TY - THES A1 - Kerner, Florian Tobias T1 - Reactions of rhodium(I) with diynes and studies of the photophysical behavior of the luminescent products T1 - Reaktionen von Rhodium(I) mit Diinen und Untersuchung der photophysikalischen Eigenschaften der lumineszenten Produkte N2 - Chapter 1 deals with the reaction of [Rh(acac)(PMe3)2] with para-substituted 1,4-diphenylbuta-1,3-diynes at room temperature, in which a complex containing a bidentate organic fulvene moiety, composed of two diynes, σ-bound to the rhodium center is formed in an all-carbon [3+2] type cyclization reaction. In addition, a complex containing an organic indene moiety, composed of three diynes, attached to the rhodium center in a bis-σ-manner is formed in a [3+2+3] cyclization process. Reactions at 100 °C reveal that the third diyne inserts between the rhodium center and the bis-σ-bound organic fulvene moiety. Furthermore, the formation of a 2,5- and a 2,4-bis(arylethynyl)rhodacyclopentadiene is observed. The unique [3+2] cyclization product was used for the synthesis of a highly conjugated organic molecule, which is hard to access or even inaccessible by conventional methods. Thus, at elevated temperatures, reaction of the [3+2] product with para-tolyl isocyanate led to the formation of a purple organic compound containing the organic fulvene structure and one equivalent of para-tolyl isocyanate. The blue and green [3+2+3] complexes show an unusually broad absorption from 500 – 1000 nm with extinction coefficients ε of up to 11000 M-1 cm-1. The purple organic molecule shows an absorption spectrum similar to those of known diketopyrrolopyrroles. Additionally, the reaction of [Rh(acac)(PMe3)2] with para-tolyl isocyanate was investigated. A cis-phosphine complex of the form cis-[Rh(acac)(PMe3)2(isocyanate)2] with an isocyanate dimer bound to the rhodium center by one carbon and one oxygen atom was isolated. Replacing the trimethylphosphine ligands in [Rh(acac)(PMe3)2] with the stronger σ-donating NHC ligand Me2Im (1,3-dimethylimidazolin-2-ylidene), again, drastically alters the reaction. Similar [3+2] and [3+2+3] products to those discussed above could not be unambiguously assigned, but cis- and trans-π-complexes, which are in an equilibrium with the two starting materials, were formed. Chapters 2 is about the influence of the backbone of the α,ω-diynes on the formation and photophysical properties of 2,5-bis(aryl)rhodacyclopentadienes. Therefore, different α,ω-diynes were reacted with [Rh(acac)(PMe3)2] and [Rh(acac)(P(p-tolyl)3)2] in equimolar amounts. In general, a faster consumption of the rhodium(I) starting material is observed while using preorganized α,ω-diynes with electron withdrawing substituents in the backbone. The isolated PMe3-substituted rhodacyclopentadienes exhibit fluorescence, despite the presence of the heavy atom rhodium, with lifetimes τF of < 1 ns and photoluminescence quantum yields Φ of < 0.01 as in previously reported P(p-tolyl)-substituted 2,5-bis(arylethynyl)rhodacyclopentadienes. However, an isolated P(p-tolyl)-substituted 2,5-bis(aryl)rhodacyclopentadiene shows multiple lifetimes and different absorption and excitation spectra leading to the conclusion that different species may be present. Reaction of [Rh(acac)(Me2Im)2] with dimethyl 4,4'-(naphthalene-1,8-diylbis(ethyne-2,1-diyl))dibenzoate, results in the formation of a mixture trans- and cis-NHC-substituted 2,5-bis(aryl)rhodacyclopentadienes. In chapter 3 the reaction of various acac- and diethyldithiocarbamate-substituted rhodium(I) catalysts bearing (chelating)phosphines with α,ω-bis(arylethynyl)alkanes (α,ω-diynes), yielding luminescent dimers and trimers, is described. The photophysical properties of dimers and trimers of the α,ω-diynes were investigated and compared to para-terphenyl, showing a lower quantum yield and a larger apparent Stokes shift. Furthermore, a bimetallic rhodium(I) complex of the form [Rh2(ox)(P(p-tolyl)3)4] (ox: oxalate) was reacted with a CO2Me-substituted α,ω-tetrayne forming a complex in which only one rhodium(I) center reacts with the α,ω-tetrayne. The photophysical properties of this mixed rhodium(I)/(III) species shows only negligible differences compared to the P(p-tolyl)- and CO2Me-substituted 2,5-bis(arylethynyl)rhodacyclopentadiene, previously synthesized by Marder and co-workers. N2 - Kapitel 1 beschäftigt sich mit der Umsetzung von [Rh(acac)(PMe3)2] mit zwei Äquivalenten para-substituierten 1,4-Diphenylbuta-1,3-diins bei Raumtemperatur. Dabei bildete sich ein Komplex, welcher eine organische Fulveneinheit, bestehend aus zwei Diinen und verbunden über zwei σ-Bindungen mit dem Rhodiumzentralatom, besitzt. Diese Verbindung bildet sich in einer „all-carbon“ [3+2] ähnlichen Zyklisierungsreaktion. Ebenso konnte aus derselben Reaktion ein Komplex mit einer Indeneinheit, bestehend aus drei Diinen, welche durch zwei σ-Bindungen mit dem Rhodiumzentralatom verbunden sind, isoliert und charakterisiert werden. Diese Verbindung bildet sich in einer „all-carbon“ [3+2+3] ähnlichen Zyklisierungsreaktion. Experimente bei 100 °C zeigen, dass sich das zusätzliche dritte Diin zwischen dem Rhodiumzentralatom und der organischen Fulveneinheit einfügt. Zusätzlich konnte die Bildung von 2,4- und 2,5-Bis(arylethinyl)rhodazyklopentadienen bei 100°C beobachtet werden. Diese seltene [3+2] Zyklisierungsreaktion kann benutzt werden um konjugierte, organische Moleküle darzustellen, welche sonst nur schwer oder gar nicht mit bisher bekannten Synthesemethoden zugänglich sind. In der Umsetzung des [3+2] Komplexes mit para-Tolylisocyanat bei 80 °C konnte ein violetter, rein organischer Feststoff erhalten werden, bestehend aus der organischen Fulveneinheit und einem Äquivalent para-Tolylisocyanat. Die blauen und grünen [3+2+3] Komplexe zeigen unter anderem eine ungewöhnliche breite Absorption von 500 – 1000 nm mit einem Extinktionskoeffizienten von bis zu 11000 M-1 cm-1. Die violette, rein organische Verbindung zeigt ein Absorptionsspektrum ähnlich zu bereits bekannten Diketopyrrolopyrrolen. Auch wurde die Reaktion von [Rh(acac)(PMe3)2] mit para-Tolylisocyanat untersucht. Es konnte ein cis-phosphan Komplex, bei dem ein para-Tolylisocyanat-Dimer über ein Kohlenstoff- und ein Sauerstoffatom an das Rhodiumzentralatom koordiniert, isoliert und charakterisiert werden. Substitution des Trimethylphosphans im Rh(I)-Präkursors durch einen NHC Liganden, nämlich Me2Im (1,3-dimethylimidazolin-2-yliden) führt zu einem unterschiedlichen Reaktionsverlauf. Ähnliche [3+2] und [3+2+3] Komplexe konnten nicht zweifelsfrei bestätigt werden, dafür konnte aber gezeigt werden, dass sich in der Reaktion bildende cis- und trans-Komplexe im Gleichgewicht mit den verwendeten Startmaterialien befinden. Im zweiten Kapitel dieser Arbeite wurde der Einfluss des Rückgrats von α,ω-bis(arylethynyl)alkanen (α,ω-Diine) auf die Bildung und die photophysikalischen Eigenschaften von 2,5-Bis(aryl)rhodazyklopentadienen untersucht. Dazu wurden mehrere α,ω-Diine mit unterschiedlichem Rückgrat