Eigenschaften der Uhrneurone und des PDF-Netzwerks (vermutlich der Ein- und Ausgang für Informationen im Uhrnetzwerk) sind ebenfalls in der Taufliege, eusozialen Honigbiene, sowie in der nachtaktiven Schabe Leucophea maderae sehr gut beschrieben. Die Rossameise Camponotus floridanus wurde hier als Studienobjekt verwendet, um zirkadianes Verhalten, die Anatomie der Uhr sowie die ihr zu Grunde liegenden molekularen Strukturen in einem weiteren eusozialen Organismus zu analysieren. Die Aufzeichnung von Lauf-Verhalten in sozialer Isolation bewies, dass der Großteil der Ameisen in der Lage ist auf verschiedene LD-Zyklen zu entrainen, freilaufendes Verhalten im Dunkeln aufweist und eine temperaturkompensierte Uhr mit einer Periodenlänge von etwa 24 Stunden besitzt. Die meisten Individuen waren nachtaktiv, aber es wurden auch andere Verhaltensmuster wie Tagaktivität, Dämmerungsaktivität, Rhythmische Aktivität während beiden LD Phasen sowie Arrhythmizität beobachtet. Der LD-Zyklus hatte einen leichten Einfluss auf die Verteilungsmuster dieser Aktivitätstypen. Mehr tagaktive Tiere wurden bei kurzen Lichtphasen beobachtet. Das PDF-Netzwerk in C. floridanus konnte mit Hilfe des anti-PDH Antikörpers sichtbar gemacht werden und ähnelte in Teilen dem anderer eusozialer oder nachtaktiver Insekten. Ein Vergleich zwischen den Gehirnen kleiner und großer Arbeiter zeigte nur geringe Unterschiede in der Anzahl von Zellkörpern und Fasern die die posteriore Mitte des Gehirns überschreiten. Im Gesamten konnte die Mehrzahl der zwischen den anderen Insektengehirnen konservierten PDF-Strukturen, wie viele Fasern in den optischen Loben, eine akzessorische Medulla, Zellkörper neben der proximalen Medulla und viele Verzweigungen im Protozerebrum, gefunden werden. Eine mögliche Verbindung zwischen den Pilzkörpern, optischen Loben und den Antennalloben wurde identifiziert und weist auf einen Einfluss der Uhr auf olfaktorisches Lernen hin. Zu guter letzte wurde mit Hilfe eines gegen Bienen-PER gerichteten Antikörpers die Lage und Intensität der PER-Zellkörper während mehrerer Zeitpunkte im Verlauf von 24 Stunden bestimmt. Vier abgegrenzte Gruppen von Zellkörpern, die den Gruppen in A. mellifera ähneln, konnten identifiziert werden. Diese Gruppen teilen sich in dorsale und laterale Neuronen und der Proteingehalt an PER oszilliert in allen untersuchten Gruppen, mit dem Höhepunkt bei Licht-an und dem Tiefpunkt kurz nach Licht-aus. Zusammenfassend ist zu sagen, dass erste Erkenntnisse über zirkadianes Verhalten, die Anatomie und die Grundlagen der inneren Uhr von C. floridanus gewonnen werden konnten. Erstens, erfüllt das Verhalten alle Kriterien für die Präsenz einer inneren Uhr. Zweitens, ist das PDF-Netzwerk ähnlich dem anderer Insekten. Letztens, scheint die Lage der PER-positiven Neurone innerhalb der Hymenopteren konserviert. Die Oszillation von PER bestätigt den Verdacht seiner Beteiligung an der Rückkopplungsschleife der inneren Uhr. KW - Chronobiologie KW - Tagesrhythmus KW - Camponotus floridanus KW - Protein KW - Innere Uhr KW - Endogenous clock KW - Circadiane Uhr KW - Circadian Clock KW - Ant KW - Ameise KW - Insect KW - Insekt KW - Protein KW - Circadianer Rhythmus KW - Tagesrhythmik Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158061 ER - TY - THES A1 - Dusik, Verena T1 - Immunhistochemische und funktionelle Charakterisierung der Mitogen-aktivierten Proteinkinase p38 in der inneren Uhr von Drosophila melanogaster T1 - Immunhistochemical and functional characterisation of the mitogen-activated protein kinase p38 in the endogenous clock of Drosophila melanogaster N2 - Circadianes und Stress-System sind zwei physiologische Systeme, die dem Organismus helfen sich an Veränderungen ihrer Umwelt anzupassen. Während letzteres spontane und schnelle Antworten auf akute, unvorhersehbare Umweltreize liefert, sagt das circadiane System täglich wiederkehrende Ereignisse vorher and bereitet den Organismus so vorzeitig auf diese nahende Umweltveränderung vor. Dennoch, trotz dieser unterschiedlichen Reaktionsmechanismen agieren beide Systeme nicht komplett autonom. Studien der vergangen Jahre belegen vielmehr eine Interaktion beider Systeme. So postulieren sie zum einem Unterschiede in der Stressantwort in Abhängigkeit von der Tageszeit zu der der Reiz auftritt und weisen zugleich auf eine Zunahme von gestörten biologischen Tagesrhythmen, wie zum Beispiel Schlafstörungen, in Folge von unkontrollierten oder exzessiven Stress hin. Ebenso liefern kürzlich durchgeführte Studien an Vertebraten und Pilzen Hinweise, dass mit p38, eine Stress-aktivierte Kinase, an der Signalweiterleitung zur inneren Uhr beteiligt ist (Hayashi et al., 2003), sogar durch dieses endogene Zeitmesssystem reguliert wird (Vitalini et al., 2007; Lamb et al., 2011) und deuten damit erstmals eine mögliche Verbindung zwischen Stress-induzierten und regulären rhythmischen Anpassungen des Organismus an Umweltveränderungen an. Molekulare und zelluläre Mechanismen dieser Verknüpfung sind bisher noch nicht bekannt. Während die Rolle von p38 MAPK bei der Stress- und Immunantwort in Drosophila melanogaster gut charakterisiert ist, wurden Expression und Funktion von p38 in der inneren Uhr hingegen bislang nicht untersucht. Die hier vorliegende Arbeit hatte daher zum Ziel mittels immunhistochemischer, verhaltensphysiologischer und molekularer Methoden eine mögliche Rolle der Stress-aktivierten Kinase im circadianen System der Fliege aufzudecken. Antikörperfärbungen sowie Studien mit Reporterlinien zeigen deutliche Färbesignale in den s-LNv, l-LNv und DN1a und erbringen erstmals einen Nachweis für p38 Expression in den Uhrneuronen der Fliege. Ebenso scheint die Aktivität von p38 MAPK in den DN1a uhrgesteuert zu sein. So liegt p38 vermehrt in seiner aktiven Form in der Dunkelphase vor und zeigt, neben seiner circadian regulierten Aktivierung, zusätzlich auch eine Inaktivierung durch Licht. 15-Minuten-Lichtpulse in der subjektiven Nacht führen zu einer signifikanten Reduktion von aktivierter, phosphorylierter p38 MAPK in den DN1a von Canton S Wildtypfliegen im Vergleich zu Fliegen ohne Lichtpuls-Behandlung. Aufzeichnungen der Lokomotoraktivität offenbaren zusätzlich die Notwendigkeit von p38 MAPK für wildtypisches Timing der Abendaktivität sowie zum Erhalt von 24-Stunden-Verhaltensrhythmen unter konstanten Dauerdunkel-Bedindungen. So zeigen Fliegen mit reduzierten p38 Level in Uhrneuronen einen verzögerten Beginn der Abendaktivität und stark verlängerte Freilaufperioden. In Übereinstimmung mit Effekten auf das Laufverhalten scheint darüber hinaus die Expression einer dominant-negativen Form von p38b in Drosophila’s wichtigsten Uhrneuronen eine verspätete nukleäre Translokation von Period zur Folge zu haben. Westernblots legen zusätzlich einen Einfluss von p38 auf den Phosphorylierungsgrad von Period nahe und liefern damit einen mögliche Erklärung für den verspäteten Kerneintritt des Uhrproteins. Abschließende Stützung der Westernblotergebnisse bringen in vitro Kinasenassays und deuten auf p38 als eine potentielle „Uhrkinase“ hin, welche auch in vivo Period an Serin 661 sowie weiteren potentiellen Phosphorylierungsstellen phosphorylieren könnte. Zusammengenommen deuten die Ergebnisse der hier vorliegenden Arbeit eindeutig auf eine bedeutende Rolle von p38, neben dessen Funkion im Stress-System, auch im circadianen System der Fliege hin und offenbaren damit die Möglichkeit, dass p38 als Schnittstelle zwischen beider Systeme fungiert. N2 - The circadian and the stress system are two distinct physiological systems that help the organism to adapt to environmental challenges. While the latter elicits reactive responses to acute environmental changes, the circadian system predicts daily occurring alterations and prepares the organism in advance. However, despite of these differences both responses are not mutually exclusive. Studies in the last years obviously prove a strong interaction between both systems showing a strong time-related stress response depending on the time of day of stressor presentation on the one hand and increased disturbances of daily rhythms, like sleep disorders, in consequence of uncontrolled or excessive stress on the other. In line with this fact, recent studies in vertebrates and fungi indicate that p38, a stress-activated Kinase, is involved in signaling to the circadian clock (Hayashi et al., 2003) and in turn is additionally regulated by this timekeeping system (Vitalini et al., 2007; Lamb et al., 2011) providing an interesting link between stress-induced and regularly rhythmic adaptations of the organism to environmental changes. However, little is known about molecular and cellular mechanisms of this interconnection. In Drosophila melanogaster the role of p38 MAPK is well characterized in terms of immune and stress response, p38 expression and function in the circadian clock has not been reported so far. Therefore, the present thesis aimed to elucidate a putative role of the stress-activated Kinase in the fly’s circadian system using an immunohistochemical, behavioral as well as molecular approach. Surprisingly, for the first time antibody as well as reporterline studies cleary prove p38 expression in Drosophila clock neurons showing visible staining in s-LNvs, l-LNvs and DN1as. Moreover p38 MAPK in DN1as seems to be activated in a clock-dependent manner. p38 is most active under darkness and, besides its circadian activation, additionally gets inactivated by light. 15 minutes light pulse applied during the dark phase lead to a significant reduction in phosphorylated and activated p38 MAPK in Canton S wildtype flies compared to flies without light pulse treatment. In addition, locomotor activity recordings reveal that p38 is essential for a wild-type timing of evening activity and for maintaining ~24h behavioral rhythms under constant darkness. Flies with reduced p38 activity in clock neurons show delayed evening activity onsets and drastically lengthened the period of their free-running rhythms. In line with these effects on locomotor behavior, the nuclear translocation of the clock protein Period is significantly delayed on the expression of a dominant-negative form of p38b in Drosophila’s most important clock neurons. Western Blots reveal that p38 affects the phosphorylation degree of Period, what is likely the reason for its effects on nuclear entry of Period. In vitro kinase assays additionally confirm the Western Blot results and point to p38 as a potential “clock kinase” phosphorylating Period at Serin 661 and putative phosphorylation sites. Taken together, the results of the present thesis clearly indicate a prominent role of p38 in the circadian system of the fly besides its function in stress-input pathways und open up the possibility of p38 MAPK being a nodal point of both physiological systems. KW - Taufliege KW - Biologische Uhr KW - MAP-Kinase KW - Innere Uhr KW - MAPK KW - p38 KW - Phosphorylierung KW - Mitogen-aktivierte Proteinkinase KW - Drosophila melanogaster KW - Circadiane Rhythmen KW - Drosophila Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124636 ER - TY - THES A1 - Amatobi, Kelechi Michael T1 - Circadian clocks determine transport and membrane lipid oscillation in \(Drosophila\) hemolymph in complex interactions between nutrient-type, photic conditions and feeding behaviour T1 - Die innere Uhr bestimmt den Transport und die Membranlipid-Oszillation in der \(Drosophila\) Hämolymphe in komplexen Interaktionen zwischen Nährstofftyp, photischen Bedingungen und Fressverhalten N2 - The interaction between circadian clocks and metabolism is of increasing interest, since clock dysfunction often correlates with metabolic pathologies. Many research articles have been published analysing the impact of factors such as circadian clock, light, feeding time and diet-type on energy homeostasis in various tissues/organs of organisms with most of the findings done in mammals. Little is known about the impact of circadian clock and the above-mentioned factors on circulating lipids, especially the transport form of lipids - diacylglycerol (DG) and membrane lipids such as phosphatidylethanolamine (PE) and phosphatidylcholine (PC) in the Drosophila hemolymph. The fruit fly Drosophila is a prime model organism in circadian, behaviour and metabolism research. To study the role of circadian clock and behaviour in metabolism, we performed an extensive comparative hemolymph lipid (diacylglycerol: DG, phosphatidylethanolamine: PE, phosphatidylcholine: PC) analysis using ultra performance liquid chromatography coupled to time-of-flight mass spectrometry (UPLC-MS) between wild-type flies (WTCS) and clock disrupted mutants (per01). In addition, clock controlled food intake– feeding behaviour was investigated. Time-dependent variation of transport (DG) and membrane lipids (PE and PC) were not rhythmic in WTCS under constant darkness and in per01 under LD, suggesting an impact of light and clock genes on daily lipid oscillations. Day-time and night-time restriction of food led to comparable lipid profiles, suggesting that lipid oscillations are not exclusively entrained by feeding but rather are endogenously regulated. Ultradian oscillations in lipid levels in WTCS under LD were masked by digested fatty acids since lipid levels peaked more robustly at the beginning and end of light phase when flies were fed a lipid- and protein-free diet. These results suggest that metabolite (DG, PE and PC) oscillation is influenced by complex interactions between nutrient-type, photic conditions, circadian clock and feeding time. In conclusion, the results of this thesis suggest that circadian clocks determine transport and membrane lipid oscillation in Drosophila hemolymph in complex interactions between nutrient-type, photic conditions and feeding behaviour. N2 - Die Interaktion zwischen Innerer Uhr und Metabolismus ist von zunehmendem Interesse, weil Störungen der Inneren Uhr oft mit metabolischen Störungen assoziiert sind. Zahlreiche Untersuchungen zum Einfluss verschiedener Faktoren, u.a. der Inneren Uhr, Lichtregime, Zeitpunkt der Nahrungsaufnahme und Art der Diät, auf die Energiehomöostase in verschiedenen Geweben und Organen wurden vor allem in Säugetieren durchgeführt. Der Einfluss der Inneren Uhr und der oben genannten weiteren Faktoren auf zirkulierende Lipide in der Hämolymphe von Drosophila, insbesondere auf die