TY - THES A1 - Gorelashvili, Maximilian Georg T1 - Investigation of megakaryopoiesis and the acute phase of ischemic stroke by advanced fluorescence microscopy T1 - Untersuchungen der Megakaryopoese und der akuten Phase des ischämischen Schlaganfalls mit Hilfe von hochentwickelter Fluoreszenzmikroskopie N2 - In mammals, anucleate platelets circulate in the blood flow and are primarily responsible for maintaining functional hemostasis. Platelets are generated in the bone marrow (BM) by megakaryocytes (MKs), which mainly reside directly next to the BM sinusoids to release proplatelets into the blood. MKs originate from hematopoietic stem cells and are thought to migrate from the endosteal to the vascular niche during their maturation, a process, which is, despite being intensively investigated, still not fully understood. Long-term intravital two photon microscopy (2PM) of MKs and vasculature in murine bone marrow was performed and mean squared displacement analysis of cell migration was performed. The MKs exhibited no migration, but wobbling-like movement on time scales of 3 h. Directed cell migration always results in non-random spatial distribution. Thus, a computational modelling algorithm simulating random MK distribution using real 3D light-sheet fluorescence microscopy data sets was developed. Direct comparison of real and simulated random MK distributions showed, that MKs exhibit a strong bias to vessel-contact. However, this bias is not caused by cell migration, as non-vessel-associated MKs were randomly distributed in the intervascular space. Furthermore, simulation studies revealed that MKs strongly impair migration of other cells in the bone marrow by acting as large-sized obstacles. MKs are thought to migrate from the regions close to the endosteum towards the vasculature during their maturation process. MK distribution as a function of their localization relative to the endosteal regions of the bones was investigated by light sheet fluorescence microscopy (LSFM). The results show no bone-region dependent distribution of MKs. Taken together, the newly established methods and obtained results refute the model of MK migration during their maturation. Ischemia reperfusion (I/R) injury is a frequent complication of cerebral ischemic stroke, where brain tissue damage occurs despite successful recanalization. Platelets, endothelial cells and immune cells have been demonstrated to affect the progression of I/R injury in experimental mouse models 24 h after recanalization. However, the underlying Pathomechanisms, especially in the first hours after recanalization, are poorly understood. Here, LSFM, 2PM and complemental advanced image analysis workflows were established for investigation of platelets, the vasculature and neutrophils in ischemic brains. Quantitative analysis of thrombus formation in the ipsilateral and contralateral hemispheres at different time points revealed that platelet aggregate formation is minimal during the first 8 h after recanalization and occurs in both hemispheres. Considering that maximal tissue damage already is present at this time point, it can be concluded that infarct progression and neurological damage do not result from platelet aggregated formation. Furthermore, LSFM allowed to confirm neutrophil infiltration into the infarcted hemisphere and, here, the levels of endothelial cell marker PECAM1 were strongly reduced. However, further investigations must be carried out to clearly identify the role of neutrophils and the endothelial cells in I/R injury. N2 - In Säugetieren zirkulieren kernlose Thrombozyten im Blutstrom und sind primär für die Aufrechterhaltung der funktionellen Hämostase verantwortlich. Thrombozyten werden im Knochenmark durch Megakaryozyten gebildet, die sich hauptsächlich in direkter Nähe zu Knochenmarkssinusoiden befinden, um Proplättchen in das Blut freizusetzen. Megakaryo-zyten stammen von hämatopoetischen Stammzellen ab und man glaubt, dass sie während ihres Reifungspro¬zesses von der endostalen in die vaskuläre Nische wandern – ein Prozess, der trotz intensiver Forschung noch nicht vollständig verstanden ist. Langzeit-Zwei-Photonen-Mikroskopie von Megakaryozyten und des Gefäßbaums wurde in murinem Knochenmark von lebenden Tieren in Kombination mit der Analyse der mittleren quadratischen Verschiebung der Zellmigration durchgeführt. Die