synthetisiert und diese mit [Rh(acac)(PMe3)2] und [Rh(acac)(P(p-tolyl)3)2] in äquimolaren Mengen reagiert. Es konnte ein schnellerer Verbrauch des Rh(I)-Präkursors bei der Verwendung von vororganisierten α,ω-Diinen mit elektronenziehenden Substituenten am Rückgrat festgestellt werden. Die PMe3-substituierten Rhodazyklopentadiene zeigen Fluoreszenz, trotz der Anwesenheit eines Schwermetalls. Lebenszeiten von τF < 1 ns und Quantenausbeuten von Φ < 0.01, ähnlich wie in P(p-tolyl)-substituierten 2,5-Bis(arylethynyl)rhodazyklopentadienen wurden beobachtet. Bei einem isolierten P(p-tolyl)-substituierten 2,5-Bis(aryl)rhodazyklopentadien konnten mehrere Lebenszeiten, wie auch unterschiedliche Absorptions- und Anregungsspektren detektiert werden, was zu der Schlussfolgerung führt, dass in Lösung mehrere Spezies vorhanden sind. Die Reaktion von [Rh(acac)(Me2Im)2] mit Dimethyl 4,4'-(naphthalen-1,8-diylbis(ethyn-2,1-diyl))dibenzoat führt zur Bildung einer Mischung aus trans- und cis-NHC-substituierter 2,5-Bis(aryl)rhodazyklopentadienen. Im dritten Kapitel, wurde die Bildung lumineszenter Dimere und Trimere aus der Umsetzung von verschiedenen α,ω-Diinen mit katalytischen Mengen verschiedener acac- und diethyldithiocarbamat-substituierter Rhodium(I)-Katalysatoren mit (chelatisierenden) phosphanen untersucht. Anschließend wurden die photophysikalischen Eigenschaften der Dimere und Trimere untersucht und mit para-Terphenyl verglichen. Dabei wurden ähnliche Lebenszeiten, eine geringere Quantenausbeute wie auch größere Stokes-Verschiebungen der Dimere und Trimere im Vergleich zu para-Terphenyl gefunden. Auch wurde die Reaktion zwischen einem bimetallischen Rhodium Komplex [Rh2(ox)(P(p-tolyl)3)4] (ox: oxalat) und einem CO2Me-substituiertem α,ω-bis(arylbutadiynyl)alkan (α,ω-Tetrain) untersucht. In dieser Umsetzung reagierte nur eine der beiden möglichen Rhodium(I)-zentren mit dem α,ω-Tetrain unter Bildung eines 2,5-Bis(arylethynyl)rhodazyklopentadiens. Die photophysikalischen Eigenschaften dieser gemischten Rhodium(I)/(III)-Spezies zeigt nur marginale unterschiede, verglichen mit einem mononuklearen P(p-tolyl)- und CO2Me-substituiertem 2,5-Bis(arylethynyl)rhodazyklopentadiens, welches zuvor im Arbeitskreis Marder schon synthetisiert wurde. KW - Übergangsmetallkomplexe KW - Rhodium KW - Übergangsmetallkomplex KW - Zyklisierung KW - Transitionmetal KW - Cyclization Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-209107 ER - TY - THES A1 - Lang, Katharina T1 - Synthese leitfähiger elastischer Materialkomposite durch Verwendung metallischer Nanodrähte T1 - Synthesis of conductive elastic material composites by using metallic nanowires N2 - Silbernanodrähte (AgNW) wurden in verschiedene Hybridpolymere und in eine als Referenz dienende Silikonzusammensetzung eingebaut. Durch Spincoating konnten transparente leitfähige Filme erhalten werden. Deren jeweilige Nanodrahtverteilung, thermische Aktivierung und visuelle Transparenz wurden charakterisiert. Die Perkolationsschwelle der Filme hängt dabei von der individuellen durchschnittlichen AgNW-Länge ab. Eine beträchtliche Leitfähigkeit wurde während des mechanischen Streckens bis zu 30 % aufrechterhalten. Mikrostrukturierte Hybridpolymer-Verbundfilme wurden durch UV-Lithographie erhalten. ... N2 - In the context of the present work, silver nanowires were successfully synthesized using a modified polyol process according to Sun et al.[43-45]. The reproducibility of the synthesis was increased by adjusting the reaction parameters. Silver nanowires with an average length of the of ~ 12 µm and diameters of around 50 nm were obtained. The investigations of the silver nanowires were carried out on an optical level, using LSM and SEM (Section 5.1 / Section 9). In this work silver nanowire batches of different lengths were used in the manufacture of composite systems with regard to compatibility. Correspondingly, the selected resin systems from chapter 5.2 with different polarities were introduced. ... KW - Verbundwerkstoff KW - Nanodraht KW - Polymere KW - Elastizität KW - Elastizität KW - Hybridpolymere KW - Komposit Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-248253 ER - TY - THES A1 - Schäfer, Markus Manfred T1 - Lokale elektrophoretische Abscheidung keramischer Partikel in stationären inhomogenen elektrischen Feldern in polaren und unpolaren Lösemitteln und deren Mischungen T1 - Local electrophoretic deposition of ceramic particles in static inhomogenous electric fields in polar and nonpolar media and mixtures thereof N2 - Die Elektrophoretische Abscheidung (EPD) ist ein zweistufiger Prozess, bei dem geladene Partikel zunächst aufgrund eines elektrischen Feldes in einer Suspension bewegt und anschließend auf einer Oberfläche abgeschieden werden. Aufgrund der Möglichkeit zur kostengünstigen Massenproduktion von Filmen auf Oberflächen sowie darauf basierenden dreidimensionalen Mehrschichtsystemen, ist die EPD für die Industrie und die Medizin von großem Interesse. Der 3D-Druck ist dagegen weniger zur Massenproduktion, sondern vielmehr zur Herstellung von Prototypen in niedriger Stückzahl geeignet, was ihn jedoch nicht weniger interessant für Industrie und Medizin macht. Beim 3D-Druck wird das Material zum Aufbau einer dreidimensionalen Struktur lokal zur Verfügung gestellt, weshalb er den additiven Herstellungsverfahren zugeordnet werden kann. Eine Kombination beider Verfahren eröffnet neue Möglichkeiten zum Aufbau dreidimensionaler Strukturen. Da EPD theoretisch mit jedem geladenen Objekt, Material oder Molekül möglich ist, ließe sich das Potenzial des 3D-Drucks durch eine Kombination mit EPD signifikant steigern. Prototypen könnten aus einer Vielzahl an Materialien in einem schnellen und kostengünstigen additiven Herstellungsverfahren entstehen, wodurch die Möglichkeit zum Einsatz als Massenproduktionsverfahren gegeben ist. Eine Nutzung der EPD als 3D-Druck-Verfahren ist jedoch nur möglich, wenn es gelingt, die Abscheidung der Partikel lokal zu fokussieren und somit den Aufbau der dreidimensionalen Struktur zu steuern und zu kontrollieren. In der vorliegenden Arbeit wird untersucht, ob lokale Abscheidung von keramischen Partikeln durch EPD realisierbar ist und welche Bedingungen dazu vorliegen müssen. Insbesondere werden die Bewegungen der geladenen Partikel im inhomogenen elektrischen Feld analysiert und der Einfluss der Polarität des Suspensionsmediums auf die Partikelbewegung und die Partikelablagerung in einer selbstentwickelten Mikro-Flusskammer untersucht. Im unpolaren Medium Cyclohexan steigt die Bewegungsgeschwindigkeit der Partikel linear mit der angelegten Spannung, respektive der elektrischen Feldstärke. Die Bewegungsrichtung der Partikel erfolgt entsprechend ihrer positiven Ladung in Richtung der Kathode. Die Partikel scheiden sich als stäbchenförmige Deposition verteilt auf der Kathodenoberfläche ab. Die Häufigkeit der Ablagerung ist dabei an der Elektrodenspitze, also im Bereich der höchsten Feldstärke am größten. Die Stabilisierung der Partikel in einem