TY - THES A1 - Kraft, Andreas T1 - Kristalline Polymernetzwerke aus dodekatopischen [60]Fullerenderivaten T1 - Crystalline polymeric networks from dodecatopic [60]fullerene-derivatives N2 - Im Rahmen der vorliegenden Arbeit wurde eine Serie von dodekatopischen [60]Fullerenhexakisaddukten, die mit zwölf Carbonsäuregruppen dekoriert sind, auf ihre Eigenschaften hin untersucht, ausgedehnte, kristalline Polymernetzwerke mit einer eventuellen Porosität darzustellen. Hierbei wurden die Fähigkeiten der synthetisierten Dodekasäuren ausgenutzt über Wasserstoffbrückenbindungen und Metallkoordinationen supramolekulare Kontakte auszubilden und ausgedehnte Netzwerke zu knüpfen. In Kapitel 2 werden zunächst die grundlegenden physikalischen und chemischen Eigenschaften des sphärischen [60]Fullerenmoleküls, als Ausgangsverbindung für die Darstellung der supramolekularen Bausteine, vorgestellt. Insbesondere wird die chemische Funktionalisierbarkeit von C60 in verschiedenen Reaktionstypen unter Einbeziehung der selektiven, multiplen Funktionalisierbarkeit und der Fähigkeit Th-symmetrische Hexakisaddukte auszubilden, beschrieben. Danach folgt in dem Unterkapitel 2.5 ein kurzer Literaturüberblick über das intermolekulare Vernetzen von C60 und dessen Derivaten zu größeren Molekülverbänden und polymeren Strukturen mit besonderem Augenmerk auf metallorganische Hybridarchitekturen, die aus funktionalisierten Fullerenen und Metallionen oder Metallclustern aufgebaut sind. Die Synthese der vier dodekatopischen, Th-symmetrischen [60]Fullerenhexakis-addukte C2-H, C3-H, C4-H und C5-H mit unterschiedlich langen Alkylketten in den Seitenarmen wird in Kapitel 4.1 beschrieben. Der Strukturtyp ist in Abbildung 114 gezeigt. Auszugsweise wird hier auch die Identifizierung der Moleküle und Kontrolle ihrer Reinheit mittels spektroskopischer Methoden vorgestellt. In Kapitel 4.2 wird die Darstellung von Wasserstoffbrückenbindungsnetzwerken aus den synthetisierten Dodekasäuren beschrieben und deren erhaltenen Einkristallstrukturdaten diskutiert. Das Unterkapitel 4.2.2 beschäftigt sich zusätzlich mit der Kristallstruktur eines VAN-DER-WAALS-Netzwerkes des Dodekasäuremethylester C2- Me, welcher in situ bei Kristallisationsversuchen von C2-H erhalten wurde. Ein Vergleich der supramolekularen Netzwerke untereinander zeigt, dass das Packungsverhalten der Fullerenderivate, trotz Interaktion der Carbonsäuren mit benachbarten Fullerenbausteinen und Lösungsmittelmolekülen, maßgeblich von den großen, sphärischen Fullerengrundkörpern bestimmt wird. Die erhaltenen Netzwerke weisen dabei alle kubisch-dichteste ABC-Packungsmuster auf, wie es auch bei reinem C60 [244] im Festkörper oder bei den Fulleriden[214] beobachtet wird. Die unterschiedlich langen Seitenarme bestimmen dabei lediglich die Dimensionen der Packungen, eine mögliche Verzerrung, sowie die Ausprägungen der entstehenden Tetraeder- und Oktaederlücken. Im Fall von C4-H richten die Wasserstoffbrückenbindungen der Carbonsäuregruppen die Seitenarme aus und bilden somit ein geordnetes, poröses Netzwerk aus. In den supramolekularen Netzwerken wird überwiegend die Raumgruppe R 3 ̅ beobachtet, außer für C3-H, bei der die kritische Länge der Seitenketten, mit der Raumgruppe P1 ̅ , eine geringere Symmetrie erzwingt. Alle dargestellten supramolekularen Netzwerke sind in Abbildung 115 zusammengefasst. Obwohl die Anzahl der Säuregruppen in den Bausteinen jeweils gleich ist, wird in jedem Wasserstoffbrückennetzwerk ein eigener Typus an verknüpfenden H-Brückenbindungsclustern beobachtet. Bei C2-H erfolgt die Knüpfungsbindung durch die Bereitstellung und Auffüllung von hydrophilen und hydrophoben Taschen, wobei die Distanz zwischen den Säuregruppen durch die Interkalation von Lösungsmittelmolekülen überbrückt wird. In C3-H führt die dreidimensionale Vernetzung über „S“-förmige Säuredimere. Und bei C4-H handelt es sich um zwei interpenetrierende Teilgitter, bei der zwei helikale H-Brückennetzwerke ineinander verschachtelt sind. Gemäß der „goldenen Regel“ des Kristalldesigns[212] (siehe Kapitel 4.2) maximieren die Netzwerke die Anzahl der klassischen Säuredimere mit dem steigenden Grad der geometrischen Flexibilität der Seitenarme. Bei C2-H sind die Arme noch zu kurz, so dass die Verknüpfung über H-Brückencluster verläuft. C3-H bildet mit acht Armen Säuredimere aus und C4-H verwendet alle Seitenarme für die Ausbildung von Säuredimeren. Der Vergleich des raumausfüllenden VAN-DER-WAALS-Netzwerkes von C2-Me mit dem H-Brückennetzwerk von C2-H legt zudem nahe, dass die Ausprägung von Hohlräumen ein Effekt der