TY - THES A1 - Wurst, Jan-Eric T1 - Hp-Finite Elements for PDE-Constrained Optimization N2 - Diese Arbeit behandelt die hp-Finite Elemente Methode (FEM) für linear quadratische Optimal-steuerungsprobleme. Dabei soll ein Zielfunktional, welches die Entfernung zu einem angestrebten Zustand und hohe Steuerungskosten (als Regularisierung) bestraft, unter der Nebenbedingung einer elliptischen partiellen Differentialgleichung minimiert werden. Bei der Anwesenheit von Steuerungsbeschränkungen können die notwendigen Bedingungen erster Ordnung, die typischerweise für numerische Lösungsverfahren genutzt werden, als halbglatte Projektionsformel formuliert werden. Folglich sind optimale Lösungen oftmals auch nicht-glatt. Die Technik der hp-Diskretisierung berücksichtigt diese Tatsache und approximiert raue Funktionen auf feinen Gittern, während Elemente höherer Ordnung auf Gebieten verwendet werden, auf denen die Lösung glatt ist. Die erste Leistung dieser Arbeit ist die erfolgreiche Anwendung der hp-FEM auf zwei verwandte Problemklassen: Neumann- und Interface-Steuerungsprobleme. Diese werden zunächst mit entsprechenden a-priori Verfeinerungsstrategien gelöst, mit der randkonzentrierten (bc) FEM oder interface konzentrierten (ic) FEM. Diese Strategien generieren Gitter, die stark in Richtung des Randes beziehungsweise des Interfaces verfeinert werden. Um für beide Techniken eine algebraische Reduktion des Approximationsfehlers zu beweisen, wird eine elementweise interpolierende Funktion konstruiert. Außerdem werden die lokale und globale Regularität von Lösungen behandelt, weil sie entscheidend für die Konvergenzgeschwindigkeit ist. Da die bc- und ic- FEM kleine Polynomgrade für Elemente verwenden, die den Rand beziehungsweise das Interface berühren, können eine neue L2- und L∞-Fehlerabschätzung hergeleitet werden. Letztere bildet die Grundlage für eine a-priori Strategie zum Aufdatieren des Regularisierungsparameters im Zielfunktional, um Probleme mit bang-bang Charakter zu lösen. Zudem wird die herkömmliche hp-Idee, die daraus besteht das Gitter geometrisch in Richtung der Ecken des Gebiets abzustufen, auf die Lösung von Optimalsteuerungsproblemen übertragen (vc-FEM). Es gelingt, Regularität in abzählbar normierten Räumen für die Variablen des gekoppelten Optimalitätssystems zu zeigen. Hieraus resultiert die exponentielle Konvergenz im Bezug auf die Anzahl der Freiheitsgrade. Die zweite Leistung dieser Arbeit ist die Entwicklung einer völlig adaptiven hp-Innere-Punkte-Methode, die Probleme mit verteilter oder Neumann Steuerung lösen kann. Das zugrundeliegende Barriereproblem besitzt ein nichtlineares Optimilitätssystem, das eine numerische Herausforderung beinhaltet: die stabile Berechnung von Integralen über Funktionen mit möglichen Singularitäten in Elementen höherer Ordnung. Dieses Problem wird dadurch gelöst, dass die Steuerung an den Integrationspunkten überwacht wird. Die Zulässigkeit an diesen Punkten wird durch einen Glättungsschritt garantiert. In dieser Arbeit werden sowohl die Konvergenz eines Innere-Punkte-Verfahrens mit Glättungsschritt als auch a-posteriori Schranken für den Diskretisierungsfehler gezeigt. Dies führt zu einem adaptiven Lösungsalgorithmus, dessen Gitterverfeinerung auf der Entwicklung der Lösung in eine Legendre Reihe basiert. Hierbei dient das Abklingverhalten der Koeffizienten als Glattheitsindikator und wird für die Entscheidung zwischen h- und p-Verfeinerung herangezogen. N2 - This thesis deals with the hp-finite element method (FEM) for linear quadratic optimal control problems. Here, a tracking type functional with control costs as regularization shall be minimized subject to an elliptic partial differential equation. In the presence of control constraints, the first order necessary conditions, which are typically used to find optimal solutions numerically, can be formulated as a semi-smooth projection formula. Consequently, optimal solutions may be non-smooth as well. The hp-discretization technique considers this fact and approximates rough functions on fine meshes while