Transportform Diacylglycerol (DG) und Membranlipide (wie z.B. Phosphatidylethanolamin (PE) und Phospathidylcholine (PC)), ist jedoch kaum untersucht. Die Taufliege Drosophila dient dabei als hervorragendes Modell in der circadianen Verhaltens- und Metabolismusforschung. Um die Rolle der Inneren Uhr und circadianen Verhaltens auf den Metabolismus zu untersuchen, haben wir eine extensive und vergleichende Lipidanalyse (DG, PE, PC) in der Hämolymphe von Wildtyp-Fliegen (WTCS) und Uhrmutanten (per01) mittels Ultrahochleistungs-Flüssigkeits-chromatographie gekoppelt mit Flugzeit-Massenspektrometrie (UPLC-MS) durchgeführt. Gleichzeitig wurde auch die circadian gesteuerte Nahrungsaufnahme untersucht. Die zeitabhängigen Schwankungen der Transport-(DG) und Membranlipide (PE, PC) unterlagen keiner tageszeitlichen Rhythmik in konstanter Dunkelheit in Wildtypfliegen, und unter Licht-Dunkelwechsel (LD) in per01 Mutanten. Dies weist auf einen Einfluss der Inneren Uhr und des Lichts auf tägliche Lipidschwankungen hin. Restriktion der Futtergabe auf entweder Tag oder Nacht ergab ähnliche Lipidprofile, was darauf hinweist, daß Schwankungen in den Lipidkonzentrationen nicht ausschliesslich durch die Nahrungsaufnahme, sondern auch endogen geregelt werden. Ultradiane Oszillationen in der Lipidkonzentration in WTCS unter LD-Bedingungen wurden durch mit der Nahrung aufgenommene Fettsäuren maskiert, zeigten sich aber deutlicher zu Beginn und Ende der Lichtphase wenn die Fliegen auf einer Lipid- und Protein-freien Diät gehalten wurden. Diese Ergebnisse weisen darauf hin, daß Oszillationen in Lipiden (DG, PE und PC) in der Hämolymphe durch eine komplexe Interaktion zwischen Diättyp, Lichtregime, Innerer Uhr und Zeitpunkt der Nahrungsaufnahme bestimmt wird. Zusammengenommen zeigen die Resultate dieser Arbeit, dass die Innere Uhr in komplexer Interaktion mit Diättyp, Lichtregime und Freßverhalten das zeitliche Profil von Transport- und Membranlipiden in der Drosophila-Hämolymphe bestimmt. KW - Pharmaceutische Biologie KW - DG diacyglycerol KW - PE Phosphoethanolamine Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-244462 ER - TY - THES A1 - Eck, Saskia T1 - The impact of thermogenetic depolarizations of specific clock neurons on Drosophila melanogaster's circadian clock T1 - Der Einfluss thermogenetischer Depolarisationen spezifischer Uhrneurone auf Drosophila melanogasters circadiane Uhr N2 - The rotation of the earth around its own axis determines periodically changing environmental conditions, like alterations in light and temperature. For the purpose of adapting all organisms’ behavior, physiology and metabolism to recurring changes, endogenous clocks have evolved, which allow the organisms to anticipate environmental changes. In chronobiology, the scientific field dealing with the investigation of the underlying mechanisms of the endogenous clock, the fruit fly Drosophila melanogaster serves as a beneficial model organism. The fruit fly’s circadian clock exhibits a rather simple anatomical organization, but nevertheless constitutes homologies to the mammalian system. Thus also in this PhD-thesis the fruit fly was used to decipher general features of the circadian clock’s interneuronal communication. Drosophila melanogaster’s circadian clock consists of about 150 clock neurons, which are located in the central nervous system of the fly. These clock neurons can be subdivided regarding to their anatomical position in the brain into the dorsal neurons (DN1s, DN2s, DN3s), as well as into the lateral neurons (LPNs, LNds, s-LNvs, l-LNvs). Functionally these clock neuron clusters can be classified as Morning- and Evening oscillators (M- and E- oscillators), driving different parts of the fly’s locomotor activity in light-dark conditions (LD). The Morning-oscillators are represented by the s-LNvs and are known to be the main pacemakers, driving the pace of the clock in constant conditions (constant darkness; DD). The group of Evening-oscillators consists of the LNds, the DN1s and the 5th s-LNv and is important for the proper timing of the evening activity in LD. All of these clock neurons are not functionally independent, but form complex neuronal connections, which are highly plastic in their response to different environmental stimuli (Zeitgebers), like light or temperature. Even though a lot is known about the function and the importance of some clock neuron clusters, the exact interplay between the neurons is not fully known yet. To investigate the mechanisms, which are involved in communication processes among different clock neurons, we depolarized specific clock cells in a temporally and cell-type restricted manner using dTrpA1, a thermosensitive cation channel, which allows the depolarization of neurons by application of temperature pulses (TP) above 29°C to the intact and freely moving fly. Using different clock specific GAL4-driver lines and applying TPs at different time points within the circadian cycle in DD enabled us with the help of phase shift experiments to draw conclusions on the properties of the endogenous clock. The obtained phase shifts in locomotor behavior elicited by specific clock neuronal activation were plotted as phase response curves (PRCs). The depolarization of all clock neurons shifted the phase of activity the strongest, especially in the delay zone of the PRC. The exclusive depolarization of the M oscillators together with the l-LNvs (PDF+ neurons: s-LNvs & l-LNvs) caused shifts in the delay and in the advance zone as well, however the advances were severely enhanced in their temporal occurrence ranging into the subjective day. We concluded that light might have inhibitory effects on the PDF+ cells in that particular part of the PRC, as typical light PRCs do not exhibit that kind of distinctive advances. By completely excluding light in the PRC-experiments of this PhD-thesis, this photic inhibitory input to the PDF+ neurons is missing, probably causing the broadened advance zone. These findings suggest the existence of an inhibitory light-input pathway to the PDF+ cells from the photoreceptive organs (Hofbauer-Buchner eyelet, photoreceptor cells of compound eyes, ocelli) or from other clock neurons, which might inhibit phase advances during the subjective day. To get an impression of the molecular state of the clock in the delay and advance zone, staining experiments against Period (PER), one of the most important core clock components, and against the neuropeptide Pigment Dispersing Factor (PDF) were performed. The cycling of PER levels mirrored the behavioral phase shifts in experimental flies, whereas the controls were widely unaffected. As just those neurons, which had been depolarized, exhibited immediate shifted PER oscillations, this effect has to be rapidly regulated in a cell-autonomous manner. However, the molecular link between clock neuron depolarization and shifts in the molecular clock’s cycling is still missing. This issue was addressed by CREB (cAMP responsive element binding protein) quantification in the large ventrolateral neurons (l-LNvs), as these neurons responded unexpectedly and strongest to the artificial depolarization exhibiting a huge increase in PER levels. It had been previously suggested that CREB is involved in circadian rhythms by binding to regulatory sequences of the period gene (Belvin et al., 1999), thus activating its transcription. We were able to show, that CREB levels in the l-LNvs are under circadian regulation, as they exhibit higher CREB levels at the end of the subjective night relative to the end of the subjective day. That effect was further reinforced by artificial depolarization, independently of the time point of depolarization. Furthermore the data indicate that rises in CREB levels are coinciding with the time point of increases of PER levels in the l-LNvs, suggesting CREB being the molecular link between the neuronal electrical state and the molecular clock. Taking together, the results indicate that a temporal depolarization using dTrpA1 is able to significantly phase shift the clock on the behavioral and protein level. An artificial depolarization at the beginning of the subjective night caused phase delays, whereas a depolarization at the end of the subjective night resulted in advances. The activation of all clock neurons caused a PRC that roughly resembled a light-PRC. However, the depolarization of the PDF+ neurons led to a PRC exhibiting a shape that did not resemble that of a light-mediated PRC, indicating the complex processing ability of excitatory and inhibitory input by the circadian clock. Even though this experimental approach is highly artificial, just the exclusion of light-inputs enabled us to draw novel conclusions on the network communication and its light input pathways. N2 - Die Rotation der Erde um ihre eigene Achse hat periodisch verändernde Umweltbedingungen, wie beispielsweise Veränderungen in den Lichtverhältnissen und der Temperatur, zur Folge. Um das Verhalten, die Physiologie und den Metabolismus eines Organismus an stets wiederkehrende Veränderungen anzupassen, haben sich endogene/circadiane Uhren entwickelt, die es dem Organismus erlauben diese Umweltbedingungen zu antizipieren. In der Chronobiologie, einem wissenschaftlichen Fachbereich, der sich mit der Untersuchung der zugrunde liegenden Mechanismen der Inneren Uhr befasst, dient die Taufliege Drosophila melanogaster als nützlicher Modellorganismus. Die Innere Uhr der Taufliege ist anatomisch eher einfach organisiert, weist trotz alledem jedoch Homologien zum Säugersystem auf. Auch im Rahmen dieser Doktorarbeit diente die Taufliege daher dazu grundlegende Netzwerkeigenschaften der circadianen Uhr zu untersuchen. Die Innere Uhr von Drosophila melanogaster besteht aus ungefähr 150 Uhrneuronen, die sich im zentralen Nervensystem der Fliege befinden. Diese Uhrneurone können, bezüglich ihrer anatomischen Position im Gehirn in die Gruppe der dorsalen Neurone (DN1, DN2, DN3), sowie in die der lateralen Neurone untergliedert werden (LPN, LNd, s-LNv, l-LNv). Funktionell werden diese Uhrneuronengruppen als Morgen- und Abendoszillatoren (M- und E-Oszillatoren) klassifiziert, da sie für unterschiedliche Verhaltensanteile in der Laufaktivität der Fliege unter Licht-Dunkel-Verhältnissen (LD) verantwortlich sind. Die s-LNv stellen dabei die Morgenoszillatoren (M-Oszillatoren) dar und werden als Hauptschrittmacher betrachtet, da sie die Geschwindigkeit der Uhr unter konstanten Bedingungen (Dauerdunkel; DD) bestimmen. Die Gruppe der Abendoszillatoren (EOszillatoren) besteht aus den LNd, einigen DN1 und der fünften s-LNv (5th s-LNv) und ist für die richtige Terminierung der Abendaktivität in LD zuständig. All diese Uhrneurone sind funktionell nicht unabhängig voneinander, sondern bilden komplexe neuronale Verschaltungen untereinander aus, die durch einen hohen Grad an Plastizität bezüglich ihrer Reaktion auf unterschiedliche Umweltparameter (Zeitgeber), wie Licht oder Temperatur, gekennzeichnet sind. Obwohl bereits vieles hinsichtlich der Funktion und der Bedeutung einiger Gruppen von Uhrneuronen bekannt ist, ist das genaue Zusammenspiel unter ihnen immer noch recht unklar. Um die Mechanismen, die in den Kommunikationsprozessen zwischen verschiedenen Uhrneuronen involviert sind, zu untersuchen, machten wir Gebrauch von dTrpA1, einem thermosensitiven Kationenkanal, der es durch die Applizierung von Temperaturpulsen (TP) über 29°C ermöglicht, Neuronen in der intakten und sich frei bewegenden Fliege zeitlich begrenzt und zellspezifisch zu depolarisieren. Mithilfe verschiedener Uhr-spezifischer GAL4-Treiberlinien und der Verabreichung von TP zu verschiedenen Zeitpunkten des circadianen Zyklus in DD, war es uns möglich Rückschlüsse auf die Eigenschaften der Inneren Uhr anhand von Phasen-Verschiebungsexperimenten zu ziehen. Die hervorgerufenen Phasenverschiebungen im Laufverhalten, die durch die Aktivierung spezieller Uhrneuronen hervorgerufen wurden, wurden dabei als Phasen Responz Kurve (engl. phase response curve; PRC) dargestellt. Die Depolarisierung aller Uhrneurone verschob die Phase der Aktivität am stärksten, insbesondere in der Phasen-Verzögerungszone der PRC. Wurden ausschließlich die M-Oszillatoren zusammen mit den l-LNv (PDF+ Neurone: s-LNv & l-LNv) depolarisiert, wurden ebenso Phasenverschiebungen nach vorne, wie auch nach hinten hervorgerufen, jedoch reichten die Verschiebungen nach vorne deutlich in den subjektiven Tag hinein. Daraus schlussfolgerten wir, dass Licht inhibitorischen Einfluss in diesem Bereich der PRC haben muss, da typische Licht-PRCs nicht derart ausgeprägte Vorverschiebungen aufweisen. Aufgrund des vollständigen Lichtausschlusses in den PRC-Versuchen dieser Doktorarbeit fehlt jedoch dieser Licht-vermittelte inhibitorische Einfluss zu den PDF+ Neuronen und führt daher zur zeitlich stark ausgeprägten Phasen-Vorverschiebungszone. Diese Ergebnisse lassen daher vermuten, dass ein inhibitorisch wirkender Licht-vermittelter Eingang zu den PDF+ Neuronen von den photorezeptiven Organen (Hofbauer-Buchner Äuglein, Photorezeptoren der Komplexaugen, Ocellen) oder von anderen Uhrneuronen existieren muss, der die Phasen-Vorverschiebungen während des subjektiven Tages unterdrückt. Um Kenntnis über den molekularen Status der Uhr in der Verzögerungs- und Phasen-Vorverschiebungszone zu erlangen, wurden Färbungen gegen das Protein Period (PER), eines der zentralen Bestandteile der Inneren Uhr und gegen das Neuropeptid Pigment Dispersing Factor (PDF) angefertigt. Der zeitliche Verlauf im Auf- und Abbau des PER Proteins spiegelte die Phasenverschiebungen im Verhalten der Experimentalfliegen wider, wohingegen die Kontrollen weitestgehend unauffällig blieben. Zudem waren nur diejenigen Neurone von einer unmittelbaren Verschiebung der PER Protein Oszillation betroffen, die depolarisiert wurden, was auf einen schnellen Zell-autonomen Prozess schließen lässt. Die molekulare Verknüpfung, die zwischen der Depolarisation der Uhrneuronen und der Verschiebung der molekularen Uhr-Oszillation fungiert, ist immer noch unbekannt. Diesem Thema wurde nachgegangen, indem CREB (engl. cAMP responsive element binding protein) in den großen ventrolateralen Neuronen (l-LNv) quantifiziert wurde, da diese Neuronen unerwarteterweise und am wirksamsten auf die artifizielle Depolarisation mit einer starken PER-Akkumulation reagiert haben. In vorherigen Arbeiten