gerichteten Wasserstoffbrückenbindungen sein muss. Aktivierungsversuche der Porenstruktur des H-Brückennetzwerks von C4-H und die Bestimmung der inneren Oberfläche durch Gasadsorption runden das Kapitel ab. Die innere Oberfläche konnte auf 40 m2g–1 für die BET-Adsorptionsisotherme mit Stickstoff bestimmt werden. Durch den Vergleich der Pulverdiffraktogramme vor und nach der Aktivierung konnte eine Phasenumwandlung festgestellt werden, die ein Kollabieren der Poren nahelegt. Die Implementierung von Metallen und Metallclustern in die Netzwerkstrukturen der Dodekasäuren wird im Kapitel 4.3 beschrieben. Hier konnte durch den Einbau von Zinkoxid-cluster in die Netzwerke von C2-H und C3-H die Hypothese eines „inversen MOFs“ aufgestellt werden. Da sich die Zinkoxid-Cluster formal in die vorhandenen H-Brückencluster der Fullerennetzwerke implementieren ließen, ohne dass sich das Packungsverhalten der Fullerengrundkörper wesentlich veränderte, kann geschlussfolgert werden, dass die strukturdirigierende Wirkung nicht wie in der klassischen MOF-Chemie üblich vom Metall, sondern vom organischen Bestandteil ausgeht. Das heißt Metall und Ligand tauschen hier ihre Funktionalität in Bezug auf ihre strukturdirigierende Wirkung. Die Zink-Fullerennetzwerke sind in Abbildung 116 dargestellt. Das Prinzip des „inversen MOFs“ ist jedoch nicht auf die Metallfullerennetzwerke CdC2 und CdC4 übertragbar. Die Struktur wird hier durch hohe Bereitschaft von Cadmium mit den Carbonsäuregruppen Komplexe zu bilden dominiert. Cadmium bildet „zick-zack“-förmige, lineare Metallstränge aus, an denen die Seitenarme der Fullerenbausteine über Koordination mit den Carbonsäuregruppen aufgespannt werden. In Abbildung 117 sind die beiden erhaltenen, porösen Cadmium-Netzwerke dargestellt. Im Netzwerk von CuC2, das in Abbildung 118 gezeigt ist, kann die strukturdirigierende Wirkung weder dem Metall, noch der Dodekasäure zugesprochen werden. Es kommt zur Ausbildung von zweidimensionalen metallorganischen Polymeren, indem je vier Fullerenbausteine über ein Kupferdimer koordiniert werden. Die Koordination von zwei weiteren Kupferionen, die jeweils endständig das Dimer zu einem Tetramer erweitern, führen zu einer vollständigen Inklusion der Metallionen in das Carbonsäurenetzwerk. Die freien Koordinationsstellen an den Kupferionen sind mit Wassermolekülen abgesättigt. Daraus resultiert die Ausbildung von Wasserstoffbrückenbindungen zwischen Wasser und den Carboxylgruppen der Seitenarme und somit die Ausbildung eines dreidimensionalen Netzwerkes mit einer sehr effektiven Raumausfüllung. Abbildung 118: Das Metallfullerennetzwerk von Kupfer und C2-H zeigt eine enge Verschachtelung der Bausteine und bildet keine Hohlräume aus. Das Metallfullerennetzwerk CaC2, das am Ende von Kapitel 4.3 behandelt wird, stellt einen Grenzfall zwischen H-Brücken- und Metallfullerennetzwerk dar. Die Struktur ist in Abbildung 119 gezeigt. Sie weist bezüglich der Clusterbildungen in den Oktaeder- und Tetraederlücken viele Parallelen zu den zinkhaltigen Netzwerken ZnC2 und ZnC3 auf. Die Clusterbildung von Kalzium erfolgt jedoch nur in jeder zweiten Oktaederlücke und die entstehenden Tetraederlücken werden, wie in dem H-Brückennetzwerk von C2-H von drei Carbonsäuren aus der oberen Schicht gefüllt. Die jeweils andere Oktaederlücke bleibt hingegen frei und schließt einen Hohlraum ein. Zudem ist CaC2 ein Hybridnetzwerk, da jeweils zwei Schichten zu einer metallorganischen Doppelschicht verknüpft sind und die Doppelschichten untereinander über Wasserstoffbrückenbindungen miteinander verbunden sind. Dabei entsteht die Koordination der Säuregruppen in hydrophilen Taschen, analog zum H-Brückennetzwerk von C2-H. Die erhaltenen Metallfullerennetzwerke wurden jeweils durch Pulverdiffraktometrie-untersuchungen in verschiedenen Aktivierungsversuchen untersucht. Die Netzwerke ZnC2 und CaC2 haben keine sinnvoll auswertbaren BET-Adsorptionsisothermen gezeigt. Von ZnC3 konnte eine geringe innere Oberfläche von 25 m2g–1, bei CdC2 30 m2g–1 und bei CdC4 29 m2g–1 bestimmt werden. Größere innere Oberflächen mit stabileren Porositäten können vermutlich dann erhalten werden, wenn eine Möglichkeit gefunden wird Fullerenhexakisaddukte mit rigideren Seitenarmen zu synthetisieren. Trotz des starken, multivalenten Einflusses der zwölf Säuregruppen und ihrer Ausbildung von Wasserstoffbrückenbindungs- und Metallcluster, konnte beobachtet werden, dass die strukturdirigierende Wirkung in den Netzwerken von C2-H, C3-H, C4-H, ZnC2, ZnC3 und CaC2 durch die Ausbildung eines jeweils kubisch dichtesten