using higher order finite elements on domains where the solution is smooth. The first main achievement of this thesis is the successful application of hp-FEM to two related problem classes: Neumann boundary and interface control problems. They are solved with an a-priori refinement strategy called boundary concentrated (bc) FEM and interface concentrated (ic) FEM, respectively. These strategies generate grids that are heavily refined towards the boundary or interface. We construct an elementwise interpolant that allows to prove algebraic decay of the approximation error for both techniques. Additionally, a detailed analysis of global and local regularity of solutions, which is critical for the speed of convergence, is included. Since the bc- and ic-FEM retain small polynomial degrees for elements touching the boundary and interface, respectively, we are able to deduce novel error estimates in the L2- and L∞-norm. The latter allows an a-priori strategy for updating the regularization parameter in the objective functional to solve bang-bang problems. Furthermore, we apply the traditional idea of the hp-FEM, i.e., grading the mesh geometrically towards vertices of the domain, for solving optimal control problems (vc-FEM). In doing so, we obtain exponential convergence with respect to the number of unknowns. This is proved with a regularity result in countably normed spaces for the variables of the coupled optimality system. The second main achievement of this thesis is the development of a fully adaptive hp-interior point method that can solve problems with distributed or Neumann control. The underlying barrier problem yields a non-linear optimality system, which poses a numerical challenge: the numerically stable evaluation of integrals over possibly singular functions in higher order elements. We successfully overcome this difficulty by monitoring the control variable at the integration points and enforcing feasibility in an additional smoothing step. In this work, we prove convergence of an interior point method with smoothing step and derive a-posteriori error estimators. The adaptive mesh refinement is based on the expansion of the solution in a Legendre series. The decay of the coefficients serves as an indicator for smoothness that guides between h- and p-refinement. KW - Finite-Elemente-Methode KW - Optimale Kontrolle KW - Elliptische Differentialgleichung KW - finite elements KW - optimal control KW - higher order methods KW - partial differetial equations Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115027 SN - 978-3-95826-024-5 (print) SN - 978-3-95826-025-2 (online) PB - Würzburg University Press CY - Würzburg ER - TY - THES A1 - Pörner, Frank T1 - Regularization Methods for Ill-Posed Optimal Control Problems T1 - Regularisierungsverfahren für schlecht gestellte Optimalsteuerungsprobleme N2 - This thesis deals with the construction and analysis of solution methods for a class of ill-posed optimal control problems involving elliptic partial differential equations as well as inequality constraints for the control and state variables. The objective functional is of tracking type, without any additional \(L^2\)-regularization terms. This makes the problem ill-posed and numerically challenging. We split this thesis in two parts. The first part deals with linear elliptic partial differential equations. In this case, the resulting solution operator of the partial differential equation is linear, making the objective functional linear-quadratic. To cope with additional control constraints we introduce and analyse an iterative regularization method based on Bregman distances. This method reduces to the proximal point method for a specific choice of the regularization functional. It turns out that this is an efficient method for the solution of ill-posed optimal control problems. We derive regularization error estimates under a regularity assumption which is a combination of a source condition and a structural assumption on the active sets. If additional state constraints are present we combine