wurde bereits angenommen, dass CREB in die circadiane Rhythmik involviert sei, indem es an Regulationssequenzen des period Gens bindet (Belvin et al., 1999) und somit dessen Transkription aktiviert. Wir konnten zeigen, dass die Menge an CREB Protein in den l-LNv circadian reguliert wird, da diese am Ende der subjektiven Nacht im Vergleich zum Ende des subjektiven Tages deutlich erhöht ist. Dieser Effekt konnte durch die artifizielle Depolarisation, aber unabhängig von deren Zeitpunkt, weiter verstärkt werden. Zudem deuten die Ergebnisse darauf hin, dass die Akkumulation des CREB Proteins mit dem Zeitpunkt des Anstiegs des PER Proteins in den l-LNv koinzidiert. Das lässt die Vermutung zu, dass CREB als molekulare Verbindung zwischen dem elektrischen neuronalen Status und der molekularen Uhr dienen kann. Zusammenfassend lässt sich sagen, dass die zeitlich begrenzte Depolarisation mithilfe von dTrpA1 signifikante Phasenverschiebungen im Verhalten wie auch auf der Proteinebene hervorrufen kann. Eine artifizielle Depolarisation zu Beginn der subjektiven Nacht verursacht Phasenverschiebungen nach hinten, wohingegen eine Depolarisation zum Ende der subjektiven Nacht Phasenverschiebungen nach vorne zur Folge hat. Die Aktivierung aller Uhrneurone brachte eine PRC hervor, die weitestgehend einer Licht-PRC gleicht. Die Depolarisierung der PDF+ Zellen hingegen ergab eine PRC, die sich insbesondere bezüglich der ausgeprägten Phasen-Vorverschiebungszone von einer Licht-vermittelten PRC unterscheidet. Die Innere Uhr scheint somit die Fähigkeit zu besitzen, exzitatorische und inhibitorische Eingänge in komplexer Art und Weise zu verarbeiten. Obwohl der in dieser Doktorarbeit gewählte experimentelle Ansatz hochgradig artifiziell ist, war es uns gerade durch den Ausschluss von Licht möglich, neue Schlussfolgerungen bezüglich der Kommunikation innerhalb des Netzwerks und dessen Lichtinformations-Eingänge zu ziehen. KW - Chronobiologie KW - Circadian clock KW - Tagesrhythmus KW - Taufliege Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-137118 ER - TY - THES A1 - Schlichting, Matthias T1 - Light entrainment of the circadian clock: the importance of the visual system for adjusting Drosophila melanogaster´s activity pattern T1 - Lichtentrainment der inneren Uhr: Die Bedeutung des visuellen Systems für die Anpassung des Aktivitätsmusters von Drosophila melanogaster N2 - The change of day and night is one of the challenges all organisms are exposed to, as they have to adjust their physiology and behavior in an appropriate way. Therefore so called circadian clocks have evolved, which allow the organism to predict these cyclic changes of day and night. The underlying molecular mechanism is oscillating with its endogenous period of approximately 24 hours in constant conditions, but as soon as external stimuli, so called Zeitgebers, are present, the clocks adjust their period to exactly 24h, which is called entrainment. Studies in several species, including humans, animals and plants, showed that light is the most important Zeitgeber synchronizing physiology and behavior to the changes of day and night. Nevertheless also other stimuli, like changes in temperature, humidity or social interactions, are powerful Zeitgebers for entraining the clock. This thesis will focus on the question, how light influences the locomotor behavior of the fly in general, including a particular interest on the entrainment of the circadian clock. As a model organism Drosophila melanogaster was used. During the last years several research groups investigated the effect of light on the circadian clock and their results showed that several light input pathways to the clock contribute to wild-type behavior. Most of the studies focused on the photopigment Cryptochrome (CRY) which is expressed in about half of the 150 clock neurons in the fly. CRY is activated by light, degrades the clock protein Timeless (TIM) and hence entrains the clock to the light-dark (LD)-cycle resulting from changes of day and night. However, also flies lacking CRY are still able to entrain their clock mechanism as well as their activity-rest-rhythm to LD-cycles, clearly showing that the visual system of the fly also contributes to clock synchronization. The mechanism how light information from the visual system is transferred to the clock is so far still unknown. This is also true for so-called masking-effects which are changes in the behavior of the animal that are directly initiated by external stimuli and therefore independent of the circadian clock. These effects complement the behavior of the animals as they enable the fly to react quickly to changes in the environment even during the clock-controlled rest state. Both of these behavioral features were analyzed in more detail in this study. On the one hand, we investigated the influence of the compound eyes on the entrainment of the clock neurons and on the other hand, we tried to separate clock-controlled behavior from masking. To do so "nature-like" light conditions were simulated allowing the investigation of masking and entrainment within one experiment. The simulation of moonlight and twilight conditions caused significant changes in the locomotor behavior. Moonlit nights increased nocturnal activity levels and shifted the morning (M) and evening (E) activity bouts into the night. The opposite was true for the investigation of twilight, as the activity bouts were shifted into the day. The simulation of twilight and moonlight within the same experiment further showed that twilight appears to dominate over moonlight, which is in accordance to the assumption that twilight in nature is one of the key signals to synchronize the clock as the light intensity during early dawn rises similarly in every season. By investigating different mutants with impaired visual system we showed that the compound eyes are essential for the observed behavioral adaptations. The inner receptor cells (R7 and R8) are important for synchronizing the endogenous clock mechanism to the changes of day and night. In terms of masking, a complex interaction of all receptor cells seems to adjust the behavioral pattern, as only flies lacking photopigments in inner and outer receptor cells lacked all masking effects. However, not only the compound eyes seem to contribute to rhythmic activity in moonlit nights. CRY-mutant flies shift their E activity bout even more into the night than wild-type flies do. By applying Drosophila genetics we were able to narrow down this effect to only four CRY expressing clock neurons per hemisphere. This implies that the compound eyes and CRY in the clock neurons have antagonistic effects on the timing of the E activity bout. CRY advances activity into the day, whereas the compound eyes delay it. Therefore, wild-type behavior combines both effects and the two light inputs might enable the fly to time its activity to the appropriate time of day. But CRY expression is not restricted to the clock neurons as a previous study showed a rather broad distribution within the compound eyes. In order to investigate its function in the eyes we collaborated with Prof. Rodolfo Costa (University of Padova). In our first study we were able to show that CRY interacts with the phototransduction cascade and thereby influences visual behavior like phototaxis and optomotor response. Our second study showed that CRY in the eyes affects locomotor activity rhythms. It appears to contribute to light sensation without being a photopigment per se. Our results rather indicate that CRY keeps the components of the phototransduction cascade close to the cytoskeleton, as we identified a CRY-Actin interaction in vitro. It might therefore facilitate the transformation of light energy into electric signals. In a further collaboration with Prof. Orie Shafer (University of Michigan) we were able to shed light on the significance of the extraretinal Hofbauer-Buchner eyelet for clock synchronization. Excitation of the eyelet leads to Ca2+ and cAMP increases in specific clock neurons, consequently resulting in a shift of the flies´ rhythmic activity. Taken together, the experiments conducted in this thesis revealed new functions of different eye structures and CRY for fly behavior. We were furthermore able to show that masking complements the rhythmic behavior of the fly, which might help to adapt to natural conditions. N2 - Der Wechsel von Tag und Nacht stellt für viele Organismen eine große Herausforderung dar, da sie ihre Physiologie und auch das Verhalten den äußeren Gegebenheiten anpassen müssen. Um dieser Aufgabe gerecht zu werden, haben viele Organismen innere Uhren entwickelt, welche es ihnen erlauben, den Wechsel von Tag und Nacht vorherzusehen. Diesen inneren Uhren liegt ein molekularer Mechanismus zugrunde, welcher einen Rhythmus von etwa 24 Stunden generiert. Eine wichtige Eigenschaft dieser Uhren ist es, dass sie durch äußere Faktoren, so genannte Zeitgeber, an den Tag-Nacht-Wechsel angepasst werden können. Viele Studien an Mensch, Tier und Pflanze weisen darauf hin, dass Licht der wichtigste Zeitgeber ist, wobei auch Temperatur, Luftfeuchtigkeit oder soziale Interaktionen die innere Uhr an den Tag-Nacht-Wechsel anpassen können. Ziel dieser Arbeit ist es, die Auswirkung von Licht auf das Lauf-verhalten und die innere Uhr genauer zu beleuchten, wozu der Modellorganismus Drosophila melanogaster herangezogen wird. Zahlreiche Forschergruppen haben sich bereits mit der Synchronisation der inneren Uhr durch Licht beschäftigt, wobei klar hervorgeht, dass die Taufliege verschiedene Möglichkeiten hat, Lichtinformationen für die Synchronisation der Uhr zu verwenden. Der wohl am besten untersuchte Prozess ist die Synchronisation durch das Pigment Cryptochrom. Dieses Molekül ist in etwa der Hälfte der Uhrneuronen exprimiert und greift direkt in den molekularen Uhrmechanismus ein, wodurch dieser an den Tag-Nacht-Wechsel angepasst werden kann. Schaltet man jedoch das Gen für dieses Molekül aus so zeigt sich, dass die Tiere dennoch dazu in der Lage sind sich an den Licht-Dunkel-Wechsel anzupassen. Dies bedeutet, dass die visuellen Organe Informationen an die innere Uhr weiterleiten können, wobei der Mechanismus dafür noch nicht vollständig entschlüsselt werden konnte. Selbiges trifft auf sogenannte Maskierungseffekte zu: Maskierung beschreibt eine Veränderung des Verhaltensmusters, welches nicht durch die innere Uhr gesteuert, sondern direkt durch äußere Reize hervorgerufen wird. Diese direkten Effekte komplettieren das Verhalten der Tiere, da sie dadurch selbst zu endogen ungünstigen Zeiten adäquat auf äußere Reize reagieren können. In dieser Arbeit wird sich beider Phänomene angenommen: Zum einen soll die Bedeutung des visuellen Systems für die Synchronisation der inneren Uhr genauer untersucht, und zum anderen soll uhrgesteuertes Verhalten von Maskierung getrennt werden. Zu diesem Zweck wurden Lichtbedingungen simuliert, die den natürlichen ähnelten und die Untersuchung beider lichtabhängiger Effekte ermöglichten. Die Untersuchung von Dämmerung und Mondlicht zeigte deutlich, dass diese starke Veränderungen im Lauf-Verhalten hervorrufen. Die Simulation von Mondlicht bewirkte einen Anstieg der Nachtaktivität und ein Verschieben der Aktivitätsmaxima der Fliege in die Nacht. Das Gegenteil war bei Dämmerungssimulation zu beobachten, da die Tiere mehr Aktivität in den Tag legten. Bei gleichzeitiger Simulation von Mondlicht und Dämmerungsphasen zeigte sich, dass die Dämmerung ein stärkerer Zeitgeber ist als Mondlicht ist. Dieses Ergebnis geht einher mit der Annahme, dass die Dämmerung ein wichtiges Signal für die Synchronisation der inneren Uhr ist, da der Anstieg der Lichtintensität am frühen Morgen unabhängig von der Jahreszeit sehr ähnlich ist. Die Untersuchung von verschiedensten Mutanten konnte zudem zeigen, dass die Komplexaugen der Fliege von größter Bedeutung für die beobachteten Veränderungen im Verhaltensmuster und die Anpassung der inneren Uhr an "natürliche" Lichtbedingungen sind. Dabei stellte sich heraus, dass vor allem die inneren Rezeptorzellen wichtig für die Synchronisation der inneren Uhr und somit uhrgesteuerter Verhaltensänderungen sind. Für Maskierungseffekte scheint eine komplexe Interaktion von mehreren Rezeptorzellen für die Anpassung an Dämmerungs- und Mondlichtbedingungen vorzuliegen, da diese nur bei Mehrfachmutationen verschiedener Rhodopsine, den lichtabsorbierenden Molekülen der Fliege, verschwanden. Jedoch scheinen nicht nur die Komplexaugen das rhythmische Verhalten in Mondlichtnächten zu beeinflussen. Wird das Gen für Cryptochrom, dem Photorezeptor der inneren Uhr, ausgeschaltet, verschieben die Tiere ihre Abendaktivität noch stärker in die Nacht als es bereits beim Wildtyp der Fall ist. Durch verschiedene genetische Manipulationen konnten wir den Grund dieses Verhaltens auf die Expression von Cryptochrom in nur vier Uhrneuronen pro Hemisphäre zurückverfolgen. Zugleich zeigten unsere Ergebnisse, dass die Komplexaugen und Cryptochrom entgegengesetzte Wirkung auf das Timing der Abendaktivität haben. Während die Komplexaugen die Abendaktivität in die Nacht hinein schieben, bewirkt Cryptochrom, dass die Aktivität noch während des Tages stattfindet. Dies bedeutet, dass das wildtypische Verhalten eine Mischung aus beiden Lichteingängen ist und sich die Tiere somit ideal an die äußeren Gegebenheiten anpassen können. Cryptochrom wird jedoch nicht nur in den Uhrneuronen, sondern unter anderem auch in den Komplexaugen der Tiere exprimiert. Um die Funktion in den Augen genauer zu untersuchen, konnten wir in Kollaboration mit Prof. Rodolfo Costa (University of Padova) zunächst zeigen, dass CRY mit der Phototransduktionskaskade über das Protein INAD interagiert und dadurch visuelles Verhalten, wie zum Beispiel Phototaxis oder die optomotorische Antwort, beeinflussen kann. In weiteren Experimenten konnten wir zudem zeigen, dass CRY in den Augen die lokomotorische Aktivität der Fliegen beeinflusst. Dabei trägt es zur Wahrnehmung von Licht bei, ohne jedoch per se ein Photopigment zu sein. Vielmehr scheint CRY die Phototransduktion dahingehend zu verändern, dass es den Phototransduktionskomplex an das Cytoskelett innerhalb der Rhabdomere bindet und somit die Umwandlung von Lichtenergie in elektrische Signale erleichtert. Zusammen mit Prof. Orie Shafer (University of Michigan) ist es uns zudem gelungen, die Rolle