ABC-Packungsmusters vom nanoskaligen, sphärischen Fullerengerüst ausgeht. Es konnten in der vorliegenden Arbeit neue, vielseitige molekulare Bausteine für den Aufbau von dreidimensional vernetzten, kristallinen Strukturen entwickelt werden. Mit Hilfe dieser Bausteine konnten, in ihrer Komplexizität und ihrem Vernetzungsgrad einzigartige, Wasserstoffbrückennetzwerke im Einkristall untersucht werden. Durch den Einbau der oktaedrischen Bausteine in Metallfullerennetzwerke gelang hier zum ersten Mal die Implementierung von [6:0]Hexakisaddukten bei denen die isotrope, sphärische Funktionalisierung effizient für eine echte, dreidimensionale Vernetzung der Fullerengrundkörper genutzt wurde. Die wenigen bekannten fullerenhaltigen MOFs beinhalteten bisher Hexakisaddukte lediglich als lineare Linker oder waren, wie bei {[Cd(36)2](NO3)2}∞, lediglich zweidimensional verknüpft. Die neuen, außergewöhnlichen Strukturen der Metallfullerennetzwerke wurden beschrieben und diskutiert. Die Verwendung der Dodekasäuren als dodekatopische Linkermoleküle führte zusätzlich zu einer Ausweitung der Topizitätspalette in der MOF-Synthese, bei der bisher in der Literatur lediglich Linkermoleküle mit einer maximal oktatopischen[200] Qualität zum Einsatz kamen. Zusätzlich konnte der Begriff des „inversen MOFs“ eingeführt werden, bei dem der strukturdirigierende Einfluss vom organischen Baustein ausgeht und dadurch organischer Linker und anorganisches Koordinationszentrum ihre Funktion in der klassischen MOF-Synthese tauschen. N2 - In the present work, a series of dodecatopic [60]fullerene hexakisadducts bearing twelve carboxylic acids, has been synthesized and characterized. Their properties to build up crystalline, polymeric and possible porous structures have been investigated. This takes advantage of the synthesized dodecaacids in forming supramolecular contacts by hydrogen bonds or metal coordination to elongated frameworks. Chapter 2 introduces the basic physical and chemical properties of the spherical [60]fullerene as a precursor for the synthesis of the supramolecular building blocks. In particular the chemical functionalization of C60 in different types of reactions is developed, with special regard to the selective, multiple addition patterns which lead to Th-symmetrical hexakisadducts. The following chapter 2.5 gives a short literature survey concerning the intermolecular arrangement of C60 and its derivatives to build up enlarged molecular arrays and polymeric structures with a special focus on the metal-organic hybrid architectures built from functionalized fullerenes and metal ions or clusters. ... KW - Polymeres Netzwerk KW - Fullerenderivate KW - Polymerkristall KW - kristalline Polymere mit Porösitäten KW - Fulleren KW - Wasserstoffbrückenbindung Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147262 ER - TY - THES A1 - Seufert, Jens T1 - Synthese und Reduktionsverhalten neuer Lewis-Basen-Addukte des Bors sowie Redox-aktiver Ligandentransfer durch Silylene T1 - Synthesis and reduction of novel Lewis-base adducts of boron and redox-active Ligand Transfer through silylenes N2 - Im Rahmen dieser Arbeit war es möglich, diverse Lewis-Basen für deren Einsatz zur Stabilisierung niedervalenter Borverbindungen zu testen. Dabei wurden neuartige Mono- und Diboran(4)-Addukte mit mesoionischen Carbenen, Phosphanen und Alkyl-verbrückten Carbenen synthetisiert, charakterisiert und deren Reduktionsverhalten getestet. Des Weiteren konnte gezeigt werden, dass elektronenreiche Bis(amidinato)- und Bis(guanidinato)silylene eine diverse Vielfalt an Reaktionstypen induzieren und dabei zu Redox-Reaktionen und Ligandenübertrag neigen. N2 - Within the scope of this work, a variety of Lewis-bases were tested for their capability to stabilize low-valent boron compounds. Thereby, novel adducts of mono- and diboranes with mesoionic carbenes, phosphines and alkyl-bridged carbenes were synthesized, characterized and their reduction behavior was tested. Furthermore, it was shown that electron-rich bis(amidinato)- and bis(guanidinato)silylenes induce a range of interesting reactions and are prone to ligand transfer as well as redox reactions. KW - Bor KW - Reaktivität KW - Silylen KW - Carbene KW - Ligandentransfer KW - verbrückende Carbene KW - mesoionische Carbene Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173987 ER - TY - THES A1 - Tian, Yaming T1 - Selective C-X and C-H Borylation by N-Heterocyclic Carbene Nickel(0) Complex T1 - Selektive C-X und C-H Borylierung mittels N-Heterozyklischer Carben Nickel(0) Komplexe N2 - Organoboron