TY - THES A1 - Pernitzsch, Sandy Ramona T1 - Functional Characterization of the abundant and conserved small regulatory RNA RepG in Helicobacter pylori T1 - Funktionelle Charakterisierung der abundanten und konservierten kleinen regulatorischen RNA RepG in Helicobacter pylori N2 - Bacterial small non-coding RNAs (sRNAs) play fundamental roles in controlling and finetuning gene expression in a wide variety of cellular processes, including stress responses, environmental signaling and virulence in pathogens. Despite the identification of hundreds of sRNA candidates in diverse bacteria by genomics approaches, the mechanisms and regulatory capabilities of these posttranscriptional regulators have most intensively been studied in Gram-negative Gammaproteobacteria such as Escherichia coli and Salmonella. So far, almost nothing is known about sRNA-mediated regulation (riboregulation) in Epsilonproteobacteria, including the major human pathogen Helicobacter pylori. H. pylori was even thought to be deficient for riboregulation as none of the sRNAs known from enterobacteria are conserved in Helicobacter and since it lacks the major RNA chaperone Hfq, which is crucial for sRNA function as well as stability in many bacteria. Nonetheless, more than 60 cis- and trans-acting sRNA candidates were recently identified in H. pylori by a global RNA sequencing approach, indicating that this pathogen, in principle, has the capability to use riboregulation for its gene expression control. However, the functions and underlying mechanisms of H. pylori sRNAs remained unclear. This thesis focused on the first functional characterization and target gene identification of a trans-acting sRNA, RepG (Regulator of polymeric G-repeats), in H. pylori. Using in-vitro and in-vivo approaches, RepG was shown to directly base-pair with its C/Urich terminator loop to a variable homopolymeric G-repeat in the 5’ untranslated region (UTR) of the tlpB mRNA, thereby regulating expression of the chemotaxis receptor TlpB. While the RepG sRNA is highly conserved, the length of the G-repeat in the tlpB mRNA leader varies among different H. pylori isolates, resulting in a strain-specific tlpB regulation. The modification of the number of guanines within the G-stretch in H. pylori strain 26695 demonstrated that the length of the homopolymeric G-repeat determines the outcome of posttranscriptional control (repression or activation) of tlpB by RepG. This lengthdependent targeting of a simple sequence repeat by a trans-acting sRNA represents a new twist in sRNA-mediated regulation and a novel mechanism of gene expression control, since it uniquely links phase variation by simple sequence repeats to posttranscriptional regulation. In almost all sequenced H. pylori strains, tlpB is encoded in a two gene operon upstream of HP0102, a gene of previously unknown function. This study provided evidence that HP0102 encodes a glycosyltransferase involved in LPS O-chain and Lewis x antigen production. Accordingly, this glycosyltransferase was shown to be essential for mice colonization by H. pylori. The coordinated posttranscriptional regulation of the tlpB-HP0102 operon by antisense base-pairing of RepG to the phase-variable G-repeat in the 5’ UTR of the tlpB mRNA allows for a gradual, rather than ON/OFF, control of HP0102 expression, thereby affecting LPS biosynthesis in H. pylori. This fine-tuning of O-chain and Lewis x antigen expression modulates H. pylori antibiotics sensitivity and thus, might be advantageous for Helicobacter colonization and persistence. Whole transcriptome analysis based on microarray and RNA sequencing was used to identify additional RepG target mRNAs and uncover the physiological role of this riboregulator in H. pylori. Altogether, repG deletion affected expression of more than 40 target gene candidates involved various cellular processes, including membrane transport and adhesion, LPS modification, amino acid metabolism, oxidative and nitrosative stress, and nucleic acid modification. The presence of homopolymeric G-repeats/G-rich sequences in almost all target mRNA candidates indicated that RepG hijacks a conserved motif to recognize and regulate multiple target mRNAs in H. pylori. Overall, this study demonstrates that H. pylori employs riboregulation