unpolaren Lösemittel wird durch eine Oberflächenbeschichtung mit verschiedenen, strukturähnlichen Dispergatoren realisiert. Alle verwendeten Dispergator-Partikel-Systeme zeigen näherungsweise gleiches elektrophoretisches Verhalten. In Wasser bewegen sich die positiv geladenen Partikel bei einer angelegten Spannung von unter 3 V entgegen der elektrostatischen Kräfte in Richtung Anode, deren Oberfläche sie jedoch nicht erreichen, da sie vorher abgelenkt werden. Somit erfolgt keine Abscheidung der Partikel auf keiner der beiden Elektroden. Ab einer Spannung von 3 V beginnen sich Partikel im polaren Medium in Form einer dendritischen Struktur an der Kathodenspitze abzuscheiden. Bei Spannungen von mehr als 17 V beginnt in Wasser eine sichtbare Bildung von Gasblasen an der Anodenoberfläche. Beim Abriss der Blasen von der Oberfläche wird die vorhandene dendritische Struktur zerstört. In Mischungen aus Ethanol und Cyclohexan wird die Spannung von 5 V konstant gehalten und das Mischungsverhältnis der beiden Lösemittel, und somit die Polarität der Suspension, variiert. Bereits bei 0,1 Vol.-% Ethanol-Anteil, sowie ab 30 Vol.-% Ethanol findet eine Partikelbewegung in Richtung der Anode, also entgegen der elektrostatischen Kräfte, statt. Da die Partikel die Anodenoberfläche aufgrund der repulsiven Wechselwirkungen nicht erreichen, findet keine Abscheidung statt. Nur bei einem Ethanol-Anteil von 7,5 Vol.-% bis etwa 30 Vol.-% bewegen sich die Partikel in Richtung Kathode, wo sie sich auch abscheiden. Die merkwürdigen Bewegungsphänomene der Partikel in der Mikro-Flusskammer konnten nicht mit Sicherheit aufgeklärt werden. Induced-charge electroosmotic flow oder andere elektrokinetische Effekte könnten wirken und so die elektrophoretische Partikelbewegung überlagern oder beeinflussen. Gezeigt werden konnte jedoch, dass eine lokale Abscheidung von Partikeln mittels EPD möglich ist. Dazu ist unter den beschriebenen experimentellen Bedingungen in Wasser eine Spannung im Bereich zwischen 3 V und 17 V nötig, um lokal eine dendritische Struktur abzuscheiden. In reinem Cyclohexan und für bestimmte Mischungsverhältnisse von Ethanol und Cyclohexan erfolgt die Abscheidung bei jedem untersuchten Spannungswert. Anders als in Wasser ist die stäbchenförmige Abscheidung jedoch an mehreren Stellen auf der Elektrodenoberfläche zu beobachten. Dennoch kann auch hier von einer lokalen Abscheidung gesprochen werden, da die Wahrscheinlichkeit für die Abscheidung an der Elektrodenspitze am größten ist, was nach einiger Zeit zu einer lokal erhöhten Schichtdicke führt. N2 - Electrophoretic deposition (EPD) is a two-stage process in which charged particles first move in a suspension due to an electric field and then deposit on a surface. Due to the possibility of cost-effective mass production of quasi two-dimensional films on a surface as well as three-dimensional multi-layer systems, the EPD is of great interest to industry and medicine. In contrast, 3D printing is less suitable for mass production, but rather appropriate for producing prototypes in low quantities. Nevertheless, it is not less interesting for industry and medicine than EPD. 3D printing can be assigned to additive manufacturing processes in which locally supplied material assembles into a three-dimensional structure. Novel possibilities for building three-dimensional structures are conceivable by combining the two established methods. Since EPD is theoretically possible with any charged object, material or molecule, the potential of 3D printing could be significantly enhanced by combining it with EPD. Prototypes could be made from a variety of materials in a fast and inexpensive additive manufacturing process, allowing for the possibility of being used as a mass production process. However, the use of the EPD as a 3D-printing process as a rapid prototyping technique is only possible if the deposition of the particles can be focused and thus a local control of the structure is possible The present work investigates whether local deposition of ceramic particles by EPD is feasible and what experimental conditions must be met. Therefore, the trajectories of the charged particles in the inhomogeneous electric field are analyzed and the influence of the polarity of the suspension medium on particle movement and particle deposition is investigated in a self-developed micro-flow chamber. In cyclohexane as a nonpolar medium, the velocity of the particles increases linearly with the applied voltage, respectively the electric field strength. The particle movement in the direction of the cathode corresponds to their positive charge. The particles deposit as rod-shaped depositions distributed on the cathode surface. The possibility for a deposition is increasing with increasing electric field strength and is highest at the tip of the electrode. The stabilization of the particles in a nonpolar solvent is realized by coating the particle surface with various dispersants with related chemical structures. Analogous electrophoretic behavior is observed for all dispersant-particle systems. In water, the positively charged particles move towards the anode at a voltage of less than 3 V, contrary to the electrostatic forces, but they do not reach the surface of the electrode as they are deflected. Thus, no deposition of the particles takes place on either electrode. Above a voltage of 3 V, particles begin to deposit in a dendritic structure at the cathode tip. Above 17 V, noticeable gas bubbles begin to emerge at the anode surface, which destroy the existing dendritic deposition during their breakup from the surface. In mixtures of ethanol and cyclohexane, the voltage of 5 V is kept constant while the mixing ratio of the two solvents, and thus the polarity of the suspension, varies. Already at 0.1 vol% Ethanol content, as well as from 30 vol% Ethanol a particle movement is detected in the direction of the anode, i.e. contrary to the electrostatic forces. Since the particles do not reach the anode surface due to the repulsive interactions, no particle deposition takes place. Solely in the range of an ethanol content of 7.5 vol% to about 30 vol% the particles move in the direction of the cathode, where they also deposit. The peculiar movement phenomena of the particles in the micro-flow chamber could not be clarified with certainty. Induced-charge electroosmotic flow or other electrokinetic effects could be at work and thus overlay or influence the electrophoretic particle movement. However, it has been shown that local deposition of particles is possible by means of EPD. For this purpose and under the described experimental conditions, a voltage in the range of 3 V to 17 V is necessary in water to locally deposit a dendritic structure. In pure cyclohexane and for certain ratios in ethanol-cyclohexane mixtures, the deposition takes place at every voltage examined. In contrast to water, rod-shaped depositions can be observed at several points on the electrode surface. Nevertheless, this can be referred