compounds are important building blocks in organic synthesis, materials science, and drug discovery. The development of practical and convenient ways to synthesize boronate esters attracted significant interest. Photoinduced borylations originated with stoichiometric reactions of arenes and alkanes with well-defined metal-boryl complexes. Now photoredox-initiated borylations, catalyzed either by transition-metal or organic photocatalysts, and photochemical borylations with high efficiency have become a burgeoning area of research. In this chapter, we summarize research in the field of photocatalytic C-X borylation, especially emphasizing recent developments and trends, based on transition-metal catalysis, metal-free organocatalysis and direct photochemical activation. We focus on reaction mechanisms involving single electron transfer (SET), triplet energy transfer (TET), and other radical processes. We developed a highly selective photocatalytic C-F borylation method that employs a rhodium biphenyl complex as a triplet sensitizer and the nickel catalyst [Ni(IMes)2] (IMes = 1,3-dimesitylimidazolin-2-ylidene) for the C-F bond activation and defluoroborylation process. This tandem catalyst system operates with visible (400 nm) light and achieves borylation of a wide range of fluoroarenes with B2pin2 at room temperature in excellent yields and with high selectivity. Direct irradiation of the intermediary C-F bond oxidative addition product trans-[NiF(ArF)(IMes)2] leads to fast decomposition when B2pin2 is present. This destructive pathway can be bypassed by indirect excitation of the triplet states of the nickel(II) complex via the photoexcited rhodium biphenyl complex. Mechanistic studies suggest that the exceptionally long-lived triplet excited state of the Rh biphenyl complex used as the photosensitizer allows for efficient triplet energy transfer to trans-[NiF(ArF)(IMes)2], which leads to dissociation of one of the NHC ligands. This contrasts with the majority of current photocatalytic transformations, which employ transition metals as excited state single electron transfer agents. We have previously reported that C(arene)-F bond activation with [Ni(IMes)2] is facile at room temperature, but that the transmetalation step with B2pin2 is associated with a high energy barrier. Thus, this triplet energy transfer ultimately leads to a greatly enhanced rate constant for the transmetalation step and thus for the whole borylation process. While addition of a fluoride source such as CsF enhances the yield, it is not absolutely required. We attribute this yield-enhancing effect to (i) formation of an anionic adduct of B2pin2, i.e. FB2pin2-, as an efficient, much more nucleophilic {Bpin-} transfer reagent for the borylation/transmetalation process, and/or (ii) trapping of the Lewis acidic side product FBpin by formation of [F2Bpin]- to avoid the formation of a significant amount of NHC-FBpin and consequently of decomposition of {Ni(NHC)2} species in the reaction mixture. We reported a highly selective and general photo-induced C-Cl borylation protocol that employs [Ni(IMes)2] (IMes = 1,3-dimesitylimidazoline-2-ylidene) for the radical borylation of chloroarenes. This photo-induced system operates with visible light (400 nm) and achieves borylation of a wide range of chloroarenes with B2pin2 at room temperature in excellent yields and with high selectivity, thereby demonstrating its broad utility and functional group tolerance. Mechanistic investigations suggest that the borylation reactions proceed via a radical process. EPR studies demonstrate that [Ni(IMes)2] undergoes very fast chlorine atom abstraction from aryl chlorides to give [NiI(IMes)2Cl] and aryl radicals. Control experiments indicate that light promotes the reaction of [NiI(IMes)2Cl] with aryl chlorides generating additional aryl radicals and [NiII(IMes)2Cl2]. The aryl radicals react with an anionic sp2-sp3 diborane [B2pin2(OMe)]- formed from B2pin2 and KOMe to yield the corresponding borylation product and the [Bpin(OMe)]•- radical anion, which reduces [NiII(IMes)2Cl2] under irradiation to regenerate [NiI(IMes)2Cl] and [Ni(IMes)2] for the next catalytic cycle. A highly efficient and general protocol for traceless, directed C3-selective C-H borylation of indoles with [Ni(IMes)2] as the catalyst was achieved. Activation and borylation of N-H bonds by [Ni(IMes)2] is essential to install a Bpin moiety at the N-position as a traceless directing group, which enables the C3-selective borylation of C-H bonds. The N-Bpin group which is formed is easily