an augmented Lagrange approach with a Tikhonov regularization scheme to solve this problem. The second part deals with non-linear elliptic partial differential equations. This significantly increases the complexity of the optimal control as the associated solution operator of the partial differential equation is now non-linear. In order to regularize and solve this problem we apply a Tikhonov regularization method and analyse this problem with the help of a suitable second order condition. Regularization error estimates are again derived under a regularity assumption. These results are then extended to a sparsity promoting objective functional. N2 - Diese Arbeit beschäftigt sich mit der Konstruktion und Analyse von Lösungsverfahren für schlecht gestellte Steuerungsprobleme. Die Nebenbedingungen sind in der Form von elliptischen partiellen Differentialgleichungen, sowie Ungleichungsrestriktionen für die Steuerung und den zugehörigen Zustand gegeben. Das Zielfunktional besteht aus einem Tracking-Type-Term ohne zusätzliche \(L^2\)-Regularisierungsterme. Dies führt dazu, dass das Optimalsteuerungsproblem schlecht gestellt ist, was die numerische Berechnung einer Lösung erschwert. Diese Arbeit ist in zwei Teile aufgeteilt. Der erste Teil beschäftigt sich mit linearen elliptischen partiellen Differentialgleichungen. In diesem Fall ist der zugehörige Lösungsoperator der partiellen Differentialgleichung linear und das Zielfunktional linear-quadratisch. Um die zusätzlichen Steuerungsrestriktionen zu behandeln, betrachten wir ein iteratives Verfahren welches auf einer Regularisierung mit Bregman-Abständen basiert. Für eine spezielle Wahl des Regularisierungsfunktionals vereinfacht sich dieses Verfahren zu dem Proximal-Point-Verfahren. Die Analyse des Verfahrens zeigt, dass es ein effizientes und gut geeignetes Verfahren ist, um schlecht gestellte Optimalsteuerungsprobleme zu lösen. Mithilfe einer Regularitätsannahme werden Konvergenzraten für den Regularisierungsfehler hergeleitet. Diese Regularitätsannahme ist eine Kombination einer Source-Condition sowie einer struktuellen Annahme an die aktiven Mengen. Wenn zusätzlich Zustandsrestriktionen vorhanden sind, wird zur Lösung eine Kombination aus dem Augmented Lagrange Ansatz sowie einer Tikhonov-Regularisierung angewendet. Der zweite Teil dieser Arbeit betrachtet nicht-lineare partielle Differentialgleichungen. Dies erhöht die Komplexität des Optimalsteuerungsproblem signifikant, da der Lösungsoperator der partiellen Differentialgleichung nun nicht-linear ist. Zur Lösung wird eine Tikhonov-Regularisierung betrachtet. Mithilfe einer geeigneten Bedingung zweiter Ordnung wird dieses Verfahren analysiert. Auch hier werden Konvergenzraten mithilfe einer Regularitätsannahme bestimmt. Anschließend werden diese Methoden auf ein Funktional mit einem zusätzlichen \(L^1\)-Term angewendet. N2 - Ill-posed optimization problems appear in a wide range of mathematical applications, and their numerical solution requires the use of appropriate regularization techniques. In order to understand these techniques, a thorough analysis is inevitable. The main subject of this book are quadratic optimal control problems subject to elliptic linear or semi-linear partial differential equations. Depending on the structure of the differential equation, different regularization techniques are employed, and their analysis leads to novel results such as rate of convergence estimates. KW - Optimale Steuerung KW - Regularisierung KW - Elliptische Differentialgleichung KW - optimal control KW - partial differential equation KW - Bregman distance KW - regularization KW - error estimate Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-163153 SN - 978-3-95826-086-3 (Print) SN - 978-3-95826-087-0 (Online) N1 - Parallel erschienen als Druckausgabe in Würzburg University Press, ISBN 978-3-95826-086-3, 26,90 EUR. PB - Würzburg University Press CY - Würzburg ET - 1. Auflage ER - TY - THES A1 - Karl, Veronika T1 - Augmented Lagrangian Methods for State Constrained Optimal Control Problems T1 - Augmentierte Lagrange-Verfahren für zustandsbeschränkte Optimalsteuerungsprobleme N2 - This thesis is concerned with the solution of control and state constrained optimal control problems, which are governed by elliptic partial differential equations. Problems of this type are challenging since they suffer from the low regularity of the multiplier corresponding to the state constraint. Applying an augmented Lagrangian method we overcome these difficulties by working with multiplier approximations in $L^2(\Omega)$. For each problem class, we introduce the solution algorithm, carry out a thoroughly convergence analysis and illustrate our theoretical findings with numerical examples. The thesis is divided into two parts. The first part focuses on classical PDE constrained optimal control problems. We start by studying linear-quadratic objective functionals, which include the standard tracking type term and an additional regularization term as well as the case, where the regularization term is replaced by an $L^1(\Omega)$-norm term, which makes the problem ill-posed. We deepen our study of the augmented Lagrangian algorithm by examining the more complicated class of optimal control problems that are governed by a semilinear partial differential equation. The second part investigates the broader class of multi-player control problems. While the examination of jointly convex generalized Nash equilibrium problems (GNEP) is a simple extension of the linear elliptic optimal control case, the complexity is increased significantly for pure GNEPs. The existence of solutions of jointly convex GNEPs is well-studied. However, solution algorithms may suffer from non-uniqueness of solutions. Therefore, the last part of this thesis is devoted to the analysis of the uniqueness of normalized equilibria. N2 - Die vorliegende Arbeit beschäftigt sich mit der Lösung von kontroll- und zustandsbeschränkten Optimalsteuerungsproblemen mit elliptischen partiellen Differentialgleichungen als Nebenbedingungen. Da die zur Zustandsbeschränkung zugehörigen Multiplikatoren nur eine niedrige Regularität aufweisen, sind Probleme dieses Typs besonders anspruchsvoll. Zur Lösung dieser Problemklasse wird ein augmentiertes Lagrange-Verfahren angewandt, das Annäherungen der Multiplikatoren in $L^2(\Omega)$ verwendet. Für jede Problemklasse erfolgt eine Präsentation des Lösungsalgorithmus, eine sorgfältige Konvergenzanalysis sowie eine Veranschaulichung der theoretischen Ergebnisse durch numerische Beispiele. Die Arbeit ist in zwei verschiedene Themenbereiche gegliedert. Der erste Teil widmet sich klassischen Optimalsteuerungsproblemen. Dabei wird zuerst der linear-quadratische und somit konvexe Fall untersucht. Hier setzt sich das Kostenfunktional aus einem Tracking-Type Term sowie einem $L^2(\Omega)$-Regularisierungsterm oder einem $L^1(\Omega)$-Term zusammen. Wir erweitern unsere Analysis auf nichtkonvexe Probleme. In diesem Fall erschwert die Nichtlinearität der zugrundeliegenden partiellen Differentialgleichung die Konvergenzanalysis des zugehörigen Optimalsteuerungsproblems maßgeblich. Der zweite Teil der Arbeit nutzt die Grundlagen, die im ersten Teil erarbeitet wurden und untersucht die allgemeiner gehaltene Problemklasse der Nash-Mehrspielerprobleme. Während die Untersuchung von konvexen verallgemeinerten Nash-Gleichsgewichtsproblemen (engl.: Generalized Nash Equilibrium Problem, kurz: GNEP) mit einer für alle Spieler identischen Restriktion eine einfache Erweiterung von linear elliptischen Optimalsteuerungsproblemen darstellt, erhöht sich der Schwierigkeitsgrad für Mehrspielerprobleme ohne gemeinsame Restriktion drastisch. Die Eindeutigkeit von normalisierten Nash-Gleichgewichten ist, im Gegensatz zu deren Existenz, nicht ausreichend erforscht, was insbesondere eine Schwierigkeit für Lösungsalgorithmen darstellt. Aus diesem Grund wird im letzten Teil dieser Arbeit die Eindeutigkeit von Lösungen gesondert betrachtet. KW - Optimale Kontrolle KW - Optimierung KW - Nash-Gleichgewicht KW - optimal control KW - state constraints KW - augmented