to as local deposition, since the probability of deposition is highest at the electrode tip, which leads to a locally increased layer thickness after a certain time. KW - Elektrophorese KW - Trajektorie KW - Suspension KW - Partikelabscheidung KW - Elektrostatisches Feld KW - Partikelbeschichtung KW - Funktionskeramik KW - Elektrokinetik KW - electrokinetics KW - local electrophoretic deposition Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-220803 ER - TY - THES A1 - Gamache [geb. Rupp], Mira Theresa T1 - Ligand Design for Ru(II) Photosensitizers in Photocatalytic Hydrogen Evolution T1 - Ligandendesign für Ru(II)-Photosensibilisatoren in der photokatalytischen Wasserstoffentwicklung T1 - Conception de ligands pour les photosensibilisateurs de Ru(II) dans l'évolution photocatalytique de l'hydrogène N2 - This thesis investigates different ligand designs for Ru(II) complexes and the activity of the complexes as photosensitizer (PS) in photocatalytic hydrogen evolution. The catalytic system typically contains a catalyst, a sacrificial electron donor (SED) and a PS, which needs to exhibit strong absorption and luminescence, as well as reversible redox behavior. Electron-withdrawing pyridine substituents on the terpyridine metal ion receptor result in an increase of excited-state lifetime and quantum yield (Φ = 74*10-5; τ = 3.8 ns) and lead to complex III-C1 exhibiting activity as PS. While the turn-over frequency (TOFmax) and turn-over number (TON) are relatively low (TOFmax = 57 mmolH2 molPS-1 min-1; TON(44 h) = 134 mmolH2 molPS-1), the catalytic system is long-lived, losing only 20% of its activity over the course of 12 days. Interestingly, the heteroleptic design in III-C1 proves to be beneficial for the performance as PS, despite III-C1 having comparable photophysical and electrochemical properties as the homoleptic complex IV-C2 (TOFmax = 35 mmolH2 molPS-1 min-1; TON(24 h) = 14 mmolH2 molPS-1). Reductive quenching of the excited PS by the SED is identified as rate-limiting step in both cases. Hence, the ligands are designed to be more electron-accepting either via N-methylation of the peripheral pyridine substituents or introduction of a pyrimidine ring in the metal ion receptor, leading to increased excited-state lifetimes (τ = 9–40 ns) and luminescence quantum yields (Φ = 40–400*10-5). However, the more electron-accepting character of the ligands also results in anodically shifted reduction potentials, leading to a lack of driving force for the electron transfer from the reduced PS to the catalyst. Hence, this electron transfer step is found to be a limiting factor to the overall performance of the PS. While higher TOFmax in hydrogen evolution experiments are observed for pyrimidine-containing PS (TOFmax = 300–715 mmolH2 molPS-1 min-1), the longevity for these systems is reduced with half-life times of 2–6 h. Expansion of the pyrimidine-containing ligands to dinuclear complexes yields a stronger absorptivity (ε = 100–135*103 L mol-1 cm-1), increased luminescence (τ = 90–125 ns, Φ = 210–350*10-5) and can also result in higher TOFmax given sufficient driving force for electron transfer to the catalyst (TOFmax = 1500 mmolH2 molPS-1 min-1). When comparing complexes with similar driving forces, stronger luminescence is reflected in a higher TOFmax. Besides thermodynamic considerations, kinetic effects and electron transfer efficiency are assumed to impact the observed activity in hydrogen evolution. In summary, this work shows that targeted ligand design can make the previously disregarded group of Ru(II) complexes with tridentate ligands attractive candidates for use as PS in photocatalytic hydrogen evolution. N2 - In dieser Arbeit werden verschiedene Liganden für Ru(II)-Komplexe und die Aktivität der Komplexe als Photosensibilisatoren (PS) in der photokatalytischen Wasserstoffentwicklung untersucht. Das katalytische System besteht typischerweise aus einem Katalysator, einem Opferelektronendonator (SED) und einem PS, welcher eine starke Absorption und Lumineszenz sowie ein reversibles Redoxverhalten aufweisen sollte. Elektronenziehende Pyridin-Substituenten am Terpyridin-Metallionenrezeptor resultieren in einer Erhöhung der Lebensdauer des angeregten Zustands sowie der Quantenausbeute (Φ = 74*10-5; τ = 3.8 ns), was dazu führt, dass Komplex III-C1 als PS aktiv ist. Während die Wechselzahl (TOFmax) und der Umsatz (TON) relativ niedrig sind (TOFmax = 57 mmolH2 molPS-1 min-1; TON(44 h) = 134 mmolH2 molPS 1), ist das katalytische System langlebig und verliert im Laufe von 12 Tagen nur 20% seiner Aktivität. Das heteroleptische Design in III-C1 erweist sich als vorteilhaft für die Leistung als PS, obwohl III-C1 vergleichbare photophysikalische und elektrochemische Eigenschaften besitzt wie der homoleptische Komplex IV-C2 (TOFmax = 35 mmolH2 molPS-1 min-1; TON(24 h) = 14 mmolH2 molPS-1). In beiden Fällen erweist sich das reduktive Lumineszenzlöschen des angeregten PS durch den SED als geschwindigkeitsbestimmender Schritt. Daher werden die Liganden entweder durch N-Methylierung der peripheren Pyridin-Substituenten oder durch Einführung eines Pyrimidinrings in den Metallionenrezeptor elektronenziehender gestaltet, was zu erhöhten Lebensdauern des angeregten Zustands (τ = 9–40 ns) und Lumineszenzquantenausbeuten (Φ = 40–400*10-5) führt. Der stärker elektronenziehende Charakter der Liganden führt allerdings auch zu anodisch verschobenen Reduktionspotentialen, wodurch die treibende Kraft für den Elektronentransfer vom reduzierten PS zum Katalysator reduziert wird. Daher erweist sich dieser Elektronentransferschritt als ein limitierender Faktor für die Gesamtleistung des PS. Während höhere TOFmax in Wasserstoffproduktionsexperimenten für Pyrimidin-haltige PS beobachtet werden (TOFmax = 300–715 mmolH2 molPS-1 min-1), ist die Langlebigkeit für diese Systeme mit Halbwertszeiten von 2–6 h deutlich reduziert. Die Erweiterung der Pyrimidin-haltigen Liganden zu zweikernigen Komplexen führt zu einem stärkeren Absorptionsvermögen (ε = 100–135*103 L mol-1 cm-1), erhöhter Lumineszenz (τ = 90–125 ns, Φ = 210–350*10-5) und kann bei ausreichender treibender Kraft für den Elektronentransfer zum Katalysator auch zu einer höheren TOFmax führen (TOFmax = 1500 mmolH2 molPS-1 min-1). Beim Vergleich von Komplexen mit ähnlichen treibenden Kräften spiegelt sich die stärkere Lumineszenz in einem höheren TOFmax wider. Es wird angenommen, dass neben thermodynamischen Faktoren auch kinetische Effekte und die Effizienz des Elektronentransfers die beobachtete Aktivität bei der Wasserstoffentwicklung beeinflussen. Zusammenfassend zeigt diese Arbeit, dass gezieltes Ligandendesign die bisher vernachlässigte Gruppe der Ru(II)-Komplexe mit tridentaten Liganden zu attraktiven Kandidaten für den Einsatz als PS in der photokatalytischen Wasserstoffentwicklung machen kann. N2 - Cette thèse étudie la conception de différentes ligands pour les complexes de Ru(II) et leur activité comme photosensibilisateur (PS) dans l'évolution photocatalytique de