converted in situ back to an N-H group by the oxidiative addition product of [Ni(IMes)2] and in situ-generated HBpin. The catalytic reactions are operationally simple, allowing borylation of of a variety of substituted indoles with B2pin2 in excellent yields and with high selectivity. The C-H borylation can be followed by Suzuki-Miyaura cross-coupling of the C-borylated indoles in an overall two-step, one-pot process providing an efficient method for synthesizing C3-functionalized heteroarenes. N2 - Es wurden effiziente und allgemeine Methoden für die selektive C-B-Verknüpfung mittels [Ni(IMes)2]-katalysierter Borylierungen von Arylfluoriden, Arylchloriden und substituierten Indolen entwickelt, welches alles leicht verfügbare Substrate sind. ... KW - Organoboron Compounds KW - N-Heterocyclic Carbene KW - Borylation KW - Photocatalysis KW - C-F KW - C-Cl KW - C-H KW - Nickel KW - Rhodium KW - Borylierung KW - Heterocyclische Carbene <-N> KW - Nickelkomplexe Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-213004 ER - TY - THES A1 - Dechant, Moritz Thomas T1 - Synthese und Struktur-Eigenschaftsbeziehungen neuer Phthalocyanin-Sternmesogene – Ein neues Design für organische, flüssigkristalline Photovoltaikmaterialien T1 - Synthesis and structure-property relationships of new phthalocyanine star mesogens - A new design for organic, liquid crystalline photovoltaic materials N2 - Es wurde eine Vielzahl neuer, flüssigkristalliner Phthalocyanin-Sternmesogene synthetisiert. Die Struktur-Eigenschaftsbeziehungen und die thermotropen Eigenschaften neuer Phthalocyanin-Sternmesogene mit Freiraum sowie von sterisch überfrachteten Verbindungen wurden insbesondere hinsichtlich der Freiraumfüllung untersucht. Diesbezüglich wurde ein neuer supramolekularer, freiraumfüllender "Klick-Prozess" zwischen einem Molekül mit Freiraum und einem sterisch überfrachteten Molekül mit vier Fullerenen beobachtet. Die photophysikalischen Eigenschaften wurden zudem insbesondere im Hinblick auf die Anwendung für die Organische Photovoltaik untersucht. N2 - A large number of new, liquid crystalline phthalocyanine star mesogens was synthesized. The structure-property relationships and the thermotropic properties of new phthalocyanine star mesogens with free space and of sterically overcrowded compounds were investigated, whereas the space-filling was of great interest. In this regard, a new supramolecular, space-filling „click-process“ between one molecule with free space and one sterically overcrowded compound with four fullerenes was observed. The photophysical properties regarding to an application for the organic photovoltaics were investigated. KW - Phthalocyanin KW - Fullerene KW - Flüssigkristalle KW - Donor-Akzeptor-Dyaden KW - Sternmesogene KW - Freiraumfüllung KW - Flüssigkristall KW - Fotovoltaik KW - Fulleren Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-238888 ER - TY - THES A1 - Dhara, Ayan T1 - Stimuli-Responsive Self-Assembly and Spatial Functionalization of Organic Cages Based on Tribenzotriquinacenes T1 - Stimuli-responsive Selbstorganisation und räumliche Funktionalisierung organischer Käfige auf Basis von Tribenzotriquinacenen N2 - Within this thesis, synthetic strategies for self-assembled organic cage compounds have been developed that allow for both stimuli-responsive control over assembly/disassembly processes and spatial control over functionalization. To purposefully operate the reversible assembly of organic cages, boron-nitrogen dative bonds have been exploited for the formation of a well-defined, discrete bipyramidal organic assembly in solution. Thermodynamic association equilibria for cage formation have been investigated by Isothermal Titration Calorimetry (ITC). Temperature-dependent NMR studies revealed a reversible cage opening upon heating and quantitative reassembly upon cooling. For the spatial functionalization of organic cages, two divergent molecular building units have been designed and synthesized, namely tribenzotriquinacene derivatives possessing a terminal alkyne moiety at the apical position and a meta-diboronic acid having a pyridyl group at the 2-position. Facile access to a variety of apically functionalized tribenzotriquinacenes has been illustrated by post-synthetic modifications at the terminal alkyne group by Sonogashira cross-coupling and azide-alkyne click reactions. Finally, these apically functionalized tribenzotriquinacene building blocks have been implemented into boronate ester-based organic cage compounds showing modular exohedral functionalities. N2 - Im Rahmen