Lagrangian method KW - Elliptische Differentialgleichung KW - Optimale Steuerung Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-213846 ER - TY - THES A1 - Körner, Jacob T1 - Theoretical and numerical analysis of Fokker–Planck optimal control problems by first– and second–order optimality conditions T1 - Theoretische und numerische Analysis von Fokker-Planck optimalen Steuerungsproblemen mittels Optimalitätsbedingung erster und zweiter Ordnung N2 - In this thesis, a variety of Fokker--Planck (FP) optimal control problems are investigated. Main emphasis is put on a first-- and second--order analysis of different optimal control problems, characterizing optimal controls, establishing regularity results for optimal controls, and providing a numerical analysis for a Galerkin--based numerical scheme. The Fokker--Planck equation is a partial differential equation (PDE) of linear parabolic type deeply connected to the theory of stochastic processes and stochastic differential equations. In essence, it describes the evolution over time of the probability distribution of the state of an object or system of objects under the influence of both deterministic and stochastic forces. The FP equation is a cornerstone in understanding and modeling phenomena ranging from the diffusion and motion of molecules in a fluid to the fluctuations in financial markets. Two different types of optimal control problems are analyzed in this thesis. On the one hand, Fokker--Planck ensemble optimal control problems are considered that have a wide range of applications in controlling a system of multiple non--interacting objects. In this framework, the goal is to collectively drive each object into a desired state. On the other hand, tracking--type control problems are investigated, commonly used in parameter identification problems or stemming from the field of inverse problems. In this framework, the aim is to determine certain parameters or functions of the FP equation, such that the resulting probability distribution function takes a desired form, possibly observed by measurements. In both cases, we consider FP models where the control functions are part of the drift, arising only from the deterministic forces of the system. Therefore, the FP optimal control problem has a bilinear control structure. Box constraints on the controls may be present, and the focus is on time--space dependent controls for ensemble--type problems and on only time--dependent controls for tracking--type optimal control problems. In the first chapter of the thesis, a proof of the connection between the FP equation and stochastic differential equations is provided. Additionally, stochastic optimal control problems, aiming to minimize an expected cost value, are introduced, and the corresponding formulation within a deterministic FP control framework is established. For the analysis of this PDE--constrained optimal control problem, the existence, and regularity of solutions to the FP problem are investigated. New $L^\infty$--estimates for solutions are established for low space dimensions under mild assumptions on the drift. Furthermore, based on the theory of Bessel potential spaces, new smoothness properties are derived for solutions to the FP problem in the case of only time--dependent controls. Due to these properties, the control--to--state map, which associates the control functions with the corresponding solution of the FP problem, is well--defined, Fréchet differentiable and compact for suitable Lebesgue spaces or Sobolev spaces. The existence of optimal controls is proven under various assumptions on the space of admissible controls and objective functionals. First--order optimality conditions are derived using the adjoint system. The resulting characterization of optimal controls is exploited to achieve higher regularity of optimal controls, as well as their state and co--state functions. Since the FP optimal control problem is non--convex due to its bilinear structure, a first--order analysis should be complemented by a second--order