des extraretinalen Hofbauer-Buchner-Äugleins für die Synchronisation der Uhr genauer zu beleuchten. Die Anregung des Äugleins führte dabei zu einem Anstieg der Ca2+ und cAMP Mengen in bestimmten Uhrneuronen und dies bewirkte eine Phasenverschiebung des Verhaltens der Taufliege. Somit konnten in dieser Arbeit neue Erkenntnisse über die Funktionen von Cryptochrom und verschiedener Augenstrukturen für das Verhalten der Fliege gewonnen werden. Dabei konnten die Bedeutungen der inneren Uhr sowie von Maskierungseffekten für das Verhalten der Tiere in der Natur herausgearbeitet werden. KW - Taufliege KW - Moonlight KW - Rhodopsin KW - Tagesrhythmus KW - Twilight KW - Compound eyes KW - Biologische Uhr KW - Zeitgeber KW - Licht KW - Cryptochrom KW - Drosophila KW - Circadian Rhythms Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-114457 ER - TY - THES A1 - Grebler, Rudi T1 - Untersuchung der Rolle von Rhodopsin 7 und Cryptochrom im Sehprozess von Drosophila melanogaster T1 - Investigation of Rhodopsin 7 and Cryptochrome in Drosophila melanogaster vision N2 - Ausgangspunkt für die Detektion von Licht ist im gesamten Tierreich die Absorption von Photonen durch photorezeptive Proteine, die sogenannten Opsine und in geringerem Ausmaß die Typ 1 Cryptochrome. Die Taufliege Drosophila melanogaster besitzt sechs eingehend charakterisierte, auch als Rhodopsine bezeichnete Opsine (Rh1-Rh6) und ein Cryptochrom (CRY). Neben den Ocellen und den Hofbauer-Buchner Äuglein werden die Rhodopsine in erster Linie in den Photorezeptorzellen der Komplexaugen, den Hauptorganen der Lichtperzeption exprimiert, wo sie der Vermittlung der visuellen Wahrnehmung dienen. Basierend auf Sequenzvergleichen wurde im Jahr 2000 ein neues Protein namens Rh7 zur Gruppe der Drosophila Opsine hinzugefügt. Bis heute fehlt allerdings jeglicher experimentelle Beleg für die photorezeptive Funktion dieses Proteins. Im Gegensatz dazu wird Cryptochrom in erster Linie in einigen Uhrneuronen des Drosophila Gehirns exprimiert, wo es diesen Neuronen die Fähigkeit zur Lichtdetektion verleiht und das Photoentrainment der inneren Uhr lenkt. Neueren Untersuchungen zu folge spielt CRY allerdings auch bei der visuellen Wahrnehmung der Augen eine Rolle. Die vorliegende Arbeit zielte nun darauf ab die potentielle Funktion von Rh7 als neuen Photorezeptor in Drosophila sowie die Rolle von CRY bei der visuellen Lichtperzeption zu untersuchen. Die Aufnahmen der Elektroretinogramme (ERGs) von transgenen Fliegen, die Rh7 anstelle von oder zusammen mit dem dominanten Photorezeptor Rh1 in den Komplexaugen exprimieren, zeigen, dass Rh7 die Phototransduktionskaskade bei Belichtung mit Weißlicht nicht aktivieren kann. Die Abwesenheit von Rh7 sorgt allerdings trotzdem für eine Beeinträchtigung der lichtinduzierten Antwort der Rezeptorzellen im Komplexauge. So zeigen die Intensitäts-Response Kurven der ERG Rezeptorpotentialamplitude von rh7 Knockout-Fliegen unter Weißlicht niedriger und mittlerer Intensität nach einer anfänglichen Dunkeladaptation von 15min eine insgesamt, im Vergleich zur Kontrolle erhöhte Rezeptorpotentialamplitude. Der Verlauf dieser Kurven deutet außerdem darauf hin, dass die Zunahme der Rezeptorpotentialamplitude mit steigender Lichtintensität größer wird. Zudem zeigt das Aktionsspektrum für die Rezeptorpotentialamplitude der rh7 Knockout-Fliegen, dass diese Empfindlichkeitszunahme im gesamten Bereich von 370-648nm auftritt. Diese Beeinträchtigung scheint jedoch zu fehlen, wenn die Fliegen vor Experimentbeginn nur 1min dunkeladaptiert wurden, oder wenn intensives Blaulicht zur Belichtung verwendet wird. Des weiteren ist auch das 4s nach Ende des Lichtpulses im ERG gemessene Nachpotential bei fehlendem Rh7 reduziert. Zusammengenommen deuten diese Ergebnisse darauf hin, dass Rh7, wenn auch nicht als Photorezeptor, bei Belichtung mit Weißlicht niedriger und mittlerer Intensität die Lichtantwort in den Rezeptorzellen des Komplexauges in Abhängigkeit von Intensität und Adaptationszustand beeinflusst und dass dieser Einfluss scheinbar nicht durch Licht eines eng begrenzten Wellenlängenbereichs induziert wird. Des weiteren legt die Untersuchung des ERG Nachpotentials nahe, dass Rh7 möglicherweise für eine normale Beendigung der Lichtantwort benötigt wird. Die allgemeine Funktion von Rh7 als Photorezeptor in Drosophila sowie die Eigenschaften der endogenen Funktion von Rh7 werden diskutiert. Unabhängig davon wird in der vorliegenden Arbeit auch gezeigt, dass Fliegen ohne CRY zwar nach 15-minütiger, nicht jedoch nach 1-minütiger Dunkeladaptation bei Belichtung mit Weißlicht niedriger Intensität eine insgesamt geringere ERG Rezeptorpotentialamplitude aufweisen. Dies könnte auf eine Beeinträchtigung der Dunkeladaptationsprozesse bei Abwesenheit von CRY hindeuten. N2 - Throughout the animal kingdom light detection is based on the absorption of photons by photoreceptive proteins, the so called opsins and to a minor degree the type 1 cryptochromes. The fruit fly Drosophila melanogaster possesses six well characterized opsins, also referred to as rhodopsins (Rh1-Rh6) and one cryptochrome (CRY). Besides the ocelli and the Hofbauer-Buchner eyelet, the rhodopsins are predominantly expressed in the photoreceptor cells of the compound eye, the major light receptive organ of the fly, where they mediate visual perception. Based on sequence comparisons a new protein, called Rh7, was added to the group of Drosophila opsins in the year 2000. But to date there is no experimental evidence for the photoreceptive function of this protein. By contrast cryptochrome is predominantly expressed in some clock neurons of the Drosophila brain, where it confers light sensitivity to these neurons and guides the photoentrainment of the endogenous clock. But recent publications also envisage a role for CRY in visual perception. The present thesis now aimed to investigate the putative function of Rh7 as a new photoreceptor in Drosophila as well as the role of CRY in visual perception. Recordings of the electroretinogram (ERG) of transgenic flies, that express Rh7 instead of or together with the major photoreceptor Rh1 in the compound eye, show that Rh7 can not activate the phototransduction cascade under white-light. Nevertheless, the absence of Rh7 impairs the light induced response of the receptor cells in the compound eye. Thus, the irradiance-response curves for the ERG receptor potential of rh7 knockout-flies show an overall increased amplitude of the receptor potential compared to controls upon illumination with white-light in the low- and mid-intensity range and after an initial dark adaptation of 15min. The curve shape also indicates that the gain in amplitude gets bigger with increasing light intensity. In addition the action spectrum for the receptor potential of rh7 knockout-flies demonstrates that this increase in sensitivity covers the whole range from 370-648nm. However this impairment seems to be absent when flies were only allowed to dark adapt for 1min before the experiment or when intense blue light is used for illumination. Moreover also the ERG afterpotential measured 4s after lights-off is reduced in absence of Rh7. Taken together these results indicate that Rh7, even though it might not work as a photoreceptor under white-light, alters the light response of the receptor cells in the compound eyes under low- and mid-intense white-light in an intensity and adaptation dependent manner and that this alteration seems not to be caused by light of a limited spectral range. Furthermore the analysis of the ERG afterpotential indicates that Rh7 may also be required for normal light response termination. The general function of Rh7 as a photoreceptor in Drosophila as well as the characteristics of the endogenous function of Rh7 are discussed. Independently the present thesis also demonstrates that flies lacking CRY show a decreased ERG receptor potential amplitude upon illumination with low-intensity white-light when 15min but not when 1min of dark adaptation preceded the recording. This may indicate an impairment of the dark adaptation process without cryptochrome. KW - Taufliege KW - Rhodopsin 7 KW - Rhodopsin KW - Cryptochrom KW - Drosophila Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-114466 ER - TY - THES A1 - Ciba, Manuel T1 - Synchrony Measurement and Connectivity Estimation of Parallel Spike Trains from in vitro Neuronal Networks T1 - Messung der Synchronität und Abschätzung der Konnektivität von in-vitro Spike-Trains N2 - The goal of this doctoral thesis is to identify appropriate methods for the estimation of connectivity and for measuring synchrony between spike trains from in vitro neuronal networks. Special focus is set on the parameter optimization, the suitability for massively parallel spike trains, and the consideration of the characteristics of real recordings. Two new methods were developed in the course of the optimization which outperformed other methods from the literature. The first method “Total spiking probability edges” (TSPE) estimates the effective connectivity of two spike trains, based on the cross-correlation and a subsequent analysis of the cross-correlogram. In addition to the estimation of the synaptic weight, a distinction between excitatory and inhibitory connections is possible. Compared to other methods, simulated neuronal networks could be estimated with higher accuracy, while being suitable for the analysis of massively parallel spike trains. The second method “Spike-contrast” measures the synchrony of parallel spike trains with the advantage of automatically optimizing its time scale to the data. In contrast to other methods, which also adapt to the characteristics of the data, Spike-contrast is more robust to erroneous spike trains and significantly faster for large amounts of parallel spike trains. Moreover, a synchrony curve as a function of the time scale is generated by Spike-contrast. This optimization curve is a novel feature for the analysis of parallel spike trains. N2 - Ziel dieser Dissertation ist die Identifizierung geeigneter Methoden zur Schätzung der Konnektivität und zur Messung der Synchronität von in-vitro Spike-Trains. Besonderes Augenmerk wird dabei auf die Parameteroptimierung, die Eignung für große Mengen paralleler Spike-Trains und die Berücksichtigung der Charakteristik von realen Aufnahmen gelegt. Im Zuge der Optimierung wurden zwei neue Methoden entwickelt, die anderen Methoden aus der Literatur überlegen waren. Die erste Methode “Total spiking probability edges” (TSPE) schätzt die effektive Konnektivität zwischen zwei Spike-Trains basierend auf der Berechnung einer Kreuzkorrelation und einer anschließenden Analyse des Kreuzkorrelograms. Neben der Schätzung der synaptischen Ge- wichtung ist eine Unterscheidung zwischen exzitatorischen und inhibitorischen Verbindungen möglich. Im Vergleich zu anderen Methoden, konnten simulierte neuronale Netzwerke mit einer höheren Genauigkeit geschätzt werden. Zudem ist TSPE aufgrund der hohen Rechengeschwindigkeit für große Datenmengen geeignet. Die zweite Methode “Spike-contrast” misst die Synchronität paralleler Spike-Trains mit dem Vorteil, dass die Zeitskala automatisch an die Daten angepasst wird. Im Gegensatz zu anderen Methoden, welche sich ebenfalls an die Daten anpassen, ist Spike-contrast robuster gegenüber fehlerhaften Spike-Trains und schneller für große Datenmengen. Darüber hinaus berechnet Spike-Contrast eine Synchronitätskurve als Funktion der Zeitskala. Diese Kurve ist ein neuartiges Feature zur Analyse paralleler Spike-Trains. KW - Synchronitätsmessung KW - Konnektivitätsschätzung KW - microelectrode array KW - bicuculline KW - similarity KW - distance KW - correlation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-223646 ER - TY - THES A1 - Bartlang, Manuela Slavica T1 - Timing is everything: The interaction of psychosocial stress and the circadian clock in male C57BL/6 mice T1 - Auf das richtige Timing kommt es an: Die Interaktion zwischen psychosozialem Stress und der inneren Uhr in männlichen C57BL/6 Mäusen N2 - Due to the rotation of the earth in the solar system all inhabitants of our planet are exposed to regular environmental changes since more than 3.5 billion years. In order to anticipate these predictable changes in the environment, evolutionarily conserved biological rhythms have evolved in most organisms – ranging from ancient cyanobacteria up to human beings – and also at different levels of organization – from single cells up to behavior. These rhythms are endogenously generated by so called circadian clocks in our body and entrained to the 24 h cycle by external timing cues. In multi-cellular organisms the majority of the cells in the body is equipped with such an oscillator. In mammals, the circadian system is structured in a hierarchical fashion: A central pacemaker resides in the bilateral suprachiasmatic nucleus (SCN) of the hypothalamus, while subsidiary peripheral clocks exist in nearly every tissue and organ. In contrast to the aforementioned recurrent environmental changes most organisms are also exposed to unpredictable changes in the environment. In order to adapt to these sudden alterations the acute activation of the stress response system, involving the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system, displays a fundamental survival mechanism. However, if activation of the stress system becomes chronic, devastating somatic and affective disorders might be the consequence. At first glance, the circadian and the stress system seem to represent two separate bodily control systems that are involved in adaptation to predictable and unpredictable stimuli, respectively. However, both systems are fundamental for survival, and thus, communicate with each other at various levels. Early studies already demonstrated that stressor exposure at different times of the diurnal cycle generates different stress effects, whereupon the type of stressor plays a pivotal role. Moreover, alterations in the SCN and peripheral circadian clocks could be shown following stressor exposure. In cooperation with various co-workers, I investigated whether the stress responsiveness is modulated by the endogenous clock in a diurnal fashion and whether repeated psychosocial stress impacts the circadian clock depending on the time of day of stressor exposure. Therefore, male C57BL/6 mice were repeatedly exposed