l'hydrogène. Le système catalytique contient généralement un catalyseur, un donneur d'électron sacrificiel (SED) et un PS, qui doit présenter une forte absorption et luminescence et un comportement redox réversible. Les substituants pyridine attracteurs d'électrons sur le récepteur d'ions métalliques terpyridine entraînent une augmentation de la durée de vie de l'état excité et du rendement quantique (Φ = 74*10-5; τ = 3.8 ns) et permettent au complexe III-C1 de présenter une activité en tant que PS. Bien que la fréquence (TOFmax) et le nombre de cycle catalytique (TON) soient relativement faibles (TOFmax = 57 mmolH2 molPS-1 min 1; TON(44 h) = 134 mmolH2 molPS-1), le système catalytique a une longue durée de vie, ne perdant que 20% de son activité au cours de 12 jours. De manière intéressante, la conception hétérolytique dans III-C1 s'avère être bénéfique pour la performance en tant que PS, malgré des propriétés photophysiques et électrochimiques comparables à celles du complexe homoleptique IV-C2 (TOFmax = 35 mmolH2 molPS-1 min-1; TON(24 h) = 14 mmolH2 molPS-1). L'extinction réductive de la PS excitée par le SED est identifiée comme l'étape limitant la vitesse dans les deux cas. Par conséquent, les ligands sont modifiés pour être plus accepteurs d'électrons, soit par N-méthylation des substituants pyridine périphériques, soit par introduction d'un cycle pyrimidine dans le récepteur d'ion métallique, ce qui conduit à une augmentation des durées de vie des états excités (τ = 9–40 ns) et des rendements quantiques de luminescence (Φ = 40–400*10-5). Cependant, le caractère plus accepteur d'électrons des ligands entraîne également des potentiels de réduction décalés anodiquement, ce qui conduit à un manque de force motrice pour le transfert d'électrons du PS réduit au catalyseur. Ainsi, cette étape de transfert d'électrons s'avère être un facteur limitant de la performance globale du PS. Alors que des TOFmax plus élevés dans les expériences d'évolution de l'hydrogène sont observés pour les PS contenant le motif pyrimidine (TOFmax = 300–715 mmolH2 molPS-1 min-1), la longévité de ces systèmes est réduite avec des temps de demi-vie de 2–6 h. L'expansion des ligands contenant le motif pyrimidine en complexes dinucléaires conduit à une absorptivité plus forte (ε = 100–135*103 L mol-1 cm-1), une luminescence accrue (τ = 90–125 ns, Φ = 210–350*10-5) et peut également entraîner un TOFmax plus élevé si la force motrice est suffisante pour le transfert d'électrons vers le catalyseur (1500 mmolH2 molPS-1 min-1). En comparant des complexes avec des forces motrices similaires, une luminescence plus forte se traduit par un TOFmax plus élevé. Outre les considérations thermodynamiques, les effets cinétiques et l'efficacité du transfert d'électrons sont supposés avoir un impact sur l'activité observée dans l'évolution de l'hydrogène. En résumé, ce travail montre que la conception ciblée de ligands peut faire du groupe précédemment négligé des complexes de Ru(II) avec des ligands tridentés des candidats attrayants pour une utilisation comme PS dans l'évolution photocatalytique de l'hydrogène. KW - Fotokatalyse KW - Wasserstofferzeugung KW - Rutheniumkomplexe KW - Photosensibilisator KW - Artificial photosynthesis KW - Ligand design Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246766 N1 - This thesis was conducted as cotutelle-de-thèse between the Universität Würzburg and the Université de Montréal (Canada). ER - TY - THES A1 - Budiman, Yudha Prawira T1 - Applications of Fluorinated Aryl Boronates in Organic Synthesis T1 - Die Anwendungen von fluorinierten Arylboronaten in der organischen Synthese N2 - Fluorinated compounds are an important motif, particularly in pharmaceuticals, as one-third of the top performing drugs have fluorine in their structures. Fluorinated biaryls also have numerous applications in areas such as material science, agriculture, crystal engineering, supramolecular chemistry, etc. Thus, the development of new synthetic routes to fluorinated chemical compounds is an important area of current research. One promising method is the borylation of suitable precursors to generate fluorinated aryl boronates as versatile building blocks for organic synthesis. Chapter 1 In this chapter, the latest developments in the synthesis, stability issues, and applications of fluorinated aryl boronates in organic synthesis are reviewed. The catalytic synthesis of fluorinated aryl boronates using different methods, such as C–H, C–F, and C–X (X = Cl, Br, I, OTf) borylations are discussed. Further studies covering instability issues of the fluorinated boronate derivatives, which are accelerated by ortho-fluorine, have been reported, and the applications of these substrates, therefore, need special treatment. Numerous groups have reported methods to employ highly fluorinated aryl boronates that anticipate the protodeboronation issue; thus, polyfluorinated aryl boronates, especially those containing ortho-fluorine substituents, can be converted into chloride, bromide, iodide, phenol, carboxylic acid, nitro, cyano, methyl esters, and aldehyde analogues. These substrates can be applied in many cross-coupling reactions, such as the Suzuki-Miyaura reaction with aryl halides, the Chan-Evans-Lam C–N reaction with aryl amines or nitrosoarenes, C–C(O) reactions with N-(aryl-carbonyloxy)phthalamides or thiol esters (Liebskind-Srogl cross-coupling), and oxidative coupling reactions with terminal alkynes. Furthermore, the difficult reductive elimination from the highly stable complex [PdL2(2,6-C6F2+nH3-n)2] was the next challenge to be targeted in the homocoupling of 2,6-di-fluoro aryl pinacol boronates, and it has been solved by conducting the reaction in arene solvents that reduce the energy barrier in this step as long as no coordinating solvent or ancillary ligand is employed. Chapter 2 In this chapter, phenanthroline-ligated copper complexes proved to be efficient catalysts for the Suzuki-Miyaura cross-coupling of highly fluorinated aryl boronate esters (ArF–Bpin) with aryl iodides or bromides. This newly developed method is an attractive alternative to the traditional methods as copper is an Earth-abundant metal, less toxic, and cheaper compared to the traditional methods which commonly required palladium catalysts, and silver oxide that is also often required in stoichiometric amounts. A combination of 10 mol% copper iodide and 10 mol% phenanthroline, with CsF as a base, in DMF, at 130 ˚C, for 18 hours is efficient to cross-couple fluorinated aryl pinacol boronates with aryl iodides to generate cross-coupled products in good to excellent yields. This method is also viable for polyfluorophenyl borate salts such as pentafluorophenyl-BF3K. Notably, employing aryl bromides instead of aryl iodides for the coupling with fluorinated aryl–Bpin compounds is also possible; however, increased amounts of CuI/phenanthroline catalyst is necessary, in a mixture of DMF and toluene (1:1). A diverse range of π···π stacking interactions is