analysis. Therefore, a second--order analysis for the ensemble--type control problem in the case of $H^1$--controls in time and space is performed, and sufficient second--order conditions are provided. Analogous results are obtained for the tracking--type problem for only time--dependent controls. The developed theory on the control problem and the first-- and second--order optimality conditions is applied to perform a numerical analysis for a Galerkin discretization of the FP optimal control problem. The main focus is on tracking-type problems with only time--dependent controls. The idea of the presented Galerkin scheme is to first approximate the PDE--constrained optimization problem by a system of ODE--constrained optimization problems. Then, conditions on the problem are presented such that the convergence of optimal controls from one problem to the other can be guaranteed. For this purpose, a class of bilinear ODE--constrained optimal control problems arising from the Galerkin discretization of the FP problem is analyzed. First-- and second--order optimality conditions are established, and a numerical analysis is performed. A discretization with linear finite elements for the state and co--state problem is investigated, while the control functions are approximated by piecewise constant or piecewise quadratic continuous polynomials. The latter choice is motivated by the bilinear structure of the optimal control problem, allowing to overcome the discrepancies between a discretize--then--optimize and optimize--then--discretize approach. Moreover, second--order accuracy results are shown using the space of continuous, piecewise quadratic polynomials as the discrete space of controls. Lastly, the theoretical results and the second--order convergence rates are numerically verified. N2 - In dieser Dissertation werden verschiedene Fokker--Planck (FP) optimale Steuerungsprobleme untersucht. Die Schwerpunkte liegen auf einer Analyse von Optimalitätsbedingungen erster und zweiter Ordnung, der Charakterisierung optimaler Steuerungen, dem Herleiten höhere Regularität von optimalen Kontrollen sowie einer theoretischen numerischen Analyse für ein numerisches Verfahren basierend auf einer Galerkin Approximation. Die Fokker--Planck Gleichung ist eine lineare, parabolische, partielle Differentialgleichung (PDE), die aus dem Gebiet stochastischer Differentialgleichungen und stochastischer Prozesse stammt. Im Wesentlichen beschreibt sie die zeitliche Entwicklung der Wahrscheinlichkeitsverteilung des Zustands eines Objekts bzw. eines Systems von Objekten unter dem Einfluss sowohl deterministischer als auch stochastischer Kräfte. Die Fokker--Planck Gleichung ist ein Eckpfeiler zum Verständnis und Modellieren von Phänomenen, die von der Diffusion und Bewegung von Molekülen in einer Flüssigkeit bis hin zu den Schwankungen in Finanzmärkten reichen. Zwei verschiedene Arten von optimalen Kontrollproblemen werden in dieser Arbeit umfassend analysiert. Einerseits werden Fokker--Planck Ensemble Steuerungsprobleme betrachtet, die in der Kontrolle von Systemen mit mehreren nicht wechselwirkenden Objekten vielfältige Anwendungen haben. In diesem Gebiet ist das Ziel, alle Objekte gemeinsam in einen gewünschten Zustand zu lenken. Andererseits werden Tracking Kontrollprobleme untersucht, die häufig bei Parameteridentifikationsproblemen auftreten oder aus dem Bereich inverser Probleme stammen. Hier besteht das Ziel darin, bestimmte Parameter oder Funktionen der Fokker--Planck Gleichung derart zu bestimmen, dass die resultierende Wahrscheinlichkeitsverteilung eine gewünschte Form annimmt, welche beispielsweise durch Messungen beobachtet wurde. In beiden Fällen betrachten wir FP Modelle, bei denen die Kontrollfunktion Teil des sogenannten Drifts ist, das heißt der Teil, der nur aus den deterministischen Kräften des Systems resultiert. Daher hat das FP Kontrollproblem eine bilineare Struktur. Untere und obere Schranken für die Kontrollfunktionen können vorhanden sein, und der Fokus liegt auf zeit-- und raumabhängigen Steuerungen für