dieser Dissertation wurden Synthesiestrategien für selbstorganisierte organische Käfigstrukturen entwickelt, die eine stimuli-responsive Kontrolle über den Auf- und Abbau sowie eine räumliche Kontrolle über die Funktionalisierung dieser Nanostrukturen erlauben. Um den Assemblierungsprozess organischer Käfige gezielt zu steuern, wurden dative Bor-Stickstoff-Bindungen für die Bildung eines wohldefinierten, diskreten, bipyramidalen organischen Käfigs in Lösung eingesetzt. Die thermodynamischen Assoziationsleichgewichte für die Käfigbildung wurden durch isotherme Titrationskalorimetrie (ITC) tersucht. Temperaturabhängige NMR-Studien zeigten eine reversible Käfigöffnung beim Erwärmen und die quantitative Wiedergewinnung des Käfigs beim Abkühlen. Für die räumliche Funktionalisierung organischer Käfige wurden zwei divergente molekulare Bausteine entworfen und synthetisiert: Zum Einen Tribenzotriquinacen-Derivate die eine terminale Alkinfunktion an der apikalen Position aufweisen und zum Anderen eine meta-Diboronsäure mit einer Pyridylgruppe in 2-Position. Der einfache Zugang zu einer Vielzahl an apikal funktionalisierten Tribenzotriquinacenen wurde durch postsynthetische Modifizierungen der terminalen Alkineinheit durch Sonogashira-Kreuzkupplungen und Azid-Alkin-Klick-Reaktionen veranschaulicht. Schließlich wurden diese apikal funktionalisierten Tribenzotriquinacen-Bausteine in organische Boronatester-Käfige mit modularer exohedraler Funktionalität implementiert. KW - Selbstorganisation KW - Bor-Stickstoff-Verbindungen KW - Käfigverbindungen KW - Self-assembly KW - Selbstassemblierung KW - Cage KW - Boron-Nitrogen Dative Bond Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-154762 ER - TY - THES A1 - Klotzbach [verh. Fimmel], Stefanie T1 - Synthese und Charakterisierung kovalent organischer Käfigverbindungen basierend auf Tribenzotriquinacen-Einheiten T1 - Synthesis and Characterization of Covalent Organic Cage Compounds based on Tribenzotriquinacenes N2 - Porous functional materials are promising candidates for applications in the areas of heterogeneous catalysis, sensing, gas storage and separation, or membranes. As one class of suchlike materials, organic cage compounds have attracted attention because of their unique properties compared to extended frameworks. The tribenzotriquinacene (TBTQ) scaffold possessing three orthogonal indane moieties provides a suitable building block for the efficient synthesis of organic cage compounds. In this thesis the synthesis of molecular cubes, tetrahedra and bipyramids by crosslinking the catechol units of TBTQ with various diboronic acids is reported. Structure and shape of the molecular objects are thereby determined by the geometry of the diboronic acids. Notably, both narcissistic and social self-sorting phenomena could be observed for ternary mixtures of building blocks. In addition host-guest complexation was observed for the trigonal bipyramid cage. Fullerenes C60 as well as C70 were almost quantitively encapsulated. Further investigations of this behaviour showed a preference for C60 in a competitive situation. N2 - Poröse funktionelle Materialien sind vielversprechende Kandidaten für Anwendungen wie zum Beispiel in der heterogenen Katalyse, in Sensormaterialien, für die Gasspeicherung sowie –separation oder in Membranen. Eine besondere Klasse solcher Materialien stellen die organischen Käfigverbindungen dar, da sie im Vergleich zu netzwerkartigen Strukturen einzigartige Eigenschaften aufweisen. Das Gerüst des Tribenzotriquinacens (TBTQ) besitzt drei zueinander orthogonal stehende Indaneinheiten, sodass es sich optimal als Baustein für die effiziente Synthese organischer Käfigmoleküle eignet. In dieser Arbeit wird die Synthese molekularer Würfel, Tetraeder und Bipyramiden mittels Quervernetzung der Catecholeinheiten der TBTQ-Bausteine mit verschiedenen Diboronsäuren beschrieben. Die Struktur und die Form der molekularen Objekte sind dabei durch die Geometrie der entsprechenden Diboronsäuren vorgegeben. Bemerkenswert ist, dass in ternären Mischungen der Bausteine das Phänomen der Selbssortierung zu beobachten ist. Sowohl narzisstische als auch soziale Selbstsortierung konnte hierbei festgestellt werden. Darüber hinaus wurde für den bipyramidalen Käfig Wirt-Gast Komplexierung beobachtet. Die Fullerene C60 und C70 wurden nahezu quantitativ in das Molekül eingeschlossen. Weitere Untersuchungen zu diesem Verhalten zeigten in einer kompetitiven Mischung aus C60 und C70 eine Präferenz des Käfigmoleküls zu C60. KW - Käfigverbindungen KW - Selbstorganisation