Megakaryozyten zeigten keine Migration, sondern eine wackelartige Bewegung auf Zeitskalen von 3 Stunden. Die gerichtete Zellmigration führt stets zu einer nicht zufälligen räumlichen Verteilung der Zellen. Daher wurde ein Computermodellierungsalgorithmus entwickelt, der eine zufällige Megakaryo¬zytenverteilung unter Verwendung von realen 3D-Lichtblatt-Fluoreszenzmikroskopie-Datensätzen simuliert. Der direkte Vergleich realer und simuliert zufälliger Megakaryozyten¬verteilungen zeigte, dass MKs stark mit Knochenmarksgefäßen assoziiert sind. Dieses wird jedoch nicht durch Zellmigration verursacht, da nicht-Gefäß-assoziierte MKs zufällig im intervaskulären Raum verteilt waren. Darüber hinaus zeigten Simulationsstudien, dass Megakaryozyten die Migration anderer Zellen im Knochenmark stark beeinträchtigen, da sie als sterische Hindernisse wirken. Es wird angenommen, dass MKs während ihres Reife¬prozesses von den Regionen in der Nähe des Endosteums in Richtung des Gefäßsystems wandern. Die Megakaryozytenverteilung als Funktion ihrer Lokalisierung relativ zu den endo¬stalen Regionen des Knochens wurde durch Lichtblattmikroskopie untersucht. Die Ergebnisse zeigen keine knochenregionabhängige Verteilung von Megakaryozyten. Zusammenge¬nommen widerlegen die neu etablierten Methoden und erzielten Ergebnisse das Modell der Megakaryozyten¬migration während ihrer Reifung. Ischämie-Reperfusionsschaden (I/R) ist eine häufige Komplikation des zerebralen ischämischen Schlaganfalls, bei dem trotz erfolgreicher Rekanalisierung eine Schädigung des Hirngewebes auftritt. Es wurde gezeigt, dass Thrombozyten, Endothelzellen und Immunzellen das Fortschreiten der I/R-Verletzung in experimentellen Mausmodellen 24 Stunden nach der Rekanalisierung beeinflussen. Die zugrundeliegenden Pathomechanismen, insbesondere in den ersten Stunden nach der Rekanalisierung, sind jedoch kaum verstanden. Hier wurden Lichtblattmikroskopie, Zwei-Photonen-Mikroskopie und ergänzende hochkom-plexe Bildanalyse-Workflows zur Untersuchung von Thrombozyten, der Gefäße und Neutro-philen in ischämischen Gehirnen etabliert. Die quantitative Analyse der Thrombusbildung in der ipsilateralen und kontralateralen Hemisphäre zu verschiedenen Zeitpunkten zeigte, dass die Thrombozytenaggregationsbildung während der ersten 8 Stunden nach der Rekanalisierung minimal ist und in beiden Hemisphären auftritt. In Anbetracht dessen, dass zu diesem Zeitpunkt bereits eine maximale Gewebeschädigung vorliegt, kann geschlossen werden, dass die Infarkt¬progression und der neurologische Schaden nicht aus der Bildung von Thrombozytenaggre¬gaten resultieren. Darüber hinaus erlaubte Lichtblattmikroskopie die Neutrophileninfiltration in die infarzierte Hemisphäre zu bestätigen und hier waren die Spiegel des Endothelzellmarkers PECAM1 stark reduziert. Es müssen jedoch weitere Untersuchungen durchgeführt werden, um die Rolle von Neutrophilen und Endothelzellen bei I/R-Verletzungen klar zu identifizieren. KW - Fluoreszenzmikroskopie KW - Schlaganfall KW - Megakaryozyt KW - Computersimulation KW - Light sheet microscopy KW - ischemic stroke KW - megakaryopoiesis KW - multi-photon microscopy Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-186002 ER - TY - THES A1 - Göb [née Klaus], Vanessa Aline Domenica T1 - Pathomechanisms underlying ischemic stroke T1 - Pathomechanismen des ischämischen Schlaganfalles N2 - Every year, stroke affects over 100 million people worldwide and the number of cases continues to grow. Ischemic stroke is the most prevalent form of stroke and rapid restoration of blood flow is the primary therapeutic aim. However, recanalization might fail or reperfusion itself induces detrimental processes leading to infarct progression. Previous studies identified platelets and immune cells as drivers of this so-called ischemia/reperfusion (I/R) injury, establishing the concept of ischemic stroke as thrombo-inflammatory disease. Reduced cerebral blood flow despite recanalization promoted the hypothesis that thrombus formation within the cerebral microcirculation induces further tissue damage. The results presented in this thesis refute this: using complementary methodologies, it was shown that infarct growth precedes the occurrence of thrombi excluding them as I/R injury-underlying cause. Blood brain barrier disruption is one of the hallmarks of ischemic stroke pathology and was