in stress response and virulence control. In addition, this thesis has successfully established Helicobacter as a new model organism for investigating general concepts of gene expression control by Hfq-independent sRNAs and sRNAs in bacterial pathogens. N2 - Bakterielle kleine, nicht-kodierende RNAs (sRNAs, engl. für small RNAs) spielen eine fundamentale Rolle in der Kontrolle und Feinabstimmung der Genexpression in Bakterien. Sie sind an einer Vielzahl von zellulären Prozessen, einschließlich der Adaption an unterschiedliche Stress- sowie Umweltbedingungen und der Virulenz von bakteriellen Pathogenen, beteiligt. Trotz der Identifizierung von Hunderten von sRNA-Kandidaten in diversen Bakterien durch genomweite Untersuchungsmethoden, wurden die regulatorischen Eigenschaften und Mechanismen dieser posttranskriptionellen Regulatoren bisher hauptsächlich in Gram-negativen Gammaproteobakterien wie Escherichia coli und Salmonella untersucht. Bislang ist nur wenig über sRNA-basierte Regulation (Riboregulation) in Epsilonproteobakterien, einschließlich dem weitverbreiteten Humanpathogen Helicobacter pylori, bekannt. Es wurde sogar angenommen, dass H. pylori über keine Art der Riboregulation verfügt, da keine der enterobakteriellen sRNAs in Helicobacter konserviert sind. Zudem konnte in diesem Erreger kein Homolog für das RNAChaperon Hfq, welches in vielen Bakterien essentiell für die Funktion und Stabilität von sRNAs ist, identifiziert werden. Nichtsdestotrotz wurden mit Hilfe einer globalen RNASequenzierungsstudie,die auf der Sequenzierung primärer Transkripte in einem Hochdurchsatzverfahren basiert, kürzlich mehr als 60 in cis- und in trans-agierende sRNAKandidaten in H. pylori identifiziert. Diese Transkriptomanalyse deutet darauf hin, dass H. pylori prinzipiell die Fähigkeit hat Riboregulation zur Kontrolle seiner Genexression zu nutzen. Die Funktionen und Mechanismen von sRNAs in H. pylori sind jedoch immer noch unklar. In der vorgelegten Arbeit wurde erstmals eine in trans-agierende sRNA, RepG (Regulator of polymeric G-repeats), in Helicobacter charakterisiert sowie dessen zelluläre Zielgene identifiziert. Mit Hilfe diverser in-vitro und in-vivo Analysen konnte gezeigt werden, dass der C/U-reiche Transkriptionsterminatorloop von RepG direkt an eine variable, repetitive G-Sequenz in der 5‘ untranslatierten Region (UTR) der tlpB mRNA bindet. Durch diese direkte sRNA-mRNA Interaktion wird die Expression des Chemotaxis Rezeptors TlpB reguliert. Im Gegensatz zu einer hohen Konservierung der Sequenz der RepG sRNA, variiert die Länge des G-Stretches im 5‘ UTR der tlpB mRNA zwischen unterschiedlichen H. pylori Isolaten. Diese Längenvariation resultiert in einer Stamm-spezifischen Regulation der TlpB Expression. Die Modifikation der Anzahl der Guanin-Basen im G-Stretch des H. pylori Stammes 26695 demonstrierte, dass die Länge der repetitiven G-Sequenz das Ergebnis der posttranskriptionellen Regulation (Repression oder Aktivierung) von tlpB durch RepG beeinflusst. Die hier beschriebene Längen-abhängige Interaktion zwischen einer in transagierenden sRNA und einer einfachen, repetitiven Sequenz repräsentiert nicht nur ein neues Konzept für die Genregulation durch sRNAs, sondern stellt auch einen neuen Mechanismus der Genexpressionskontrolle dar. Darüber hinaus, veranschaulicht die hier beschriebene sRNA-mRNA Interaktion eine bislang einzigartige Verknüpfung von Phasenvariation durch hochvariabel, repetitive Sequenzen mit Genregulation durch sRNAs. In nahezu allen sequenzierten H. pylori Stämmen ist das tlpB Gen in einem Operon zusammen mit einem Gen mit bisher unbekannter Funktion, HP0102, kodiert. In dieser Arbeit konnte gezeigt werden, dass HP0102 für eine Glykosyltransferase kodiert, die an der Synthese der O-Seitenketten des LPS und des Lewis x Antigens in H. pylori beteiligt ist. Darüber hinaus konnte demonstriert werden, dass diese Glykosyltransferase für die Kolonisierung des murinen Magens durch H. pylori essentiell ist. Die koordinierte, posttranskriptionelle Regulation des tlpB-HP0102 Operons, welche durch antisense Basenpaarung zwischen RepG und der phasen-variablen, repetitiven G-Sequenz im 5‘ UTR der tlpB mRNA vermittelt wird, ermöglicht eine graduelle Kontrolle der Genexpression von HP0102, und somit Einflussnahme