KW - Tribenzotriquinacen Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166034 ER - TY - THES A1 - He, Jiang T1 - Studies of N-heterocyclic olefins as donors in triarylboranes and electron-poor phenylpyridyl-fused boroles T1 - Studien N-heterozyklischer Olefine als Donoren in Triarylboranen und Elektronenarmer Phenylpyridyl-fusionierter Borole N2 - Chapter 1 N-Heterocyclic olefins (NHOs), relatives of N-heterocyclic carbenes (NHCs), exhibit high nucleophilicity and soft Lewis basic character. To investigate their π-electron donating ability, NHOs were attached to triarylborane π-acceptors (A) giving donor(D)-π-A compounds 1-3. In addition, an enamine π-donor analogue (4) was synthesized for comparison. UV-visible absorption studies show a larger red shift for the NHO-containing boranes than for the enamine analogue, a relative of a CAAC. The red shifted absorption of NHO-containing boranes indicate smaller energy gaps of NHO-containing boranes than CAAC-containing boranes. Solvent-dependent emission studies indicate that 1-4 have moderate intramolecular charge transfer (ICT) behavior. Electrochemical investigations reveal that the NHO-containing boranes have extremely low reversible oxidation potentials (e.g., for 3, E1/2ox = –0.40 V vs. Fc/Fc+ in THF) which indicate the electron rich property of NHOs. Furthermore, TD-DFT calculations were carried out on these four D-π-A boranes. The results show that the LUMOs of 1-4 only show a small difference, but the HOMOs of 1-3 are much more destabilized than that of the enamine-containing 4, which is in agreement with the electrochemical investigations and confirms the stronger donating ability of NHOs. Chapter 2 Since the beginning of this century, the chemistry of (hetero)arene-fused boroles has attracted increasing interest. (Hetero)arene-fused boroles exhibit strong Lewis acidity, distinct fluorescence properties, strong electron accepting abilities, etc. However, their chemistry been only very briefly reviewed either as part of reviews on “free” boroles or on boron-doped polycyclic aromatic hydrocarbons (PAHs). In this chapter, we addressed the chemistry of (hetero)arene-fused boroles from fundamentals to their widely varying applications. It includes: 1) Synthetic methodology  Both historical and recently developed strategies for the synthesis of fused boroles. 2) Stabilities  A comparison of different kinetic protection strategies. 3) 9-Borafluorenes with a fluorinated backbone  Application as Lewis acids, forming ion pairs with Cp2Zr(CH3)2 and applied as activators for polymerization, activators of H2, and other related applications. 4) Donor-acceptor 9-borafluorenes  Applications as F– “turn on” sensors, potential applications as electron accepting units for organic (opto)electronics, bipolar transporting materials, TADF materials, and different functionalization strategies. 5) Heteroarene-fused boroles  Enhanced antiaromaticity, unique coordination mode and their interesting properties. 6) Intramolecular dative bonding in 9-borafluorenes  Bond-cleavage-induced intramolecular charge transfer (BICT), BICT-induced large Stoke shifts and dual emissions, application as a ratiometric sensor. 7) 9-Borafluorene-based main chain polymers  Application in polymer chemistry and their distinct properties, e.g., as a sensor for gaseous NH3. 8) Electrochemistry  A comparison of electron-accepting ability of different functionalized fused boroles through electrochemical studies. 9) Chemical reduction of fused boroles  Stable radical anions and dianions of fused boroles and their properties. 10) Three-coordinate borafluorenium cations  Cationic 9-borafluorenes and their interesting properties, e.g., in THF, reversible thermal colour switching properties. Finally, a conclusion and outlook regarding the chemistry, properties and applications, and suggestions for areas which require further study was provided.   