observed in the cross-coupling products partly perfluorinated biaryl crystals. They range from arene–perfluoroarene interactions (2-(perfluorophenyl)naphthalene and 2,3,4-trifluorobiphenyl) to arene–arene (9-perfluorophenyl)anthracene) and perfluoroarene–perfluoroarene (2,3,4,5,6-pentafluoro-2’methylbiphenyl) interactions. Chapter 3 In this chapter, the efficient Pd-catalyzed homocoupling reaction of aryl pinacol pinacol boronates (ArF–Bpin) that contain two ortho-fluorines is presented. The reaction must be conducted in a “noncoordinating” solvent such as toluene, benzene, or m-xylene and, notably, stronger coordinating solvents or ancillary ligands have to be avoided. Thus, the Pd center becomes more electron deficient and the reductive elimination becomes more favorable. The Pd-catalyzed homocoupling reaction of di-ortho-fluorinated aryl boronate derivatives is difficult in strongly coordinating solvents or in the presence of strong ancillary ligands, as the reaction stops at the [PdL2(2,6-C6F2+nH3-n)2] stage after the transmetalations without the reductive elimination taking place. It is known that the rate of reductive elimination of Ar–Ar from [ML2(Ar)(Ar)] complexes containing group-10 metals decreases in the order Arrich–Arpoor > Arrich–Arrich > Arpoor–Arpoor. Furthermore, reductive elimination of the most electron-poor diaryls, such as C6F5–C6F5, from [PdL2(C6F5)2] complexes is difficult and has been a challenge for 50 years, due to their high stability as the Pd–Caryl bond is strong. Thus, the Pd-catalyzed homocoupling of perfluoro phenyl boronates is found to be rather difficult.   Further investigation showed that stoichiometric reactions of C6F5Bpin, 2,4,6-trifluorophenyl–Bpin, or 2,6-difluorophenyl–Bpin with palladium acetate in MeCN stops at the double transmetalation step, as demonstrated by the isolation of cis-[Pd(MeCN)2(C6F5)2], cis-[Pd(MeCN)2(2,4,6-C6F3H2)2], and cis-[Pd(MeCN)2(2,6-C6F2H3)2] in quantitative yields. Thus, it can be concluded that the reductive elimination from diaryl-palladium complexes containing two ortho-fluorines in both aryl rings, is difficult even in a weakly coordinating solvent such as MeCN. Therefore, even less coordinating solvents are needed to make the Pd center more electron deficient. Reactions using “noncoordinating” arene solvents such as toluene, benzene, or m-xylene were conducted and found to be effective for the catalytic homocoupling of 2,6-C6F2+nH3-nBpin. The scope of the reactions was expanded. Using toluene as the solvent, the palladium-catalyzed homocoupling of ArF–Bpin derivatives containing one, two or no ortho-fluorines gave the coupled products in excellent yields without any difficulties. DFT calculations at the B3LYP-D3/def2-TZVP/6-311+g(2d,p)/IEFPCM // B3LYP-D3/SDD/6-31g**/IEFPCM level of theory predicted an exergonic process and lower barrier (< 21 kcal/mol) for the reductive elimination of Pd(C6F5)2 complexes bearing arene ligands, compared to stronger coordinating solvents (acetonitrile, THF, SMe2, and PMe3), which have high barriers ( > 33.7 kcal/mol). Reductive elimination from [Pd(ηn-Ar)(C6F5)2] complexes have low barriers due to: (i) ring slippage of the arene ligand as a hapticity change from η6 in the reactant to ηn (n ≤ 3) in the transition state and the product, which led to less σ-repulsion; and (ii) more favorable π-back-bonding from Pd(ArF)2 to the arene fragment in the transition state. Chapter 4 In this chapter, the efficient Pd-catalyzed C–Cl borylation of aryl chlorides containing two ortho-fluorines is presented. The reactions are conducted under base-free conditions to prevent the decomposition of the di-ortho-fluorinated aryl boronates, which are unstable in the presence of base. A combination of Pd(dba)2 (dba = dibenzylideneacetone) with SPhos (2-dicyclohexylphosphino-2′,6′-dimethoxybiphenyl) as a ligand is efficient to catalyze the C–Cl borylation of aryl chlorides containing two ortho-fluorine substituents without base, and the products were isolated in excellent yields. The substrate scope can be expanded to aryl chloride containing one or no ortho-fluorines and the borylated products were isolated in good to very good yield. This method provides a nice alternative to traditional methodologies using lithium or Grignard reagents. N2 - Fluorierte Verbindungen sind insbesondere in der Pharmazie wichtige Bausteine, da ein Drittel der wirksamen Medikamente Fluorsubstituenten beinhalten. Fluorierte Biaryle haben auch zahlreiche Anwendungen in Bereichen wie der Materialwissenschaft, der Landwirtschaft, dem Design molekularer Festkörperstrukturen, der supramolekularen Chemie etc. Daher ist die Entwicklung neuer synthetischer Wege zu fluorierten chemischen Verbindungen sehr gefragt. Eine der vielversprechenden Methoden ist die Borylierung geeigneter Vorstufen zur Erzeugung fluorierter Arylboronate, die als vielseitige Bausteine für die organische Synthese dienen können. ... KW - Chemistry KW - Homogeneous Catalysis KW - borylation KW - boronates KW - fluorine KW - C-C coupling KW - Homogene Katalyse KW - Borylierung KW - Fluorierung Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-217579 ER - TY - THES A1 - Munzert, Stefanie Martina T1 - Coordination of dynamic metallosupramolecular polymers (MEPEs) T1 - Koordination von dynamischen metallosupramolekularen Polyelektrolyten (MEPE) N2 - Several transition metal ions, like Fe2+, Co2+, Ni2+, and Zn2+ complex to the ditopic ligand 1,4-bis(2,2’:6’,2’’-terpyridin-4’-yl)benzene. Due to the high association constant, metal ion induced self-assembly of Fe2+, Co2+, and Ni2+ leads to extended, rigid-rod like metallo-supramolecular coordination polyelectrolytes (MEPEs) even in aqueous solution. Here, the kinetics of coordination and the kinetics of growth of MEPEs are presented. The species in solutions are analyzed by stopped-flow fluorescence spectroscopy, light scattering, viscometry and cryogenic transmission electron microscopy. At near-stoichiometric amounts of the reactants, high molar masses are obtained, which follow the order Ni-MEPE ~ Co-MEPE < Fe-MEPE. Furthermore, a way is presented to adjust the average molar mass, chain-length and viscosity of MEPEs using the monotopic chain stopper 4’-(phenyl)-2,2’:6’,2’’-terpyridine. N2 - Verschiedene Übergangsmetallionen, wie Fe2+, Co2+, Ni2+ und Zn2+ komplexieren an den ditopen Liganden 1,4-Bis(2,2’:6’,2”-terpyridin-4’-yl)benzen. Aufgrund der hohen Bindungskonstanten, führt die metallinduzierte Selbstassemblierung von Fe2+, Co2+ und Ni2+ zu ausgedehnten, stäbchenförmigen metallosupramolekularen Polyelektrolyten (MEPE) in wässriger Lösung. In dieser Arbeit wird die Kinetik der Koordination sowie die Kinetik des Wachstums der MEPE aufgezeigt. Die Spezies in Lösung werden anhand von Stopped-flow-Fluoreszenzspektroskopie, Lichtstreuung, Viskosimetrie und Kryo-Transmittionselektronenmikroskopie analysiert. Bei nahezu stöchiometrischen Mengen der Reaktanden werden hohe molare Massen beobachtet. Dabei gilt: Ni-MEPE ~ Co-MEPE < Fe-MEPE. Außerdem wird ein Verfahren beschrieben, mit welchem die mittlere Molmasse, Kettenlänge und Viskosität der MEPE durch Nutzung des monotopen Kettenstoppers 4’-(Phenyl)-2,2’:6’,2’’-terpyridin eingestellt werden kann. KW - Supramolekulare Chemie KW - supramolecular chemistry KW - Polymere Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-160650 ER - TY - THES A1 - Schott, Marco T1 - Neuartige Elektrodenmaterialien auf der Basis von Metallo-Polyelektrolyten und Hybridpolymeren für elektrochrome Fenster T1 - New electrode materials based on metallo-polyelectrolytes and hybrid polymers for electrochromic windows N2 - Im Rahmen der vorliegenden Arbeit wurde die Herstellung von elektrochromen (Nanokomposit-) Materialien auf der Basis des Metall-Komplexes Fe(ph-tpy)2 und eines Metallo-supramolekularen Polyelektrolyten (Fe-MEPE) für den Einsatz in glas- und kunstoffbasierten elektrochromen Elementen (ECDs) mit elektrisch schaltbarer Transmission untersucht. Mittels Layer-by-Layer (LbL)- und Tauchbeschichtungsverfahren ist es möglich, homogene Fe-MEPE-Filme auf transparenten, leitfähigen Oxidsubstraten (TCO) herzustellen. Die eingesetzten TCO-Substrate besitzen eine hohe Transparenz im sichtbaren Bereich und einen geringen Flächenwiderstand, so dass in elektrochromen Elementen (ECDs) hohe Transmissionswerte im Hellzustand und kurze Schaltzeiten erzielt werden können. Als Referenzmaterial wurde Fe(ph-tpy)2 untersucht, um die Vorteile von polymeren Strukturen gegenüber mononuklearen Metall-Komplexen aufzuzeigen. Die rosa-violetten Fe(ph-tpy)2-Komplexe eignen sich nicht für die Herstellung elektrochromer Dünnschichten, aufgrund der schlechten Benetzbarkeit und Haftung auf TCO-Substraten. Dagegen besitzen Fe-MEPE hervorragende elektrochrome Eigenschaften. Fe-MEPE ist gut löslich in Alkoholen und Etheralkoholen, wobei in MeOH der größte Extinktionskoeffizient εmax (46.890 M-1•cm-1) erreicht wird. Ein Vergleich zwischen LbL-assemblierten und tauchbeschichteten Fe-MEPE-Schichten zeigt, dass die elektrochromen Filme mittels Tauchbeschichtung schneller hergestellt werden können und geringere Schaltzeiten haben. Die höchste optische Qualität wird mit einem Lösungsmittelgemisch aus EtOH, MeOH und 2-Butoxyethanol erreicht. Die Schichten weisen eine homogene, defektfreie Oberfläche mit hoher Transparenz auf. Fe-MEPE-Schichten sind bis etwa 100 °C stabil. Bei weiterer Erhöhung der Temperatur färben sie sich irreversibel grün färben und lassen sich nicht mehr schalten. Die Grünfärbung ist durch eine Änderung der Molekularstruktur der Fe-MEPE-Polymere bedingt. Ab einer Temperatur von etwa 100 °C findet ein Übergang von der Niedrigtemperatur- zu einer Hochtemperaturphase statt. Der axiale Fe-N-Abstand verringert sich dabei von 1,95 auf 1,88 Å, der äquatoriale Fe-N-Abstand vergrößert sich von 1,98 auf 2,01 Å. Elektrochemische Untersuchungen zeigen, dass Fe-MEPE-Schichten bei Spannungen im Bereich von 3,85 bis 4,10 V vs. Li/Li+ in flüssigen organischen Elektrolyten von blau nach farblos schalten durch Oxidation von Fe(II) nach Fe(III) und bei etwa 4,00 bis 3,75 V vs. Li/Li+ färben sich die Fe-MEPE-Schichten reduktiv wieder blau. Es können hohe Coulomb-Effizienzen von etwa 94 %, Färbeeffizienzen η > 500 cm2•C-1 bei 592 nm und visuelle Transmissionsunterschiede Δτv von bis zu 58 % erreicht werden. Jedoch lösen sich die Fe-MEPE-Schichten ohne Hybridpolymer (ORMOCER®) als Bindemittel in einigen flüssigen und gelförmigen Elektrolyten nach einigen tausend Schaltzyklen teilweise ab. Um die Haftung und die thermische Stabilität der elektrochromen Schichten zu verbessern, werden Fe(ph-tpy)2 und Fe-MEPE in ein ORMOCER® eingebettet. Hierfür ist ein hydroxy-funktionalisiertes ORMOCER® mit einem hohen OH/Si-Verhältnis (1,75 : 1) am besten geeignet. Im Gegensatz zu den rosa-violetten ORMOCER®/Fe(ph-tpy)2-Schichten weisen die blau gefärbten ORMOCER®/Fe-MEPE-Schichten eine bessere Filmbildung sowie eine höhere Homogenität und Transparenz auf. Mit einem Lösungsmittelgemisch aus EtOH, MeOH und 2-Butoxyethanol können mittels Tauchbeschichtung homogene ORMOCER®/Fe-MEPE-Filme mit geringem Haze (< 0,5 %) bis zu einer Probengröße von 20 x 30 cm2 hergestellt werden. Die elektrochromen Eigenschaften bleiben bis zu einem ORMOCER®/Fe-MEPE-Verhältnis von 40:1 und Schichtdicken von etwa 10 µm erhalten, wobei die Schaltgeschwindigkeit mit zunehmendem ORMOCER®-Anteil abnimmt. Als optimal erweist sich ein ORMOCER®/Fe-MEPE-Verhältnis von 3:1, bei dem die Schichten hervorragende optische und elektrochrome Eigenschaften sowie eine gute thermische und mechanische Beständigkeit besitzen. Die thermische Stabilität der ORMOCER®/Fe-MEPE-Filme kann so auf über 100 °C erhöht werden; die blaue Farbe und die elektrochromen Eigenschaften der Schichten bleibt auch nach kurzzeitigem Tempern bei 200 °C erhalten. Im Vergleich zu Fe-MEPE-Schichten ohne ORMOCER® ist die Intensität der Metal-to-Ligand Charge Transfer (MLCT)-Bande bei etwa 593 nm und die Ladungsdichte der ORMOCER®/Fe-MEPE-Schichten bei gleicher Schichtdicke geringer, was zur Folge hat, dass auch die Färbeeffizienz η der Kompositmaterialien geringer ist. Allerdings konnte der visuelle Transmissionsunterschied Δτv auf 62 % gesteigert werden und die ORMOCER®/Fe-MEPE-Schichten besitzen darüberhinaus eine hohe Zyklenstabilität über mehrere tausend Schaltzyklen ohne signifikanten Ladungsverlust. Weiterhin weist in ORMOCER® eingebettetes Fe-MEPE polyelektrochrome Eigenschaften auf; bei negativen Spannungen (< -1,9 V vs. Fc/Fc+) färben sich die ORMOCER®/Fe-MEPE-Schichten grün und weisen eine starke Absorption im NIR-Bereich auf. Im Hinblick auf eine Verwendung von Fe-MEPE bzw. ORMOCER®/Fe-MEPE als Arbeitselektrode (WE) in ECDs sind verschiedene Materialien, wie z. B. ITO, V2O5, TiVOx und Preußisch Blau (PB), für den Einsatz als Gegenelektrode (CE) denkbar. Vor allem PB ist als Material für die CE interessant, da es komplementär zu Fe-MEPE von blau nach farblos schaltet. Dadurch kann in einem ECD mit einer Fe-MEPE-basierten WE der visuelle Transmissionsunterschied ∆τv im Vergleich zu ECDs mit einer V2O5- oder TiVOx-Gegenelektrode, die keinen farblosen Redoxzustand besitzen, erhöht werden. Demnach stellen Fe-MEPE bzw. ORMOCER®/Fe-MEPE vielversprechende elektrochrome Materialien für den Einsatz in schaltbaren Fenstern (Smart Windows) dar, vor allem wegen hervorragender Beschichtungseigenschaften, hoher Färbeeffizienz und kurzen Schaltzeiten. N2 - In this thesis the fabrication of electrochromic (nanocomposite-) materials based on the metal-complex Fe(ph-tpy)2 and a metallo-supramolecular polyelectrolyte (Fe-MEPE) for use in glass and plastic electrochromic devices (ECD) with electrically switchable transmittance was investigated. Using Layer-by-Layer (LbL) deposition and dip-coating it is possible to fabricate homogeneous Fe-MEPE films on transparent conductive oxide substrates (TCO). The used TCO substrates have high transparency in the visible region and low sheet resistance so that the electrochromic element can achieve