Ensemble Kontrollprobleme, sowie auf nur zeitlich abhängigen Steuerungen für Tracking Kontrollprobleme. Am Anfang der Dissertation wird ein Beweis für den Zusammenhang zwischen der FP Gleichung und stochastischen Differentialgleichungen dargelegt. Darüber hinaus werden stochastische optimale Steuerungsprobleme eingeführt, deren Ziel es ist, einen erwarteten Kostenwert zu minimieren. Zusätzlich wird das Problem als ein deterministisches FP Kontrollproblem formuliert. Für die Analyse dieses Kontrollproblems wird die Existenz und Regularität von Lösungen für die FP Differentialgleichung untersucht. Neue $L^\infty$--Abschätzungen für Lösungen werden für niedrige Raumdimensionen unter schwachen Annahmen an den Drift bewiesen. Zusätzlich werden, basierend auf der Theorie über Bessel Potentialräume, neue Glattheitseigenschaften für Lösungen des FP--Problems im Falle zeitabhängiger Steuerungen erarbeitet. Aufgrund dieser Eigenschaften ist die sogenannte control--to--state Abbildung, welche die Kontrollfunktion mit der entsprechenden Lösung des FP Problems verknüpft, wohldefiniert, Fréchet--differenzierbar und kompakt für geeignete Lebesgue--Räume oder Sobolev--Räume. Die Existenz optimaler Steuerungen wird unter verschiedenen Annahmen an den Funktionenraum der Kontrollen und des Kostenfunktionals bewiesen. Optimalitätsbedingungen erster Ordnung werden unter Verwendung des adjungierten Systems aufgestellt. Die daraus resultierende Charakterisierung optimaler Steuerungen wird genutzt, um eine höhere Regularität optimaler Steuerungen sowie ihrer Zustandsfunktion und des adjungierten Problems zu erhalten. Da das FP Kontrollproblem aufgrund der bilinearen Struktur nicht konvex ist, sollte eine Analyse von Optimalitätsbedingungen erster Ordnung durch eine Analyse von Optimalitätsbedingungen zweiter Ordnung ergänzt werden. Dies wird für das Ensemble Kontrollproblem im Fall von zeit-- und ortsabhängigen Steuerungen mit $H^1$--Regularität durchgeführt, und hinreichende Bedingungen für lokale Minimierer werden hergeleitet. Analoge Ergebnisse werden für das Tracking--Problem für nur zeitabhängige Steuerungen bewiesen. Die entwickelte Theorie zu diesem optimalen Steuerungsproblem und dessen Optimalitätsbedingungen wird angewendet, um eine numerische Analyse für eine Galerkin--Diskretisierung des FP Kontrollproblems durchzuführen. Der Schwerpunkt liegt auf Tracking--Problemen mit nur zeitabhängigen Steuerungen. Die Idee des vorgestellten Galerkin--Verfahrens besteht darin, das PDE--Optimierungsproblem zunächst durch ein System von Optimierungsproblemen mit gewöhnlichen Differentialgleichungen (ODE) als Nebenbedingung zu approximieren. Dann werden Bedingungen an das Problem präsentiert, sodass die Konvergenz optimaler Steuerungen von einem Problem zum anderen garantiert werden kann. Zu diesem Zweck wird eine Klasse bilinearer ODE--Kontrollprobleme analysiert, welche sich aus der Galerkin--Diskretisierung des FP Problems ergeben. Optimalitätsbedingungen erster und zweiter Ordnung werden bewiesen, und eine numerische Analyse wird durchgeführt. Eine Diskretisierung mit linearen Finiten--Elementen der Zustands-- und Adjungiertengleichung wird untersucht, während die Kontrollfunktionen durch stückweise konstante oder stetige, stückweise quadratische Polynome approximiert werden. Diese Wahl wird durch die bilineare Struktur des optimalen Kontrollproblems begründet, da sie es ermöglicht, die Diskrepanzen zwischen einem Ansatz von ,,zuerst diskretisieren dann optimieren" und ,,zuerst optimieren, dann diskretisieren" zu überwinden. Durch die Verwendung stetiger, stückweise quadratischer Polynome als Diskretisierung der Steuerungen kann außerdem quadratische Konvergenzordnung gezeigt werden. Abschließend werden die theoretischen Ergebnisse und die Konvergenzraten zweiter Ordnung numerisch verifiziert. KW - Parabolische Differentialgleichung KW - Fokker-Planck-Gleichung KW - Optimale Kontrolle KW - Optimalitätsbedingung KW - Finite-Elemente-Methode KW - accuracy estimate Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-362997 ER -