auf die LPS Biosynthese in H. pylori. Diese Feinabstimmung der LPS O-Seitenketten und Lewis x Antigen Expression beeinflusst die Resistenz von H. pylori gegen diverse Antibiotika und könnte somit sowohl für die Kolonisierung als auch für die persistente Infektion des Wirts durch H. pylori vorteilhaft sein. Um Einblicke in die physiologische Funktion von RepG zu gewinnen, wurden in einer genom-weiten Transkriptomanalyse mittels Microarray und RNA-Sequenzierung weitere Zielgene von RepG bestimmt. Insgesamt beeinflusste die Deletion von repG die Expression von mehr als 40 potentiellen Zielgenen, welche an diversen zellulären Prozessen beteiligt sind, wie z.B. Membrantransport und Adhäsion, Aminosäure- und Nukleinsäure-Metabolismus, oxidative und nitrosative Stressantwort sowie LPS Modifizierung. Die Identifizierung von homopolymeren G-Stretchen bzw. G-reichen Sequenzen in allen ZielmRNAs deutet darauf hin, dass RepG ein konserviertes Motiv bindet, um mehrere Zielgene in H. pylori zu erkennen und zu regulieren. Zusammenfassend zeigt diese Arbeit, dass H. pylori Riboregulation basierend auf sRNAs nutzt, um seine Genexpression in unterschiedlichen Stress- und Virulenzbedingungen zu regulieren. Darüber hinaus hat diese Studie Helicobacter als neuen Modelorganismus für die Untersuchung genereller Wirkungsweisen Hfq-unabhängiger sRNAs und sRNAs in bakteriellen Pathogenen etabliert. KW - Small RNA KW - Helicobacter pylori KW - Genregulation KW - Riboregulation KW - Chemotaxis KW - LPS Biosynthese KW - Sequenzwiederholung KW - Phasenvariation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122686 ER - TY - THES A1 - Wolter, Steve T1 - Single-molecule localization algorithms in super-resolution microscopy T1 - Einzelmoleküllokalisierungsalgorithmen in der superauflösenden Mikroskopie N2 - Lokalisationsmikroskopie ist eine Methodenklasse der superauflösenden Fluoreszenzmikroskopie, deren Methoden sich durch stochastische zeitliche Isolation der Fluoreszenzemission auszeichnen. Das Blinkverhalten von Fluorophoren wird so verändert, dass gleichzeitige Aktivierung von einander nahen Fluorophoren unwahrscheinlich ist. Bekannte okalisationsmikroskopische Methoden umfassen dSTORM, STORM, PALM, FPALM, oder GSDIM. Lokalisationsmikroskopie ist von hohem biologischem Interesse, weil sie die Auflösung des Fluoreszenzmikroskops bei minimalem technischem Aufwand um eine Größenordnung verbessert. Der verbundene Rechenaufwand ist allerdings erheblich, da Millionen von Fluoreszenzemissionen einzeln mit Nanometergenauigkeit lokalisiert werden müssen. Der Rechen- und Implementationsaufwand dieser Auswertung hat die Verbreitung der superauflösenden Mikroskopie lange verzögert. Diese Arbeit beschreibt meine algorithmische Grundstruktur für die Auswertung lokalisationsmikroskopischer Daten. Die Echtzeitfähigkeit, d.h. eine Auswertegeschwindigkeit oberhalb der Datenaufnahmegeschwindigkeit an normalen Messaufbauten, meines neuartigen und quelloffenen Programms wird demonstriert. Die Geschwindigkeit wird auf verbrauchermarktgängigen Prozessoren erreicht und dadurch spezialisierte Rechenzentren oder der Einsatz von Grafikkarten vermieden. Die Berechnung wird mit dem allgemein anerkannten Gaussschen Punktantwortmodell und einem Rauschmodell auf Basis der größten Poissonschen Wahrscheinlichkeit durchgeführt. Die algorithmische Grundstruktur wird erweitert, um robuste und optimale Zweifarbenauswertung zu realisieren und damit korrelative Mikroskopie zwischen verschiedenen Proteinen und Strukturen zu ermöglichen. Durch den Einsatz von kubischen Basissplines wird die Auswertung von dreidimensionalen Proben vereinfacht und stabilisiert, um präzisem Abbilden von mikrometerdicken Proben näher zu kommen. Das Grenzverhalten von Lokalisationsalgorithmen bei hohen Emissionsdichten wird untersucht. Abschließend werden Algorithmen für die Anwendung der Lokalisationsmikroskopie auf verbreitete Probleme der Biologie aufgezeigt. Zelluläre Bewegung und Motilität werden anhand der in vitro Bewegung von Myosin-Aktin-Filamenten studiert. Lebendzellbildgebung mit hellen und stabilen organischen Fluorophoren wird mittels SNAP-tag-Fusionsproteinen realisiert. Die Analyse des Aufbaus von Proteinklumpen zeigt, wie Lokalisationsmikroskopie neue quantitative Ansätze jenseits