to a psychosocial stressor, either at the beginning of the inactive/light phase (SDL mice) or active/dark phase (SDD mice). Subsequently, different behavioral, physiological/endocrine and immunological/ inflammatory consequences were assessed. It could be shown that the effects of repeated psychosocial stressor exposure strongly depend on the time of day of stressor exposure. The present results demonstrate that repeated daily stressor exposure has a more negative outcome when applied during the active/dark phase compared to the inactive/light phase. Stressor exposure during the active phase resulted in a loss of general activity, decreased interest in an unfamiliar conspecific, a shift towards a more pro-inflammatory body milieu, and rhythm disturbances in plasma hormones, all representing well-accepted hallmarks of depression. In contrast, C57BL/6 mice exposed to the stressor in their inactive phase exhibited minor physiological alterations that might prevent the formation of the maladaptive consequences mentioned above, thus representing beneficial adaptations. The second focus of this thesis was put on the investigation of the effects of repeated psychosocial stressor exposure at different times of the light-dark cycle on various levels of the circadian system. An increased expression of the PERIOD2 (PER2) protein, which represents an essential core clock component, could be found in the SCN of mice repeatedly exposed to the stressor during their active phase. In consistence with the alterations in the central circadian pacemaker, the daily rhythm of different hormones and the activity rhythm were considerably affected by SDD. Mice exposed to the psychosocial stressor in their active phase showed a shifted, or absent, rhythm of the hormones corticosterone and leptin. Moreover, their activity was found to be phase-delayed, which seems to be attributable to the Period (Per) gene since Per1/Per2 double-mutants still exhibited their normal activity rhythm following 19 days of stressor exposure during the active phase. In contrast, a phase-advance in the peripheral adrenal gland clock could be seen in C57BL/6 mice subjected to the stressor during their inactive phase. This phase-shift might be required for maintaining the normal rhythmicity in hormonal release and activity. It has previously been suggested that activation of the HPA axis upon stressor exposure at different times of the light-dark cycle is depending on whether the stressor is of physical or psychological nature. Data from the HPA axis analysis now refine previous findings, indicating that psychosocial stressors also modulate HPA axis responses based on the time of day of stressor presentation. The present results demonstrate that HPA axis activity was reduced following repeated stressor exposure during the active phase. It is reasonable to speculate that this reduced basal activity of the stress system represents a failure in HPA axis adjustment, which could contribute to the negative consequences of repeated psychosocial stressor exposure during the dark phase. Taken together, it can be concluded that the endogenous clock in mice modulates the stress responsiveness in a circadian fashion and that repeated psychosocial stressor exposure affects the biological clock depending on the time of day of stressor presentation. Thereby, stressor exposure during the active phase results in a more negative outcome as compared to stressor experience during the inactive phase. It is assumed that the interaction between the circadian clock and the stress system is a complex issue that might ensure that the endogenous clock does not get out of synchrony in any order. N2 - Aufgrund der Bewegung der Erde in unserem Sonnensystem sind alle Lebewesen auf unserem Planeten seit mehr als 3,5 Milliarden Jahren tagesperiodischen Veränderungen der Umweltbedingungen ausgesetzt. In Anpassung an diese zeitlichen Abläufe haben sich im Laufe der Evolution bei fast allen Organismen – vom Bakterium bis hin zum Menschen – und auf verschiedenen Ebenen – von der Zellebene bis zum Verhalten – biologische Rhythmen entwickelt, die von endogenen Uhren im Körper und äußeren Zeitgebern gesteuert werden. Bei vielzelligen Organismen besitzen nahezu alle Zelltypen ihren eigenen Oszillator. In Säugetieren ist das zirkadiane System hierarchisch strukturiert. Der zentrale Schrittmacher der inneren Uhr befindet sich im bilateralen suprachiasmatischen Nukleus (SCN) des Hypothalamus, während untergeordnete periphere Taktgeber in beinahe jedem Gewebe und Organ oszillieren. Im Gegensatz zu den oben erwähnten regelmäßig wiederkehrenden Veränderungen der Umweltbedingungen sind die meisten Lebewesen ebenso unvorhersehbaren und raschen Umweltveränderungen ausgesetzt. In Anpassung an derartig plötzlich wechselnde Reizbedingungen ist die kurzfristige Aktivierung des Stress-Systems, bestehend aus der Hypothalamus-Hypophysen-Nebennieren-Achse (hypothalamic-pituitary-adrenal axis, HPA axis) und dem sympathischen Nervensystem, für eine adaptive Reaktion essentiell und sogar lebensnotwendig. Im Gegensatz dazu zählt eine andauernde/chronische Aktivierung des Stress-Systems zu den Risikofaktoren für eine Reihe von somatischen und affektiven Erkrankungen. Obwohl das zirkadiane System und das Stress-System auf den ersten Blick zwei verschiedene körperliche Anpassungssysteme darstellen, kommt es auf mehreren Ebenen zum wechselseitigen Einfluss. Es wurde bereits in früheren Arbeiten gezeigt, dass eine Stressorexposition zu unterschiedlichen Tageszeiten verschiedene Effekte hervorruft, wobei die Natur des Stressors dabei eine entscheidende Rolle spielt. Des Weiteren konnten Veränderungen im SCN und peripheren zirkadianen Uhren als Folge einer Stressorexposition aufgezeigt werden. In Zusammenarbeit mit verschiedenen Kollegen wurde im Rahmen dieser Doktorarbeit untersucht, ob die endogene Uhr die Stressempfindlichkeit tageszeitabhängig moduliert und ob wiederholter psychosozialer Stress die innere Uhr in Abhängigkeit von der Tageszeit der Stressorexposition beeinflusst. Männliche C57BL/6 Mäuse wurden daher entweder zu Beginn der inaktiven/Licht-Phase (SDL Mäuse) oder der aktiven/Dunkel-Phase (SDD Mäuse) wiederholt einem psycho-sozialem Stressor ausgesetzt. Im Anschluss wurden verschiedene Verhaltensweisen sowie physio¬logische/endo-krine und immunologische/inflammatorische Konsequenzen untersucht. Es konnte gezeigt werden, dass die Effekte wiederholter Stressorexposition auf das Verhalten, die Physiologie und die Immunologie deutlich von der Tageszeit der Stressorexposition abhängt. Die gewonnenen Ergebnisse zeigen, dass wiederholte Stressor¬exposition während der aktiven/Dunkel-Phase negativere Konsequenzen nach sich zieht als die Stressorexposition während der inaktiven/Licht-Phase. Wurden C57BL/6 Mäuse dem psychosozialen Stressor während ihrer aktiven Phase ausgesetzt, führte dies zu typischen Symptomen von depressiven Patienten wie z.B. einer Verringerung der Aktivität und des sozialen Erkundungsverhaltens, Entzündungserscheinungen, sowie Veränderungen in hormonalen Rhythmen im Plasma. Im Gegensatz dazu wiesen C57BL/6 Mäuse, die dem Stressor in ihrer inaktiven Phase begegneten, geringfügige physiologische Veränderungen auf, welche die Entstehung der oben genannten negativen Konsequenzen verhindern und somit positive Adaptationen darstellen könnten. Des Weiteren wurden in dieser Arbeit die Effekte wiederholter Stressorexposition zu unterschiedlichen Tageszeiten auf verschiedene Ebenen des zirkadianen Systems untersucht. Es konnte eine erhöhte Expression des PERIOD2 (PER2) Proteins, das einen essentiellen Bestandteil des zirkadianen Uhrenmechanismus darstellt, im SCN nach wiederholter Stressorexposition während der aktiven Phase festgestellt werden. Die Veränderung im zentralen Schrittmacher spiegelte sich auch in der Tagesrhythmik verschiedener Hormone sowie im rhythmischen Verhalten der Tiere wider. SDD Mäuse zeigten dabei einen verschobenen oder fehlenden Rhythmus in den Hormonen Corticosteron und Leptin. Des Weiteren war die Aktivität nach 19-tägiger Stressorexposition zu Beginn der aktiven Phase deutlich nach hinten verschoben. Dabei kommt dem Period (Per) Gen eine zentrale Bedeutung zu, da SDD Per1/Per2 Doppelmutanten keinen veränderten Aktivitätsrhythmus aufwiesen. Eine verfrühte Phasenlage der peripheren Uhr in der Nebenniere zeigte sich hingegen in C57BL/6 Mäusen, die dem Stressor während ihrer inaktiven Tageszeit ausgesetzt wurden. Diese Phasenverschiebung nach vorne könnte für die Aufrechterhaltung der Rhythmik im Verhalten und in der Hormonausschüttung eine Rolle spielen. Vorangehende Arbeiten wiesen bereits darauf hin, dass die HPA-Achsen-Aktivierung infolge einer Stressorexposition zu unterschiedlichen Tageszeiten davon abhängt, ob der Stressor von physischer oder psychologischer Natur ist. Die Ergebnisse der vorliegenden Arbeit erweitern die bestehenden Erkenntnisse insofern, als dass die HPA-Achsen-Antwort auch von psychosozialen Stressoren tageszeitabhängig beeinflusst wird. Die HPA-Achsen-Analyse dieser Arbeit zeigte eine verringerte Aktivität der Stressachse nach wiederholter Stressorexposition zu Beginn der aktiven Phase. Mit großer Wahrscheinlichkeit stellt diese Verringerung der basalen HPA-Achsen-Aktivität eine dysfunktionale Überadjustierung dar, die zu den negativen Konsequenzen in Folge der Stressorexposition während der aktiven Phase beitragen könnte. Zusammenfassend lässt sich sagen, dass die endogene Uhr in Mäusen die Stressempfindlichkeit tageszeitabhängig moduliert und dass wiederholter psychosozialer Stress die innere Uhr in Abhängigkeit von der Tageszeit der Stressorexposition beeinflusst. Dabei zieht die Stressorexposition während der aktiven Phase weitaus negativere Konsequenzen nach sich als die Stressor¬exposition in der inaktiven Phase. Aus den Daten kann geschlossen werden, dass die Wechselwirkung von der inneren Uhr und dem Stress-System einen komplexen Sachverhalt darstellt, der gewährleisten soll, dass die innere Uhr nicht beliebig aus dem Takt geraten kann. KW - Maus KW - Stressreaktion KW - Chronobiologie KW - psychosocial stress KW - clock genes KW - interaction stress and circadian system KW - Period2 KW - Tagesrhythmus Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-106486 ER - TY - THES A1 - Gmeiner, Florian T1 - Der Einfluss der Neurotransmitter Dopamin, Serotonin und GABA sowie ihrer Transporter auf das Schlafverhalten von Drosophila melanogaster T1 - The influence of the neurotransmitters dopamine, serotonin and GABA as well as its transporters on the sleep behaviour of drosophila melanogaster N2 - In der vorliegenden Arbeit wurde der Einfluss von Dopamin, Serotonin und GABA auf das Schlafverhalten von Drosophila melanogaster genauer untersucht. Mit Hilfe von Mutanten in Wiederaufnahmetransportern für Dopamin und Serotonin konnte gezeigt werden, dass Dopamin und Serotonin entgegengesetzte Wirkungen auf die Schlafmenge der Fliegen haben. Dopamin hat eine schlafhemmende, Serotonin eine schlaffördernde Wirkung. Die Nutzung eines neuronal dopamindefizienten Fliegenstammes erweitert diese Erkenntnisse. Die Nutzung von RNAi zur Hinunterregulierung der Rezeptoren für Dopamin brachte keine weiteren Erkenntnisse, da sie zu keinem messbaren Effekt führen. Jedoch ergab eine parallel dazu durchgeführte Hinunterregulierung des GABABR2 Rezeptors, dass dieser maßgeblich für die Aufrechterhaltung des Schlafes in der zweiten Hälfte der Nacht verantwortlich ist. Es konnte gezeigt werden, dass für diese Aufgabe vor allem ihre Expression in den l-LNv Neuronen relevant ist. Dabei ist für die GABABR2 Rezeptoren kein Effekt, für Dopamin und Serotonin nur in geringen Ausmaß ein Effekt auf die Innere Uhr in Form von gering veränderter Periode zu beobachten. Durch eine Kombination der Transportermutanten für Dopamin und Serotonin mit dem intakten, als auch mutierten WHITE Transporter zeigte sich eine interessante Interaktion dieser drei Transporter bei der Regulation der Gesamtschlafmenge, wobei die white Mutation zu einer Reduzierung der Gesamtschlafmenge führt. UPLC Messungen der Stämme ergaben, dass der Effekt von white vermutlich auf dessen Einfluss auf den beta-Alanyldopamingehalt der Fliegen basiert. beta-Alanyldopamin wird bei dem Transport von Dopamin über die Gliazellen durch das Enzym EBONY gebildet, dessen Mutation in der Kombination mit intaktem WHITE und mutiertem Dopamintransporter zu einer drastischen Reduktion des Schlafes während der Nacht führt. Im Rahmen der Untersuchung konnte zudem gezeigt werden, dass entgegen des bisherigen Wissens aus Zellkulturstudien in Drosophila melanogaster kein beta-Alanylserotonin gebildet wird. Möglicherweise wird nur Dopamin, nicht jedoch Serotonin über die Gliazellen recycelt. Dies ist ein interessanter Unterschied, der sowohl eine zeitliche, als auch lokale Feinregulation der Gegenspieler Dopamin und Serotonin ermöglicht. Die Untersuchung der Dimerpartner BROWN und SCARLET zeigte, dass lediglich BROWN zu einer Reduktion des Schlafes führt. Ein Effekt, der auch in einer Fliegenlinie mit spontaner white Mutation beobachtet werden konnte. Die genaue Funktion dieses Heterodimertransporters und seine neuronale Lokalisation wurden im Rahmen dieser Arbeit noch nicht geklärt. Dennoch liegt eine Funktion als Dopamin- oder beta-Alanyldopamintransporter in Gliazellen auf Grund der ermittelten Ergebnisse nahe. Zusätzlich konnte zum ersten Mal in Drosophila melanogaster eine Funktion der Amintransporter bei der Anpassung der Inneren Uhr an extreme kurze bzw. lange Photoperioden gezeigt werden. Eine anatomische Lokalisierung des WHITE Transporters im Gehirn von Drosophila melanogaster, die weitere Charakterisierung der Rolle des WHITE/BROWN Dimers und die Zuordnung bestimmter dopaminerger und serotonerger Neurone bei der Modulation der Aktivitätsmaxima stellen spannende Fragen für zukünftige Arbeiten dar. N2 - The main focus in the present work, was the observation of the influence of dopamine, serotonin and GABA on the sleep behaviour of Drosophila melanogaster. By utilizing mutants for the dopamine transporter as well as the serotonin transporter, it was possible to show, that dopamine and serotonin have opposing effects on the total sleep amount of flies. Dopamine has a sleep inhibiting, serotonin a sleep promoting function. A neuronal dopamine deficient stock complemented those findings. Usage of