confirmed as early event during reperfusion injury in the second part of this study. Abolished platelet α-granule release protects mice from vascular leakage in the early reperfusion phase resulting in smaller infarcts. Using in vitro assays, platelet α-granule-derived PDGF-AB was identified as one factor contributing to blood-brain barrier disruption. In vivo visualization of platelet activation would provide important insights in the spatio-temporal context of platelet activation in stroke pathology. As platelet signaling results in elevated intracellular Ca2+ levels, this is an ideal readout. To overcome the limitations of chemical calcium indicators, a mouse line expressing an endogenous calcium reporter specifically in platelets and megakaryocytes was generated. Presence of the reporter did not interfere with platelet function, consequently these mice were characterized in in vivo and ex vivo models. Upon ischemic stroke, neutrophils are among the first cells that are recruited to the brain. Since for neutrophils both, beneficial and detrimental effects are described, their role was investigated within this thesis. Neither neutrophil depletion nor absence of NADPH-dependent ROS production (Ncf-/- mice) affected stroke outcome. In contrast, abolished NET-formation in Pad4-/- mice resulted in reduced infarct sizes, revealing detrimental effects of NETosis in the context of ischemic stroke, which might become a potential therapeutic target. Cerebral venous (sinus) thrombosis, CV(S)T is a rare type of stroke with mainly idiopathic onset. Whereas for arterial thrombosis a critical contribution of platelets is known and widely accepted, for venous thrombosis this is less clear but considered more and more. In the last part of this thesis, it was shown that fab-fragments of the anti-CLEC-2 antibody INU1 trigger pathological platelet activation in vivo, resulting in foudroyant CVT accompanied by heavy neurological symptoms. Using this novel animal model for CVT, cooperative signaling of the two platelet receptors CLEC-2 and GPIIb/IIIa was revealed as major trigger of CVT and potential target for treatment. N2 - Jährlich sind weltweit über 100 Millionen Menschen von einem Schlaganfall betroffen, wobei die Zahl der Fälle weiter zunimmt. Der ischämische Schlaganfall ist die häufigste Form des Schlaganfalls, und die sofortige Wiederherstellung des Blutflusses ist das oberste Therapie¬ziel. Allerdings kommt es vor, dass die Rekanalisierung des betroffenen Gefäßes fehlschlägt oder die Reperfusion selbst zu schädlichen Prozessen führt, die das Fortschreiten des Infarkts begünstigen. In vorangegangen Studien wurden Thrombozyten und Immunzellen als treibende Kräfte dieser so genannten Ischämie/Reperfusion (I/R)-Schädigung identifiziert und der ischämische Schlaganfall als thrombo-inflammatorische Erkrankung definiert. Eine verminderte zerebrale Durchblutung trotz Rekanalisation führte zu der Hypothese, dass die Bildung von Thromben in der zerebralen Mikrozirkulation zu weiteren Gewebeschäden führt. Die hier vorgestellten Ergebnisse widerlegen dies: Mit Hilfe komplementärer Methoden konnte gezeigt werden, dass das Infarktwachstum dem Auftreten von Thromben vorausgeht, was diese als Ursache für die I/R-Verletzung ausschließt. Die Störung der Blut-Hirn-Schranke ist eines der charakteristischen Kennzeichen der Pathologie des ischämischen Schlaganfalls und wurde im zweiten Teil dieser Studie als frühes Ereignis während des Reperfusionsschadens bestätigt. Mit Hilfe transgener Mäuse konnte gezeigt werden, dass die Ausschüttung von α-Granula aus Thrombozyten in der frühen Reperfusionsphase an Störungen der Blut-Hirn-Schranke beteiligt ist und somit zum Infarktwachstum beiträgt. In in-vitro-Versuchen konnte gezeigt werden, dass PDGF-AB, ein Bestandteil der α-Granula, an Prozessen, die für die Beeinträchtigung der Blut-Hirn-Schranke verantwortlich sind, beteiligt ist. Die Sichtbarmachung von aktivierten Thrombozyten in vivo, würde wichtige Erkenntnisse über den räumlichen und zeitlichen Kontext der Aktivierung von Thrombozyten im Verlauf des Schlaganfalls liefern. Da alle aktivierenden Signalwege zum Anstieg des intrazellulären Kalziumspiegels führen, ist Kalzium ein idealer Indikator der Thrombozytenaktivierung. Um die Grenzen chemischer Kalziumindikatoren zu überwinden, wurde eine transgene Mauslinie erzeugt, welche einen