reiner Bildgebung bietet. N2 - Localization microscopy is a class of super-resolution fluorescence microscopy techniques. Localization microscopy methods are characterized by stochastic temporal isolation of fluorophore emission, i.e., making the fluorophores blink so rapidly that no two are likely to be photoactive at the same time close to each other. Well-known localization microscopy methods include dSTORM}, STORM, PALM, FPALM, or GSDIM. The biological community has taken great interest in localization microscopy, since it can enhance the resolution of common fluorescence microscopy by an order of magnitude at little experimental cost. However, localization microscopy has considerable computational cost since millions of individual stochastic emissions must be located with nanometer precision. The computational cost of this evaluation, and the organizational cost of implementing the complex algorithms, has impeded adoption of super-resolution microscopy for a long time. In this work, I describe my algorithmic framework for evaluating localization microscopy data. I demonstrate how my novel open-source software achieves real-time data evaluation, i.e., can evaluate data faster than the common experimental setups can capture them. I show how this speed is attained on standard consumer-grade CPUs, removing the need for computing on expensive clusters or deploying graphics processing units. The evaluation is performed with the widely accepted Gaussian PSF model and a Poissonian maximum-likelihood noise model. I extend the computational model to show how robust, optimal two-color evaluation is realized, allowing correlative microscopy between multiple proteins or structures. By employing cubic B-splines, I show how the evaluation of three-dimensional samples can be made simple and robust, taking an important step towards precise imaging of micrometer-thick samples. I uncover the behavior and limits of localization algorithms in the face of increasing emission densities. Finally, I show up algorithms to extend localization microscopy to common biological problems. I investigate cellular movement and motility by considering the in vitro movement of myosin-actin filaments. I show how SNAP-tag fusion proteins enable imaging with bright and stable organic fluorophores in live cells. By analyzing the internal structure of protein clusters, I show how localization microscopy can provide new quantitative approaches beyond pure imaging. KW - super-resolution microscopy KW - fluorescence KW - scientific computing KW - dSTORM KW - localization microscopy KW - PALM KW - 3D microscopy KW - two-color microscopy KW - Fluoreszenzmikroskopie KW - Bildauflösung KW - Bioinformatik Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-109370 ER - TY - THES A1 - Zachary, Marie T1 - Functional characterization of small non-coding RNAs of \(Neisseria\) \(gonorrhoeae\) T1 - Funktionelle Charakterisierung kleiner nicht-kodierender RNAs in \(Neisseria\) \(gonorrhoeae\) N2 - During infection, bacteria need to adapt to a changing environment and have to endure various stress conditions. Small non-coding RNAs are considered as important regulators of bacterial gene expression and so allow quick adaptations by altering expression of specific target genes. Regulation of gene expression in the human-restricted pathogen Neisseria gonorrhoeae, the causative agent of the sexually transmitted disease gonorrhoea, is only poorly understood. The present study aims a better understanding of gene regulation in N. gonorrhoeae by studying small non-coding RNAs. The discovery of antisense RNAs for all opa genes led to the hypothesis of asRNA-mediated degradation of out-of-frame opa transcripts. Analysis of asRNA expression revealed a very low abundance of the transcripts and inclusion of another phase-variable gene in the study indicates that the asRNAs are not involved in degradation of out-of-frame transcripts. This doctoral thesis focuses on the analysis of trans-acting sRNAs. The sibling sRNAs NgncR_162 and NgncR_163 were discovered as post-transcriptional regulators altering expression of genes involved in metabolic processes, amino acid uptake and transcriptional regulation. A more detailed analysis by in silico and transcriptomic approaches showed that