RNAi to downregulate dopamine receptors did not enhance the information, since no measurable effect could be detected. But in parallel performed experiments with RNAi mediated knockdown of GABABR2 receptors could show its role in the maintenance of sleep during the second half of the night. I could show that especially the expression in the l-LNv is needed for that. In case of the GABABR2 receptors no effect on the period was observed, for dopamine and serotonin only a minor effect on the clock in form of a mild period change accompanied those drastic sleep phenotypes. Combining the amine transporter mutants with functional as well as mutated white led to some interesting observations regarding the interaction of those transporters in regulating total sleep, in which white reduces the total sleep amount. Following up those experiments with UPLC measurements, it was shown that presumably WHITE causes its effect due to its relevance for the amount of beta-alanyldopamine in adult flies. When dopamine is transported into the glia cells, beta-alanyldopamine is synthesized by the enzyme EBONY. The ebony mutant revealed a drastic sleep phenotype when combined with an intact WHITE transporter and a mutated dopamine transporter. This leads to a dramatic decrease of sleep during the night phase. When doing the UPLC measurements it was furthermore revealed, that unexpectedly regarding the knowledge from cell culture experiments, beta-alanylserotonin cannot be detected. Presumably, only dopamine, but not serotonin is recycled by the glia cells. This interesting difference gives space for a temporal as well as for a local fine regulation of the dopamine and serotonin signals. Investigating the dimer partners of WHITE, BROWN and SCARLET, I found that BROWN just as a spontaneous white mutation that I observed, led to a decrease of total sleep. The function of this heterodimer and its neuronal localisation in the brain remains unknown. Regarding the data presented in this work, it is likely that this dimer transports either dopamine or beta-alanyldopamine in glia cells. Furthermore, I could observe that dopamine and serotonin change the ability of the circadian clock to adapt to different photoperiods, a so far unstudied phenotype. 96 An anatomical approach to localize the WHITE transporter in the brain of Drosophila melanogaster and a further characterization of the function of the WHITE/BROWN dimer, with regard to sleep and eventually the mapping of serotonergic and dopaminergic neurons, which modulate the activity peak responses, are questions for future work. KW - Taufliege KW - Drosophila melanogaster KW - Schlaf KW - Dopamin KW - Serotonin KW - GABA KW - Drosophila melanogaster KW - sleep KW - dopamine KW - serotonin KW - GABA KW - Schlaf KW - Dopamin KW - Serotonin KW - Aminobuttersäure Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-99152 ER - TY - THES A1 - Luibl [née Hermann], Christiane T1 - The role of the neuropeptides NPF, sNPF, ITP and PDF in the circadian clock of Drosophila melanogaster T1 - Die Rolle der Neuropeptide NPF, sNPF, ITP und PDF in der circadianen Uhr von Drosophila melanogaster N2 - Organisms have evolved endogenous clocks which allow them to organize their behavior, metabolism and physiology according to the periodically changing environmental conditions on earth. Biological rhythms that are synchronized to daily changes in environment are governed by the so-called circadian clock. Since decades, chronobiologists have been investigating circadian clocks in various model organisms including the fruitfly Drosophila melanogaster, which was used in the present thesis. Anatomically, the circadian clock of the fruitfly consists of about 150 neurons in the lateral and dorsal protocerebrum, which are characterized by their position, morphology and neurochemistry. Some of these neurons had been previously shown to contain either one or several neuropeptides, which are thought to be the main signaling molecules used by the clock. The best investigated of these neuropeptides is the Pigment Dispersing Factor (PDF), which had been shown to constitute a synchronizing signal between clock neurons as well as an output factor of the clock. In collaboration with various coworkers, I investigated the roles of three other clock expressed neuropeptides for the generation of behavioral rhythms and the partly published, partly unpublished data are presented in this thesis. Thereby, I focused on the Neuropeptide F (NPF), short Neuropeptide F (sNPF) and the Ion Transport Peptide (ITP). We show that part of the neuropeptide composition within the clock network seems to be conserved among different Drosophila species. However, the PDF expression pattern in certain neurons varied in species deriving from lower latitudes compared to higher latitudes. Together with findings on the behavioral level provided by other people, these data suggest that different species may have altered certain properties of their clocks - like the neuropeptide expression in certain neurons - in order to adapt their behavior to different habitats. We then investigated locomotor rhythms in Drosophila melanogaster flies, in which neuropeptide circuits were genetically manipulated either by cell ablation or RNA interference (RNAi). We found that none of the investigated neuropeptides seems to be of equal importance for circadian locomotor rhythms as PDF. PDF had been previously shown to be necessary for rhythm maintenance in constant darkness (DD) as well as for the generation of morning (M) activity and for the right phasing of the evening (E) activity in entrained conditions. We now demonstrate that NPF and ITP seem to promote E activity in entrained conditions, but are clearly not the only factors doing so. In addition, ITP seems to reduce nighttime activity. Further, ITP and possibly also sNPF constitute weak period shortening components in DD, thereby opposing the effect of PDF. However, neither NPF or ITP, nor sNPF seem to be necessary in the clock neurons for maintaining rhythmicity in DD. It had been previously suggested that PDF is released rhythmically from the dorsal projection terminals. Now we discovered a rhythm in ITP immunostaining in the dorsal projection terminals of the ITP+ clock neurons in LD, suggesting a rhythm in peptide release also in the case of ITP. Rhythmic release of both ITP and PDF seems to be important to maintain rhythmic behavior in DD, since constantly high levels of PDF and ITP in the dorsal protocerebrum lead to behavioral arrhythmicity. Applying live-imaging techniques we further demonstrate that sNPF acts in an inhibitory way on few clock neurons, including some that are also activated by PDF, suggesting that it acts as signaling molecule within the clock network and has opposing effects to PDF. NPF did only evoke very little inhibitory responses in very few clock neurons, suggesting that it might rather be used as a clock output factor. We were not able to apply the same live-imaging approach for the investigation of the clock neuron responsiveness to ITP, but overexpression of ITP with various driver lines showed that the peptide most likely acts mainly in clock output pathways rather than inter-clock neuron communication. Taking together, I conclude that all investigated peptides contribute to the control of locomotor rhythms in the fruitfly Drosophila melanogaster. However, this control is in most aspects dominated by the actions of PDF and rather only fine-tuned or complemented by the other peptides. I assume that there is a high complexity in spatial and temporal action of the different neuropeptides in order to ensure correct signal processing within the clock network as well as clock output. N2 - Die meisten Organismen haben endogene Uhren entwickelt, mit deren Hilfe sie ihre Verhaltensweisen, ihren Metabolismus und auch ihre Physiologie an die periodisch wechselnden Umweltbedingungen auf unserer Erde anpassen können. Die sogenannten circadianen Uhren steuern dabei biologische Rhythmen, die an täglich wiederkehrende Umweltfaktoren angepasst sind. Schon seit Jahrzehnten wurden diese circadianen Uhren von Chronobiologen in verschiedensten Modellorganismen untersucht. Zu diesen gehört auch die Taufliege Drosophila melanogaster, welche im Rahmen dieser Doktorarbeit Verwendung fand. Anatomisch besteht die circadiane Uhr der Taufliege aus etwa 150 sogenannten Uhrneuronen, die sich im dorsalen und lateralen Protocerebrum der Fliege befinden. Diese können anhand ihrer Position im Gehirn, ihrer Morphologie als auch ihrer neurochemischen Eigenschaften charakterisiert werden. Es wurde bereits in früheren Arbeiten gezeigt, dass einige dieser Uhrneuronen jeweils ein oder mehrere Neuropeptide exprimieren, welche mit großer Wahrscheinlichkeit die wichtigsten Signalmoleküle der Uhr darstellen. Dabei ist der „Pigment Dispersing Factor“ (PDF) wohl das Neuropeptid, welches bisher in Bezug auf seine Funktion in der Uhr die größte Aufmerksamkeit fand. Es ist daher auch das Neuropeptid, das bei Weitem am besten untersucht ist. So wurde bereits gezeigt, dass PDF die Oszillationen der Uhrneuronen untereinander synchronisiert und auch in Ausgangssignalwegen der Uhr zu nachgeschalteten Gehirnregionen eine Rolle spielt. In Zusammenarbeit mit verschiedenen Kollegen, wurde im Rahmen dieser Doktorarbeit untersucht, welche Rolle drei andere Neuropeptide, welche in den Uhrneuronen exprimiert werden, in der Generierung von Verhaltensrhythmen spielen. Der Fokus lag dabei auf der Untersuchung des Neuropeptids F (NPF) des short Neuropeptids F (sNPF) und des Ion Transport Peptids (ITP). Wir konnten für manche dieser Peptide zeigen, dass ihre Verwendung im Uhrnetzwerk unterschiedlicher Drosophila-Arten konserviert zu sein scheint. Im Falle von PDF zeigten sich jedoch Unterschiede in der zellspezifischen Expression in Arten aus südlichen Breitengraden im Vergleich zu Arten aus nördlichen Breitengraden. Zusammen mit ergänzenden Verhaltensdaten anderer Arbeitsgruppen, gehen wir davon aus, dass unterschiedliche Arten bestimmte Eigenschaften ihrer Uhr – wie etwa die Neuropeptid-Expression in bestimmten Zellen – verändert haben, um ihr Verhalten bestmöglich an ihr jeweiliges Habitat anzupassen. Des Weiteren wurde in dieser Arbeit die Aktivitätsrhythmik in Fliegen untersucht, in welchen gezielt bestimmte Neuropeptid-Systeme auf genetischem Wege - entweder durch Zellablation oder RNA-Interferenz (RNAi) - manipuliert wurden. Wir konnten zeigen, dass wohl keines der untersuchten Peptide eine ähnlich große Rolle für die Aktivitätsrhythmik spielt wie PDF. Aus früheren Arbeiten geht hervor, dass PDF sowohl für die Aufrechterhaltung eines Rhythmus in konstanter Dunkelheit (DD), als auch für die Generierung der Morgenaktivität und für die richtige Phasenlage der Abendaktivität in Licht-Dunkel Zyklen (LD) essentiell ist. Ergebnisse der vorliegenden Arbeit zeigen nun, dass NPF und ITP die Abendaktivität in LD fördern, dass sie jedoch nicht die einzigen Faktoren sind, die dies bewerkstelligen. ITP scheint außerdem Aktivität während der Nacht zu hemmen. Des Weiteren stellen ITP und möglicherweise auch sNPF eine schwache Perioden verkürzende Komponente in DD dar, ganz im Gegensatz zu PDF, welches eine Perioden verlängernde Wirkung besitzt. Jedoch scheinen weder ITP, NPF noch sNPF für die generelle Aufrechterhaltung eines Rhythmus in DD nötig zu sein. Vorhergehende Arbeiten wiesen bereits darauf hin, dass PDF wahrscheinlich rhythmisch an den dorsalen Nervenendigungen ausgeschüttet wird. Unsere jetzigen Ergebnisse zeigen desweiteren eine Oszillation in der ITP-Immunfärbung in den dorsalen Projektionen der ITP+ Uhrneuronen in LD, was auch auf eine rhythmische Ausschüttung dieses Peptids schließen lässt. Die rhythmische Freisetzung beider Peptide scheint für die Aufrechterhaltung eines Verhaltensrhythmus in DD wichtig zu sein, da eine konstant hohe Menge an ITP und PDF im dorsalen Gehirn den Freilauf-Rhythmus störten. Die live-Imaging Experimente dieser Arbeit zeigten, dass sNPF auf manche Uhrneuronen inhibitorisch wirkt – auch auf einige, die durch PDF aktiviert werden können. sNPF könnte also als Signalmolekül innerhalb des Uhrnetzwerkes fungieren. Auch NPF führte zu inhibitorischen Zellantworten, jedoch waren diese äußerst schwach und betrafen nur wenige Uhrneuronen, was darauf schließen lässt, dass dieses Peptid wahrscheinlich am Signalausgang der Uhr beteiligt ist. Es war uns bisher nicht möglich dieselben live-Imaging Untersuchungen auch für ITP durchzuführen, jedoch zeigten Überexpressionsstudien mit verschiedenen Treiberlinien, dass auch ITP mit großer Wahrscheinlichkeit im Signalausgang der Uhr fungiert. Zusammenfassend lässt sich sagen, dass alle hier untersuchten Neuropeptide an der Kontrolle der rhythmischen Lokomotoraktivität von Drosophila melanogaster mitwirken. Dabei ist PDF eindeutig der dominierende Faktor, während die anderen Neuropeptide die Wirkung von PDF eher feinregulieren oder komplementieren. Aus den Daten kann geschlossen werden, dass die örtliche und zeitliche Funktionsweise dieser verschiedenen Peptide sehr komplex ist, um sowohl die Prozessierung von Signalen innerhalb des Uhrnetzwerkes als auch in den weitgehend noch unbekannten Ausgangswegen der Uhr zu gewährleisten. KW - Taufliege KW - Biologische Uhr KW - Neuropeptide KW - Innere Uhr KW - Drosophila KW - Circadian Rhythms Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-93796 ER - TY - THES A1 - Hieke, Marie T1 - Synaptic arrangements and potential communication partners of \(Drosophila’s\) PDF-containing clock neurons within the accessory medulla T1 - Synaptische Konstellationen und potentielle Kommunikationspartner von \(Drosophila’s\) PDF-enthaltenden Uhrneuronen innerhalb der akzessorischen Medulla N2 - Endogenous clocks regulate physiological as well as behavioral rhythms within all organisms. They are well investigated in D. melanogaster on a molecular as well as anatomical level. The neuronal clock network within the brain represents the center for rhythmic activity control. One neuronal clock subgroup, the pigment dispersing factor (PDF) neurons, stands out for its importance in regulating rhythmic behavior. These neurons express the neuropeptide PDF (pigment dispersing factor). A small neuropil at the medulla’s edge, the accessory medulla (AME), is of special interest, as it has been determined as the main center for