endogenen Kalziumreporter speziell in Thrombozyten und Megakaryozyten exprimiert. Die Anwesenheit des Reporters hatte keine Auswirkung auf die Funktionalität der Thrombozyten und die Mäuse wurden in vivo sowie ex vivo in verschiedenen Experimenten charakterisiert. In der Folge eines ischämischen Schlaganfalles gehören Neutrophile zu den am frühesten ins Gehirn einwandernden Zellen. Dabei werden Neutrophilen sowohl günstige als auch schädliche Wirkungen auf den Verlauf des ischämischen Schlaganfalls zugeschrieben. Aus diesem Grund wurde ihre Rolle in dieser Arbeit näher untersucht. Weder die Abwesenheit von Neutrophilen noch das Fehlen der NADPH-abhängigen Produktion von reaktiven Sauerstoffspezies (Ncf1-/- Mäuse) beeinflussen den Ausgang eines Schlaganfalls. Im Gegensatz dazu, führte die Verhinderung der NET-Bildung (NET = neutrophil extracellular traps) in Pad4-/- Mäusen zu verringerten Infarktgrößen, was auf eine schädliche Wirkung der NETose im Zusammenhang des Schlaganfalls hinweist und somit ein therapeutisches Angriffsziel darstellen könnte. Sinusvenenthrombosen sind eine seltene Form des Schlaganfalls, die meist ohne bekannte Ursache auftreten. Während für die arterielle Thrombose ein kritischer Beitrag der Thrombozyten bekannt und weithin akzeptiert ist, ist dies für venöse Thrombosen weniger klar, wird aber immer mehr in Betracht gezogen. Im letzten Teil dieser Arbeit wurde gezeigt, dass Fab-Fragmente des anti-CLEC-2-Antikörpers INU1 in vivo eine pathologische Aktivierung von Thrombozyten auslösen, die zu einer fulminanten Sinusvenenthrombose mit schweren neurologischen Symptomen führt. Mit Hilfe dieses neuartigen Tiermodells wurde die zusammenwirkende Signalübertragung der beiden Thrombozytenrezeptoren CLEC-2 und GPIIb/IIIa als Hauptauslöser der Sinusvenenthrombose und damit potenzielles Ziel für eine Behandlung identifiziert. KW - Schlaganfall KW - Thrombozyt KW - Maus KW - Blut-Hirn-Schranke KW - Sinusthrombose KW - thrombo-inflammation KW - ischemic stroke KW - blood brain barrier KW - CVT KW - platelets Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-286727 ER - TY - THES A1 - Zimmermann [née Papp], Lena T1 - Platelets as modulators of blood-brain barrier disruption and inflammation in the pathophysiology of ischemic stroke T1 - Thrombozyten als Modulatoren der Blut-Hirn-Schrankenstörung und Inflammation in der Pathophysiologie des ischämischen Schlaganfalls N2 - Ischemia-reperfusion injury (I/R injury) is a common complication in ischemic stroke (IS) treatment, which is characterized by a paradoxical perpetuation of tissue damage despite the successful re-establishment of vascular perfusion. This phenomenon is known to be facilitated by the detrimental interplay of platelets and inflammatory cells at the vascular interface. However, the spatio-temporal and molecular mechanisms underlying these cellular interactions and their contribution to infarct progression are still incompletely understood. Therefore, this study intended to clarify the temporal mechanisms of infarct growth after cerebral vessel recanalization. The data presented here could show that infarct progression is driven by early blood-brain-barrier perturbation and is independent of secondary thrombus formation. Since previous studies unravelled the secretion of platelet granules as a molecular mechanism of how platelets contribute to I/R injury, special emphasis was placed on the role of platelet granule secretion in the process of barrier dysfunction. By combining an in vitro approach with a murine IS model, it could be shown that platelet α-granules exerted endothelial-damaging properties, whereas their absence (NBEAL2-deficiency) translated into improved microvascular integrity. Hence, targeting platelet α-granules might serve as a novel treatment option to reduce vascular integrity loss and diminish infarct growth despite recanalization. Recent evidence revealed that pathomechanisms underlying I/R injury are already instrumental during large vessel occlusion. This indicates that penumbral tissue loss under occlusion and I/R injury during reperfusion share an intertwined relationship. In accordance with this notion, human observational data disclosed the presence of a neutrophil dominated immune response and local platelet activation and secretion, by the detection of the main components of platelet α-granules, within