the sRNAs regulate a broad variety of genes coding for proteins of central metabolism, amino acid biosynthesis and degradation and several transport processes. Expression levels of the sibling sRNAs depend on the growth phase of the bacteria and on the growth medium. This indicates that NgncR_162 and NgncR_163 are involved in the adaptation of the gonococcal metabolism to specific growth conditions. This work further initiates characterisation of the sRNA NgncR_237. An in silico analysis showed details on sequence conservation and a possible secondary structure. A combination of in silico target prediction and differential RNA sequencing resulted in the identification of several target genes involved in type IV pilus biogenesis and DNA recombination. However, it was not successful to find induction conditions for sRNA expression. Interestingly, a possible sibling sRNA could be identified that shares the target interaction sequence with NgncR_237 and could therefore target the same mRNAs. In conclusion, this thesis provides further insights in gene regulation by non-coding RNAs in N. gonorrhoeae by analysing two pairs of sibling sRNAs modulating bacterial metabolism or possibly type IV pilus biogenesis. N2 - Bakterien müssen sich während des Infektionsprozesses an eine sich veränderte Umgebung anpassen und sind dabei zahlreichen Stressfaktoren ausgesetzt. Kleine, nicht-kodierende RNAs gelten als wichtige Regulatoren der bakteriellen Genexpression und ermöglichen daher eine schnelle Anpassung durch eine Veränderung der Expression spezifischer Ziel-Gene. Die Regulation der Genexpression des Humanpathogens Neisseria gonorrhoeae, Auslöser der Geschlechtskrankheit Gonorrhö, ist bis jetzt kaum verstanden. Die vorliegende Studie soll durch die Analyse kleiner, nicht-kodierender RNAs zum besseren Verständnis der Genregulation in Gonokokken beitragen. Durch die Entdeckung von antisense-RNAs für alle opa Gene wurde die Hypothese entwickelt, dass diese für den Abbau von opa Transkripten außerhalb des Leserahmens verantwortlich sind. Eine Analyse der asRNA Expression zeigte jedoch, dass diese sehr wenig exprimiert werden und auch die Untersuchung eines anderen phasenvariablen Gens weist darauf hin, dass die asRNAs keine Bedeutung für den Abbau von Transkripten außerhalb des Leserahmens haben. Der Schwerpunkt der Doktorarbeit liegt auf der Untersuchung trans-codierter sRNAs. Die Zwillings-sRNAs NgncR_162 und NgncR_163 agieren als post-transkriptionelle Regulatoren, die die Expression von Genen verändern, die bei Stoffwechselprozessen, Aminosäureaufnahme und transkriptioneller Regulation eine Rolle spielen. Eine detailliertere Analyse durch in silico- und Transkriptom-Studien zeigte, dass die sRNAs ein großes Spektrum an Genen regulieren, die für Proteine des Zentralstoffwechsels, der Aminosäurebiosynthese und des –abbaus, sowie zahlreicher Transportprozesse kodieren. Die Expressionslevel der Zwillings-sRNAs hängen von der Wachstumsphase der Bakterien und dem Wachstumsmedium ab. Das weist darauf hin, dass NgncR_162 und NgncR_163 eine Rolle bei der Adaptation des Stoffwechsels von Gonokokken zu bestimmten Wachstumsbedingungen spielen. In dieser Arbeit wird zudem die Charakterisierung der sRNA NgncR_237 initiiert. Im Rahmen von in silico Analysen wurde die Sequenzkonservierung und mögliche Sekundärstruktur untersucht. Eine Kombination aus in silico Zielgen-Vorhersage und differentieller RNA Sequenzierung führte zur Identifizierung zahlreicher Zielgene, die in der Biogenese von Typ IV Pili und DNA Rekombination eine Rolle spielen. Allerdings konnten keine Induktionsbedingungen für die sRNA Expression gefunden werden. Interessanterweise konnte eine mögliche Zwillings-sRNA identifiziert werden, die dieselbe Targetinteraktionsdomäne wie NgncR_237 hat und somit dieselben Zielgene regulieren könnte. Zusammenfassend ermöglicht diese Arbeit neue Einblicke in die Genregulation durch nicht-kodierende RNAs in Gonokokken, indem zwei Paare Zwillings-sRNAs analysiert wurden, die den bakteriellen Stoffwechsel anpassen oder möglicherweise eine Rolle in der Typ IV Pilus Biogenese spielen. KW - Neisseria gonorrhoeae KW - Non-coding RNA KW - Genregulation KW - regulation of gene expression Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-245826 ER -