clock control. It is not only highly innervated by the PDF neurons but also by terminals of all other clock neuron subgroups. Furthermore, terminals of the photoreceptors provide light information to the AME. Many different types of neurons converge within the AME and afterward spread to their next target. Thereby the AME is supplied with information from a variety of brain regions. Among these neurons are the aminergic ones whose receptors’ are expressed in the PDF neurons. The present study sheds light onto putative synaptic partners and anatomical arrangements within the neuronal clock network, especially within the AME, as such knowledge is a prerequisite to understand circadian behavior. The aminergic neurons’ conspicuous vicinity to the PDF neurons suggests synaptic communication among them. Thus, based on former anatomical studies regarding this issue detailed light microscopic studies have been performed. Double immunolabellings, analyses of the spatial relation of pre- and postsynaptic sites of the individual neuron populations with respect to each other and the identification of putative synaptic partners using GRASP reenforce the hypothesis of synaptic interactions within the AME between dopaminergic/ serotonergic neurons and the PDF neurons. To shed light on the synaptic partners I performed first steps in array tomography, as it allows terrific informative analyses of fluorescent signals on an ultrastructural level. Therefore, I tested different ways of sample preparation in order to achieve and optimize fluorescent signals on 100 nm thin tissue sections and I made overlays with electron microscopic images. Furthermore, I made assumptions about synaptic modulations within the neuronal clock network via glial cells. I detected their cell bodies in close vicinity to the AME and PDFcontaining clock neurons. It has already been shown that glial cells modulate the release of PDF from s-LNvs’ terminals within the dorsal brain. On an anatomical level this modulation appears to exist also within the AME, as synaptic contacts that involve PDF-positive dendritic terminals are embedded into glial fibers. Intriguingly, these postsynaptic PDF fibers are often VIIAbstract part of dyadic or even multiple-contact sites in opposite to prolonged presynaptic active zonesimplicating complex neuronal interactions within the AME. To unravel possible mechanisms of such synaptic arrangements, I tried to localize the ABC transporter White. Its presence within glial cells would indicate a recycling mechanism of transmitted amines which allows their fast re-provision. Taken together, synapses accompanied by glial cells appear to be a common arrangement within the AME to regulate circadian behavior. The complexity of mechanisms that contribute in modulation of circadian information is reflected by the complex diversity of synaptic arrangements that involves obviously several types of neuron populations N2 - Endogene Uhren steuern sowohl physiologische als auch verhaltensbedingte Rhythmen bei allen Organismen. In D. melanogaster sind sie nicht nur auf molekularer sondern auch auf anatomischer Ebene bereits gut erforscht. Das neuronale Uhrnetzwerk im Gehirn stellt das Zentrum der Steuerung der rhythmischen Aktivität dar. Eine Uhrneuronengruppe sticht allein schon durch ihre besonderen anatomischen Eigenschaften hervor. Diese Neurone exprimieren das Neuropeptid PDF (pigment dispersing factor), welches zudem besonderen Einfluss auf die Lokomotionsaktivität der Fliege hat. Ein kleines Neuropil am Rande der Medulla, die akzessorische Medulla (AME) ist von besonderem Interesse, da neben seiner intensiven Innervation durch die PDF-Neurone auch Terminale aller anderen Uhrneuronengruppen zu finden sind. Zudem wird sie durch Terminale der Photorezeptoren mit Informatonen über die Lichtverhätnisse versorgt. Die AME erreichen des Weiteren Informationen aus vielen anderen Hirnregionen. Eine Vielzahl von Neuronentypen laufen in ihr zusammen, um sich anschließend wieder in verschiedenste Hirnareale zu verteilen. So wird die AME auch durchzogen von Fasern mit aminergem Inhalt, dessen Rezeptoren wiederum auf den PDF-Neuronen zu finden sind. Die vorliegende Arbeit gibt Aufschluss über vermutliche synaptische Partner und anatomische Anordnungen innerhalb des neuronalen Uhrnetzwerkes, insbesondere innerhalb der AME. Solch Wissen stellt eine Grundvoraussetzung dar, um zirkadianes Verhalten verstehen zu können. Die auffällige Nähe der aminergen Neurone zu den PDF Neuronen lässt eine synaptische Interaktion zwischen ihnen vermuten. Deshalb wurden basierend auf vorangegangen Studien detailiertere Untersuchungen dieser Thematik durchgeführt. So wird die Hypothese über synaptische Interaktionen innerhalb der AME zwischen dopaminergen/ serotonergen Neuronen und den PDF Neuronen bestärkt mittels Doppelimmunofärbungen, gegenüberstellende Analysen über die räumlichen Nähe von prä- und postsynaptischen Stellen der jeweiligen Neuronenpopulationen und durch die Identifikation vermutlicher synaptischer Partner unter Verwendung von GRASP. Zur möglichen Identifikation der synaptischen Partner unternahm ich erste Schritte in der Array Tomographie, welche hochinformative Analysen von fluoreszierenden Signalen auf einem ultrastrukturellen Level ermöglicht. Dazu testete ich verschieden Wege der Gewebepräparation, um Flureszenzsignale zu erhalten bzw. zu optimieren und bildete erste Überlagerungen der Fluoreszenz- und Elektronenmikrskopbilder. Die Auswertung der elektronenmikroskopischen Bilder erlaubten Mutmaßungen über mö- gliche synaptische Modulationen innerhalb des neuronalen Uhrnetzwerkes durch Gliazellen. Ihre Zellkörper fand ich in unmittelbarer Nähe zu den PDF Neuronen. Im dorsalen Hirn wurden neuronale Modulationen an den kleinen PDF Neuronen durch Gliazellen bereits festgestellt. Auf anatomischer Ebene scheint diese Modulation auch innerhalb der AME zu erfolgen, da synaptische Kontakte, welche PDF-positive Dendriten involvieren, von Gliafasern umgeben sind. Interessanterweise sind diese postsynaptischen PDF Fasern dabei oftmals Teil dyadischer oder sogar multipler Kontakte, die sich gegenüber einer ausgedehnten aktiven Zone befinden. Um mögliche Mechanismen solcher synaptischer Anordnungen zu erklären, versuchte ich den ABC Transporter White im Hirn von Drosophila zu lokalisieren. Seine Präsenz in Gliazellen würde auf einen Recyclingmechanismus hindeuten, welcher eine schnelle Wiederbereitstellung des Transmiters ermöglichen würde. Zusammengefasst scheinen Synapsen mit postsynaptischen PDF-Neuronen in Begleitung von Gliazellen, ein gebräuchliches synaptisches Arrangement innerhalb der AME dazustellen. Diese komplexe Diversität der synaptischen Anordnung reflektiert die komplexen Mechanismen, welche der Verarbeitung der zirkadianen Informationen zugrunde liegen KW - Taufliege KW - Chronobiologie KW - Endogene Rhythmik KW - PDF neurons KW - glia cells KW - circadian clock KW - accessory medulla KW - sleep KW - aminergic neurons KW - synapses KW - Gliazelle KW - Aminerge Nervenzelle KW - Pigmentdispergierender Faktor KW - Drosophila melanogaster Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-175988 ER - TY - THES A1 - Beer, Katharina T1 - A Comparison of the circadian clock of highly social bees (\(Apis\) \(mellifera\)) and solitary bees (\(Osmia\) \(spec.\)): Circadian clock development, behavioral rhythms and neuroanatomical characterization of two central clock components (PER and PDF) T1 - Ein Vergleich der Inneren Uhr von sozialen Bienen (\(Apis\) \(mellifera\)) und solitären Bienen (\(Osmia\) \(spec.\)): Entwicklung der circadianen Uhr, Verhaltensrhythmen und neuroanatomische Beschreibung von zwei zentralen Uhr Komponenten (PER und PDF) N2 - Summary Bees, like many other organisms, evolved an endogenous circadian clock, which enables them to foresee daily environmental changes and exactly time foraging flights to periods of floral resource availability. The social lifestyle of a honey bee colony has been shown to influence circadian behavior in nurse bees, which do not exhibit rhythmic behavior when they are nursing. On the other hand, forager bees display strong circadian rhythms. Solitary bees, like the mason bee, do not nurse their offspring and do not live in hive communities, but face the same daily environmental changes as honey bees. Besides their lifestyle mason and honey bees differ in their development and life history, because mason bees overwinter after eclosion as adults in their cocoons until they emerge in spring. Honey bees do not undergo diapause and have a relatively short development of a few weeks until they emerge. In my thesis, I present a comparison of the circadian clock of social honey bees (Apis mellifera) and solitary mason bees (Osmia bicornis and Osmia cornuta) on the neuroanatomical level and behavioral output level. I firstly characterized in detail the localization of the circadian clock in the bee brain via the expression pattern of two clock components, namely the clock protein PERIOD (PER) and the neuropeptide Pigment Dispersing Factor (PDF), in the brain of honey bee and mason bee. PER is localized in lateral neuron clusters (which we called lateral neurons 1 and 2: LN1 and LN2) and dorsal neuron clusters (we called dorsal lateral neurons and dorsal neurons: DLN, DN), many glia cells and photoreceptor cells. This expression pattern is similar to the one in other insect species and indicates a common ground plan of clock cells among insects. In the LN2 neuron cluster with cell bodies located in the lateral brain, PER is co-expressed with PDF. These cells build a complex arborization network throughout the brain and provide the perfect structure to convey time information to brain centers, where complex behavior, e.g. sun-compass orientation and time memory, is controlled. The PDF arborizations centralize in a dense network (we named it anterio-lobular PDF hub: ALO) which is located in front of the lobula. In other insects, this fiber center is associated with the medulla (accessory medulla: AME). Few PDF cells build the ALO already in very early larval development and the cell number and complexity of the network grows throughout honey bee development. Thereby, dorsal regions are innervated first by PDF fibers and, in late larval development, the fibers grow laterally to the optic lobe and central brain. The overall expression pattern of PER and PDF are similar in adult social and solitary bees, but I found a few differences in the PDF network density in the posterior protocerebrum and the lamina, which may be associated with evolution of sociality in bees. Secondly, I monitored activity rhythms, for which I developed and established a device to monitor locomotor activity rhythms of individual honey bees with contact to a mini colony in the laboratory. This revealed new aspects of social synchronization and survival of young bees with indirect social contact to the mini colony (no trophalaxis was possible). For mason bees, I established a method to monitor emergence and locomotor activity rhythms and I could show that circadian emergence rhythms are entrainable by daily temperature cycles. Furthermore, I present the first locomotor activity rhythms of solitary bees, which show strong circadian rhythms in their behavior right after emergence. Honey bees needed several days to develop circadian locomotor rhythms in my experiments. I hypothesized that honey bees do not emerge with a fully matured circadian system in the hive, while solitary bees, without the protection of a colony, would need a fully matured circadian clock right away after emergence. Several indices in published work and preliminary studies support my hypothesis and future studies on PDF expression in different developmental stages in solitary bees may provide hard evidence. N2 - Zusammenfassung Bienen, sowie viele andere Organismen, evolvierten eine innere circadiane Uhr, die es ihnen ermöglicht, tägliche Umweltveränderungen voraus zu sehen und ihre Foragierflüge zu Tageszeiten durchzuführen, wenn sie möglichst viele Blüten besuchen können. Es zeigte sich, dass der soziale Lebensstil der Honigbiene Einfluss auf das rhythmische Verhalten der Ammenbienen hat, die während der Brutpflege keinen täglichen Rhythmus im Verhalten aufweisen. Sammlerbienen auf der anderen Seite zeigen ein stark rhythmisches Verhalten. Solitäre Bienen, wie die Mauerbiene, betreiben keine Brutpflege und leben nicht in einer Staatengemeinschaft, aber sind den gleichen Umweltveränderungen ausgesetzt. Nicht nur Lebensstil, sondern auch Entwicklung und Lebenszyklus unterscheiden sich zwischen Honig- und Mauerbienen. Mauerbienen überwintern als adulte Insekten in einem Kokon bis sie im Frühjahr schlüpfen. Honigbienen durchleben keine Diapause und schlüpfen nach wenigen Wochen der Entwicklung im Bienenstock. In meiner Dissertation vergleiche ich die circadiane Uhr von sozialen Honigbienen (Apis mellifera) und solitären Mauerbienen (Osmia bicornis und Osmia cornuta) auf Ebene der Neuroanatomie und das durch die innere Uhr verursachte rhythmische Verhalten. Erstens charakterisierte ich detailliert die Lage der circadianen Uhr im Gehirn von Honig- und Mauerbiene anhand des Expressionsmusters von zwei Uhrkomponenten. Diese sind das Uhrprotein PERIOD (PER) und das Neuropeptid Pigment Dispersing Factor (PDF). PER wird exprimiert in lateralen Neuronen-Gruppen (die wir laterale Neurone 1 und 2 nannten: LN1 und LN2) und dorsalen Neuronen-Gruppen (benannt dorsal laterale Neurone und dorsale Neurone: DLN und DN), sowie in vielen Gliazellen und Fotorezeptorzellen. Dieses Expressionsmuster liegt ähnlich in anderen Insektengruppen vor und deutet auf einen Grundbauplan der Inneren Uhr im Gehirn von Insekten hin. In der LN2 Neuronen-Gruppe, deren Zellkörper im lateralen Gehirn liegen, sind PER und PDF in den gleichen Zellen co-lokalisiert. Diese Zellen bilden ein komplexes Netzwerk aus Verzweigungen durch das gesamte Gehirn und liefern damit die perfekte Infrastruktur, um Zeitinformation an Gehirnregionen weiterzuleiten, die komplexe Verhaltensweisen, wie Sonnenkompass-Orientierung und Zeitgedächtnis, steuern. Alle PDF Neuriten laufen in einer anterior zur Lobula liegenden Region zusammen (sie wurde ALO, anterio-lobular PDF Knotenpunkt, genannt). Dieser Knotenpunkt ist in anderen Insekten mit der Medulla assoziiert und wird akzessorische Medulla (AME) genannt. Wenige PDF Zellen bilden bereits im frühen Larvalstadium diesen ALO und die Zellzahl sowie die Komplexität des Netzwerks wächst die gesamte Entwicklung der Honigbiene hindurch. Dabei werden zuerst die dorsalen Gehirnregionen von PDF Neuronen innerviert und in der späteren Larvalentwicklung wachsen die Neurite lateral in Richtung der optischen Loben und des Zentralgehirns. Das generelle Expressionsmuster von PER und PDF in adulten sozialen und solitären Bienen ähnelt sich stark, aber ich identifizierte kleine Unterschiede in der PDF Netzwerkdichte im posterioren Protocerebrum und in der Lamina. Diese könnten mit der Evolution von sozialen Bienen assoziiert sein. Zweitens entwickelte und etablierte ich eine Methode, Lokomotionsrhythmen von individuellen Bienen im Labor aufzunehmen, die in Kontakt mit einem Miniaturvolk standen. Diese Methode enthüllte neue Aspekte der sozialen Synchronisation unter Honigbienen und des Überlebens von jungen Bienen, die indirekten sozialen Kontakt zu dem Miniaturvolk hatten (Trophalaxis war nicht möglich). Für Mauerbienen etablierte ich eine Methode Schlupf- und lokomotorische Aktivitätsrhythmik aufzuzeichnen und konnte damit zeigen, dass tägliche Rhythmen im Schlupf durch Synchronisation der circadianen Uhr in Mauerbienen durch Tagestemperatur-Zyklen erzielt werden kann. Des Weiteren präsentiere ich die ersten lokomotorischen Aktivitätsrhythmen von solitären Bienen, die sofort nach ihrem Schlupf einen starken circadianen Rhythmus im Verhalten aufwiesen. Honigbienen brauchten in meinen Experimenten mehrere Tage, um circadiane Rhythmen in Lokomotion zu entwickeln. Ich erstellte die Hypothese, dass Honigbienen zum Zeitpunkt des Schlupfes im Bienenvolk ein noch nicht vollständig ausgereiftes circadianes System besitzen, während solitäre Bienen, die ohne den Schutz eines Volkes sind, direkt nach dem Schlupf eine vollständig ausgereifte Uhr brauchen. Mehrere Hinweise in Publikationen und Vorversuchen unterstützen meine Hypothese. Zukünftige Studien der Entwicklung des PDF Neuronen-Netzwerkes in solitären Bienen unterschiedlicher Entwicklungsstufen könnten dies nachweisen. KW - Chronobiologie KW - circadian rhythms KW - honeybee KW - Mauerbiene KW - Neuroanatomie Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159765 ER - TY - THES A1 - Rumpf, Florian T1 - Optogenetic stimulation of AVP neurons in the anterior hypothalamus promotes wakefulness T1 - Optogenetische Stimulation von AVP Neuronen im vorderen Hypothalamus induziert Wachheit N2 - The mammalian central clock, located in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus, controls circadian rhythms in behaviour such as the sleep-wake cycle. It is made up of approximately 20,000 heterogeneous neurons that can be classified by their expression of neuropeptides. There are three major populations: AVP neurons (arginine vasopressin), VIP neurons (vasoactive intestinal peptide), and GRP neurons (gastrin releasing peptide). How these neuronal clusters form functional units to govern various aspects of rhythmic behavior is poorly understood. At a molecular level, biological clocks are represented by transcriptional-posttranslational feedback loops that induce circadian oscillations in the electrical activity of the SCN and hence correlate with behavioral circadian rhythms. In mammals, the sleep wake cycle can be accurately predicted by measuring electrical muscle and brain activity. To investigate the link between the electrical activity of heterogeneous neurons of the SCN and the sleep wake cycle, we optogenetically manipulated AVP neurons in vivo with SSFO (stabilized step function opsin) and simultaneously recorded an electroencephalogram (EEG) and electromyogram (EMG) in freely moving mice. SSFO-mediated stimulation of AVP positive neurons in the anterior hypothalamus increased the total amount of wakefulness during the hour of stimulation. Interestingly, this effect led to a rebound in sleep in the hour after stimulation. Markov chain sleep-stage transition analysis showed that the depolarization of AVP neurons through SSFO promotes the transition from all states to wakefulness. After the end of stimulation, a compensatory increase in transitions to NREM sleep was observed. Ex vivo, SSFO activation in AVP neurons causes depolarization and modifies the activity of AVP neurons. Therefore, the results of this thesis project suggest an essential role of AVP neurons as mediators between circadian rhythmicity and sleep-wake behaviour. N2 - Die zentrale Uhr von Säugetieren, die sich im Nucleus suprachiasmaticus (SCN) des vorderen Hypothalamus befindet, steuert zirkadiane Verhaltensrhythmen wie den Schlaf-Wach-Rhythmus. Sie besteht aus etwa 20.000 heterogenen Neuronen, die nach ihrer Expression von Neuropeptiden klassifiziert werden können. Es gibt drei große Populationen: AVP-Neuronen, VIP-Neuronen und GRP-Neuronen. Wie diese Neuronengruppen funktionelle Einheiten bilden, um verschiedene Aspekte des rhythmischen Verhaltens zu steuern, ist nur unzureichend bekannt. Bei Säugetieren kann der Schlaf-Wach-Zyklus durch Messung der elektrischen Muskel- und Gehirnaktivität genau vorhergesagt werden. Um den Zusammenhang zwischen der elektrischen Aktivität heterogener Neuronen des SCN und dem Schlaf-Wach-Zyklus zu untersuchen, wurden AVP-Neuronen in vivo mit SSFO optogenetisch manipuliert und gleichzeitig ein Elektroenzephalogramm (EEG) und ein Elektromyogramm (EMG) bei frei beweglichen Mäusen aufgezeichnet. Die SSFO-vermittelte Stimulation von AVP-positiven Neuronen im vorderen Hypothalamus erhöhte den Gesamtanteil der Wachheit während der Stunde der Stimulation. Interessanterweise führte dieser Effekt zu einem Ansteigen des Schlafes in der Stunde nach der Stimulation. Eine Markov-Ketten-Analyse der Schlafphasenübergänge zeigte, dass die Depolarisierung der AVP-Neuronen durch SSFO den Übergang von allen Zuständen zum Wachsein fördert. Nach dem Ende der Stimulation wurde ein kompensatorischer Anstieg der Schlafphasenübergänge zum NREM-Schlaf beobachtet. Ex vivo verursachte die SSFO-Aktivierung in AVP-Neuronen eine Depolarisation und veränderte die Aktivität der AVP-Neuronen. Die Ergebnisse dieser Doktorarbeit könnten auf die Rolle der AVP-Neuronen als Vermittler zwischen zirkadianer Rhythmik und Schlaf-Wach-Verhalten hinweisen. KW - Schlaf KW - Tagesrhythmus KW - Hypothalamus KW - Optogenetik KW - Sleep KW - Hypothalamus KW - Circadian KW - Optogenetics Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-315492 ER - TY - THES A1 - Schubert, Frank Klaus T1 - The circadian clock network of \(Drosophila\) \(melanogaster\) T1 - Das Uhrneuronennetzwerk von \(Drosophila\) \(melanogaster\) N2 - All living organisms need timekeeping mechanisms to track and anticipate cyclic changes in their environment. The ability to prepare for and respond to daily and seasonal changes is endowed by circadian clocks. The systemic features and molecular mechanisms that drive circadian rhythmicity are highly conserved across kingdoms. Therefore, Drosophila melanogaster with its relatively small brain (ca. 135.000 neurons) and the outstanding genetic tools that are available, is a perfect model to investigate the properties and relevance of the circadian system in a complex, but yet comprehensible organism. The last 50 years of chronobiological research in the fruit fly resulted in a deep understanding of the molecular machinery that drives circadian rhythmicity, and various histological studies revealed the neural substrate of the circadian system. However, a detailed neuroanatomical and physiological description on the single-cell level has still to be acquired. Thus, I employed a multicolor labeling approach to characterize the clock network of Drosophila melanogaster with single-cell resolution and additionally investigated the putative in- and output sites of selected neurons. To further study the functional hierarchy within the clock network and to monitor the “ticking clock“ over the course of several circadian cycles, I established a method, which allows us to follow the accumulation and degradation of the core clock genes in living brain explants by the means of bioluminescence imaging of single-cells. N2 - Alle lebenden Organismen benötigen Mechanismen zur Zeitmessung, um sich auf periodisch wiederkehrende Umweltveränderungen einstellen zu können. Zirkadiane Uhren verleihen die Fähigkeit, tages- und jahreszeitliche Veränderungen vorauszuahnen und sich an diese anzupassen. Die Eigenschaften des zirkadianen Systems, als auch dessen molekularer Mechanismus scheinen über sämtliche Taxa konserviert zu sein. Daher bietet es sich an, die leicht handhabbare Taufliege Drosophila melanogaster als Modellorganismus zu benutzen. Das relativ kleine Gehirn (ca. 135.000 Neurone) und die herausragende genetische Zugänglichkeit der Fliege prädestinieren sie dazu, das zirkadiane System in einem komplexen, aber dennoch überschaubaren Kontext zu untersuchen. Die vergangenen 50 Jahre chronobiologischer Forschung an Drosophila führten zu einem tiefgreifenden Verständnis der molekularen Mechanismen, die für tageszeitliche Rhythmizität verantwortlich sind. Anhand zahlreicher histologischer Untersuchungen wurde die neuronale Grundlage, das Uhrneuronennetzwerk im zentralen Nervensystem, beschrieben. Nichtsdestotrotz, gibt es noch immer keine detaillierte neuroanatomische und physiologische Charakterisierung der Uhrneurone auf Einzelzellebene. Daher war das Ziel der vorliegenden Arbeit die umfangreiche Beschreibung der Einzelzellanatomie ausgewählter Uhrneurone sowie die Identifikation mutmaßlicher post- und präsynaptischer Verzweigungen. Darüber hinaus war es mir möglich, eine Methode zur Messung von Biolumineszenzrhythmen in explantierten lebenden Gehirnen zu etablieren. Mit einem Lumineszenzmikroskop können die Proteinoszillationen einzelner Uhrneurone über die Dauer mehrerer zirkadianer Zyklen aufgezeichnet werden, wodurch neue funktionale Studien ermöglicht werden. KW - Taufliege KW - Chronobiologie KW - Tagesrhythmus KW - Neuroanatomie KW - Drosophila melanogaster KW - circadian rhythms KW - single cell anatomy Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157136 ER - TY - THES A1 - Bertolini, Enrico T1 - Comparative analysis of insect circadian clocks: a behavioural, anatomical, and molecular study T1 - Vergleichende Analyse der zirkadianen Uhr von Insekten: eine verhaltensbezogene, anatomische und molekulare Studie N2 - Biological clocks are endogenous oscillators that give organisms the sense of time. Insects, as the largest taxonomic group, offer fascinating models to study the evolution of clocks and their adaptation to various environments. Although the laboratory fruit fly, Drosophila melanogaster, led the role in the field of circadian biology as it provides a powerful genetic experimental tool, new model insect species need to be established to understand photoperiodic responses and to enable comparative studies. This work reports the behavioural, anatomical, and molecular characterization of the circadian clock of five insect species. The malt fly Chymomyza costata carries a D. melanogaster-like clock network, which supports circadian rhythms under rhythmic environment but cannot self-sustain when isolated from external time cues. The olive fly Bactrocera oleae is the major pest of olive plantations and the characterization of its circadian clock will improve future pest management strategies. The linden bug Pyrrhocoris apterus, a well suited model for investigating circadian and photoperiodic timing interactions, shows high degree of homology of the clock network with D. melanogaster. The scuttle flies Megaselia scalaris and Megaselia abdita represent new fascinating models to study how the clock network controls circadian behaviour. Overall, this work highlights high degree of homology between different circadian clock systems, but at the same time also dramatic differences in terms of circadian behaviour and neuro-anatomical expression of clock components. These have been mainly discussed in regards to the evolution of clocks in Diptera, and the adaptation of clocks to high latitudes. N2 - Biologische Uhren sind endogene Oszillatoren, mit welchen Organismen die Zeit messen können. Als größte taxonomische Gruppe stellen Insekten eine Vielzahl faszinierender Modelle, um die Evolution und Anpassung von biologischen Uhren an verschiedene Umweltbedingungen zu untersuchen. Obwohl Drosophila melanogaster eines der führenden Modelltiere im Feld der Chronobiologie ist, was sich leicht auf die herausragende genetische Manipulierbarkeit der Fliege zurück führen lässt, müssen weitere Insektenarten als Modellorganismen etabliert werden, um anhand verglei- chender Studien die Anpassungen an photoperiodische Veränderungen verstehen zu können. Die vorliegende Arbeit beschreibt die Charakterisierung der zirkadianen Uhr von fünf Insektenarten auf molekularer-, anatomischer- und Verhaltens-Ebene. Die Taufliegenart Chymomyza costata besitzt eine Drosophila-ähnliche Uhr, die zirkadiane Rhythmen unterstützt solange sich das Tier in einer rhythmischen Umwelt befindet. Allerdings kann die Uhr den Rhythmus nicht selbstständig aufrecht erhalten, wenn die Fliege von externen Zeitgebern isoliert ist. Die Olivenfruchtfliege Bactrocera oleae ist der bedeutendste Schädling auf Olivenplantagen und die Charakterisierung der zirkadianen Uhr dieser Art wird zuku¨nftige Schädlingsbekämpfungsstrategien verbessern. Die Gemeine Feuerwanze Pyrrhocoris apterus, ein gut geeignetes Modell um die Interaktion des zirkadianen und photoperiodischen Timings zu untersuchen, zeigt hohe Homologie zum Uhrennetzwerk von D. melanogaster. Die Buckelfliegen Megaselia scalaris und Megaselia abdita repräsentieren neue faszinierende Modelle für die Erforschung wie das Uhrennetzwerk zirkadianes Verhalten steuert. Zusammengenommen hebt diese Arbeit die hohe Ähnlichkeit zwischen verschiedenen zirkadianen Systemen hervor, zeigt jedoch gleichermaßen gravierende Unterschiede in Bezug auf zirkadianes Verhalten und der neuroanatomischen Expression von Uhrenkomponenten. Die Homologien und Unterschiede werden hauptsächlich in Bezug auf die Evolution biologischer Uhren in Dipteren, sowie der Anpassung der Uhren an höhere geografische Breiten, erörtert. KW - neurobiology KW - circadian clock KW - insects Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164651 ER -