in the bleached state high transmittance and fast switching times. The reference material Fe(ph-tpy)2 was investigated to reveal the advantages of polymeric structures compared to mononuclear metal complexes. The purple Fe(ph-tpy)2 complexes are not useful for fabrication of electrochromic thin films because of their weak wettability and adhesion on TCO substrates. In contrast Fe-MEPE exhibits remarkable electrochromic properties. Fe-MEPE is readily soluble in alcohols and ether alcohols, in which the largest extinction coefficient εmax is obtained in MeOH (46.890 M-1•cm-1). A comparison between LbL-assembled and dip-coated Fe-MEPE films shows that electrochromic thin films can be easierly fabricated by dip-coating process and have faster switching times. The highest optical quality is obtained with a solvent mixture of EtOH, MeOH and 2-butoxyethanol. The thin films show a homogeneous, defect-free surface with high transparency. Fe-MEPE films are stable up to 100 °C. At higher temperatures the colour turns irreversible green and the films are no longer switchable. A change of the molecular structure of the Fe-MEPE polymers is responsible for the green colouration. At a temperature of approximately 100 °C a transition from low to high temperature state can be observed. The axial Fe-N bond is shortened from 1,95 to 1,88 Å, the equatorial Fe-N bond is elongated from 1,98 to 2,01 Å. Electrochemical investigations show that Fe-MEPE thin films switch at voltages between 3,85 and 4,10 V vs. Li/Li+ in liquid organic electrolytes from blue to colourless upon oxidation of Fe(II) to Fe(III) and at around 4,00 to 3,75 V vs. Li/Li+ the Fe-MEPE films turn blue again upon reduction. High couloumb efficiencies of approx. 94 %, colouration efficiencies η > 500 cm2•C-1 at 592 nm and visible optical contrasts Δτv up to 58 % could be reached. However, the Fe-MEPE films without a hybrid polymer (ORMOCER®) as binder can be partially dissolved in some liquid and gel electrolytes after a while. To improve the adhesion and the thermal stability of the electrochromic layers Fe(ph-tpy)2 and Fe-MEPE are embedded in an ORMOCER®. Therefore, a hydroxy functionalized ORMOCER® with a high OH/Si ratio (1,75 : 1) is most suitable. In contrast to the purple ORMOCER®/Fe(ph-tpy)2 films the blue coloured ORMOCER®/Fe-MEPE layers exhibit better film formation and higher homogeneity and transparency. With a solvent mixture of EtOH, MeOH and 2-butoxyethanol homogeneous ORMOCER®/Fe-MEPE films with low haze (< 0,5 %) could be fabricated up to a sample size of 20 x 30 cm2. The electrochromic properties remain up to an ORMOCER®/Fe-MEPE ratio of 40:1 and layer thicknesses of around 10 µm, in which the switching speed decreases with an increasing ORMOCER® ratio. The optimum is an ORMOCER®/Fe-MEPE ratio of 3:1, in which the thin films exhibit outstanding optical and electrochromic properties as well as good thermal and mechanical stability. The thermal stability of ORMOCER®/Fe-MEPE films could be increased above 100 °C; the blue colour and the electrochromic properties of the films are preserved also after a short annealing step at 200 °C. In comparison to the Fe-MEPE films without ORMOCER® the intensity of the metal-to-ligand charge transfer (MLCT) transition at around 593 nm and the charge density of the ORMOCER®/Fe-MEPE films with the same layer thickness is lower, which also leads to a lower colouration efficiency of the nanocomposite materials. However, Δτv could be increased up to 62 % and the ORMOCER®/Fe-MEPE films show a high cycle stability over several thousand cycles without significant loss of charge density. Furthermore, in ORMOCER® embedded Fe-MEPE exhibit polyelectrochromic properties; at negative voltages (< -1,9 V vs. Fc/Fc+) the ORMOCER®/Fe-MEPE films are green coloured and show a strong absorbance in the NIR region. With regard to the use of Fe(ph-tpy)2 and Fe-MEPE as working electrode (WE) in ECDs various materials, such as ITO, V2O5, TiVOx and Prussian blue (PB), are suitable for the use as counter electrode (CE). In particular, PB is interesting as a material for the CE, because it switches complementary to Fe-MEPE from blue to colourless. Thus, in an ECD with a Fe-MEPE-based WE the visible optical contrast ∆τv can be increased in comparison to ECDs with V2O5 or TiVOx as counter electrode, which have no colourless redox state. As a result Fe-MEPE or ORMOCER®/Fe-MEPE are promising electrochromic materials for the use in switchable windows (smart windows), particularly because of their excellent coating properties, high colouration efficiencies and fast switching times. KW - Supramolekulare Chemie KW - Metallorganische Polymere KW - Elektrochromie KW - Organisch-anorganischer Hybridwerkstoff KW - Metallo-Polyelektrolyte KW - Elektrochromes Element KW - Tauchbeschichtung KW - metallo-polyelectrolytes KW - electrochromic device KW - dip-coating Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116904 ER - TY - THES A1 - Geist, Matthias T1 - Koordinationspolymere auf der Basis von Terpyridin und Dipyridyltriazin: Synthese und Anwendung T1 - Coordination polymers based on terpyridine and di-pyridyl-triazine: Preparation and application N2 - Der erste Teil der Arbeit untersucht den Einsatzes von 4,6-Di-(pyrid-2´-yl)-1,3,5-triazin als Baustein für Metallo-supramolekulare Polyelektrolyte. Die dafür nötigen ditopen Liganden werden mittels Stille Kreuzkupplungen dargestellt. Die Absorptions- und Fluoreszenzeigenschaften können durch den Einbau von Oligothiophenen eingestellt werden. Im zweiten Teil der Arbeit werden die elektrorheologischen Eigenschaften von Metallo-supramolekularen Polyelektrolyten untersucht. Zu diesem Zweck werden die Koordinationspolymere in das Schichtsilikat Montmorillonit interkaliert. Die Interkalation wird mittels verschiedener analytischer Methoden wie Pulverdiffraktometrie, Thermoanalyse oder Infrarotspektroskopie untersucht. Die entstehenden Nanokomposite zeigen einen elektrorheologischen Effekt bei einer geringen Stromdichte. N2 - The first part of the thesis shows the use of 4,6-di-(pyrid-2´-yl)-1,3,5-triazine as building block for metallosupramolecular polyelectrolytes. The necessary ditopic ligands are available by a Stille cross coupling. The absorption and fluorescence properties can be tuned by the incorporation of oligothiophenes. The electrorheological properties of metallosupramolecular polyelectrolytes are examined in the second part. On this account the coordination polymers are intercalated into the layered silicate montmorillonite. The intercalation is analyzed by methods as powder diffraction, thermoanalytical techniques and infrared spectroscopy. The nanocomposites show an electrorheological effect and low current densities. KW - Nanokomposit KW - Elektrorheologie KW - Supramolekulare Chemie KW - Terpyridin <2,2':6',2''-> KW - Kreuzkupplungsreaktion KW - Schichtsilikat KW - Interkalation KW - Triazin KW - Fluoreszenz KW - MEPE Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-114715 ER -