the secluded vasculature of IS patients. These initial observations of immune cells and platelets could be further expanded within this thesis by flow cytometric analysis of local ischemic blood samples. Phenotyping of immune cells disclosed a yet unknown shift in the lymphocyte population towards CD4+ T cells and additionally corroborated the concept of an immediate intravascular immune response that is dominated by granulocytes. Furthermore, this thesis provides first-time evidence for the increased appearance of platelet-leukocyte-aggregates within the secluded human vasculature. Thus, interfering with immune cells and/or platelets already under occlusion might serve as a potential strategy to diminish infarct expansion and ameliorate clinical outcome after IS. N2 - Eine häufig auftretende Komplikation in der Behandlung des ischämischen Schlaganfalls ist der Ischämie/Reperfusion Schaden (I/R Schaden), welcher trotz der erfolgreichen Wiederherstellung der zerebralen Durchblutung durch ein paradoxes Fortschreiten des entstandenen Gewebeschadens charakterisiert ist. Dieses Phänomen wird durch das schädigende Zusammenspiel von Thrombozyten und inflammatorischen Zellen am vaskulären Endothel verursacht. Allerdings sind die räumlich-temporalen und molekularen Mechanismen dieser zellulären Interaktionen und deren Beteiligung am Infarktwachstum noch nicht vollständig verstanden. Daraus folgend, beabsichtigte diese Arbeit eben diese temporalen Mechanismen des fortschreitenden Infarktwachstums nach der zerebralen Gefäßwiedereröffnung aufzuklären. Die hier vorgestellten Daten implizieren, dass das anhaltende Fortschreiten des Gewebeschadens durch die Schädigung der Bluthirnschranke verursacht wird und somit unabhängig vom Auftreten sekundär gebildeter Thromben ist. In vorangegangenen Studien konnte die Freisetzung von thrombozytären Granula als molekularer Mechanismus, mit welchem Thrombozyten zum I/R Schaden beitragen, aufgedeckt werden. Basierend auf diesen Studien wurde in dieser Arbeit ein besonderes Augenmerk auf die Sekretion thrombozytärer Granula im Zusammenhang mit der Beeinträchtigung der endothelialen Barriere gelegt. Durch die Kombination eines in vitro Ansatzes mit einem murinen Model des ischämischen Schlaganfalls konnte gezeigt werden, dass α-Granula endothelialen Schaden verursachen, wohingegen deren Absenz (NBEAL2 Defizienz) zu einer verbesserten mikrovaskulären Integrität führte. Aufgrund dessen könnte das Adressieren der α-Granula als eine neuartige Therapieoption zum Erhalt der vaskulären Integrität und zur Verminderung des Infarktwachstums trotz Rekanalisation genutzt werden. Neuste Erkenntnisse enthüllten, dass die dem I/R Schaden zu Grunde liegenden Pathomechanismen bereits während des Verschlusses eines großen hirnversorgenden Gefäßes zu beobachten sind. Dies deutet darauf hin, dass der Verlust von penumbralem Gewebe unter Okklusion und I/R Schädigung während der Reperfusion im engen Zusammenhang stehen. Im Einklang hiermit konnten humane Daten eine Neutrophilen-dominierte Immunantwort und lokale Thrombozyten Aktivierung und deren Sekretion, anhand der Detektion der α-Granula Hauptkomponenten, im verschlossenen Gefäßsystem von ischämischen Schlaganfall Patienten nachweisen. Diese anfänglichen Beobachtungen konnten im Rahmen dieser Arbeit anhand durchflusszytometrischer Untersuchungen von lokal abgenommenen ischämischen Blutproben erweitert werden. Die Phänotypisierung von Immunzellen enthüllte eine bisher unbekannte Verschiebung der Lymphozyten Population hin zu CD4+ T-Zellen und bekräftigte zusätzlich das Konzept einer unmittelbaren intravaskulären Immunantwort, welche durch Granulozyten dominiert wird. Darüber hinaus konnte in dieser Thesis das erste Mal das erhöhte Auftreten von Thrombozyten-Leukozyten-Aggregaten in dem verschlossenen humanen Gefäßsystem nachgewiesen werden. Demzufolge könnte eine Beeinflussung von Immunzellen und/oder Thrombozyten bereits unter Okklusion als potentiell vielversprechende Strategie genutzt werden, um die Ausweitung des Infarktes einzuschränken und klinische Endpunkte nach einem ischämischen Schlaganfall zu verbessern. KW - Schlaganfall KW - Thrombozyt KW - Entzündung KW - Thrombo-inflammation KW - Ischemic stroke KW - Platelets KW - Inflamamtion KW - Immune cells KW - Vascular system Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-302850 ER -