Chapter 3 Interested in fusing electron-poor arene onto boroles, two electron-poor phenylpyridyl-fused boroles, [TipPBB1]4 and TipPBB2 were prepared. [TipPBB1]4 is a white solid adopting a unique coordination mode, which forming a tetramer with a cavity in both the solid state and solution (1H DOSY). The boron center of TipPBB2 is 4-coordinate in the solid state, evidenced by a solid-state 11B{1H} RSHE/MAS NMR study, but the system dissociates in solution, leading to 3-coordinate borole species. [TipPBB1]4 exhibits two reduction processes which are attributed to the phenylpyridyl cores. TipPBB2 also exhibits two reduction processes with the first half-reduction potential of E1/2red = –1.94 V. The electron accepting ability of TipPBB2 is largely enhanced and comparable to that of FMesBf. This enhanced electron accepting ability is attributed to the electron withdrawing property of the pyridyl group. TipPBB2 exhibits concentration- and temperature-dependent dual fluorescence in solution. With the temperature is lowered, the emission intensity decreases (Figure 6.4, left). We suggested that the dual fluorescence is caused by an equilibrium between 3-coordinate TipPBB2 and a weak intermolecular adduct of TipPBB2 via a B–N bond. This hypothesis was further supported by lifetime measurements at different concentrations, low temperature excitation spectra low temperature 1H NMR spectra and lifetime measurements upon addition of DMAP to a solution of TipPBB2 to simulate the 4-coordiante TipPBB2 species. Interestingly, the ratio of the relative percentages of the two lifetimes shows a linear relationship with temperature; thus, TipPBB2 could serve as a fluorescent thermometer. Furthermore, theoretical studies were carried out on TipPBB2, and two models, ((BMe3)TipPBB1(NMe3) and (BMe3)TipPBB2(NMe3)), which utilize a BMe3 group as the Lewis acid coordinated to pyridine and an NMe3 group as the Lewis base coordinated to the boron center of the borole, were used to simulate the [TipPBB1]4 and intermolecular 4-coordinate TipPBB2, respectively. Theoretical studies indicate that the HOMO of TipPBB2 is located at the Tip group, which is in contrast to its borafluorene derivatives for which the HOMOs are located on the borafluorene cores. Chapter 4 Two derivatives of phenylpyridyl-fused boroles were prepared via functionalization of the pyridyl groups in two different directions, namely an electron-rich dihydropyridine moiety (compound 10) and an electron-deficient N-methylpyridinium cation (compound 11). Both compounds were fully characterized. The 11B NMR signal of compound 10 was observed at 58.8 ppm in CDCl3, which suggests strong conjugation between the boron atom and dihydropyridine moiety. Compound 11 shows a reversible coordination to THF which was confirmed by NMR studies. Compared to other 2,4,6-triisopropylphenyl protected 9-borafluorenes which only coordinate to CH3CN or DMF, the coordination of the weaker and bulkier THF to compound 11 indicates an extremely electron-deficient boron center in compound 11. The electron-rich property of the dihydropyridine moiety of compound 10 was confirmed by its oxidation potential (Epc = +0.37 V). Due to the strong conjugation of the dihydropyridine moiety with the boron atom, the reduction potential of compound 10 shifts cathodically and is more negative than –2.5 V. Compound 11 exhibits three reduction processes with the first reversible reduction potential at Ered1/2 = –1.23 V, which is significantly anodically shifted compared to that of its precursor (TipPBB2) or its framework 1-methyl-2-phenylpyridin-1-ium triflate (12). This significantly anodically shifted reduction potential confirms an extremely electron-deficient property of compound 11. Photophysical studies indicate that the lowest energy transition of compound 10 is more likely a locally-excited (LE) transition and compound 11 exhibits a polarized ground state. Furthermore, we performed theoretical studies for both compounds. The electron cloud distribution of the HOMO of compound 10 supports the strong conjugation between the boron atom and the dihydropyridine moiety in the ground state. An extremely low LUMO energy was determined by theoretical studies which confirmed the extremely electron-deficient property of compound 11.   Chapter 5 Inspired by the enhancement of electron accepting ability with increasing numbers of electron withdrawing groups at boron, we tried to study the properties of a bis(pyridyl)arylboranes. In our attempt to synthesize a bis(pyridyl)arylborane, we obtained a bis(2-pyridyl)methoxyborate Li+ complex which is as a dimer both in solution and the solid state. In the solid state, compound [16]2 is a dimer containing two bis(2-pyridyl)methoxyborate which are linked by two lithium cations. Each lithium cation coordinates to one methoxy group and two pyridyl groups, one from each of the two bis(2-pyridyl)methoxyborate anions. The parameters of [16]2 were compared with other bis(2-pyridyl)methoxyborate stabilized Pt(IV) complex, bis(2-pyridyl)hydroxylborate stabilized Ru(II) complex and the dimer of EtAl(OMe)(2-pyridyl)2Li. To confirm the coordination mode in solution, 1H DOSY spectroscopy was carried out in CD2Cl2. The van der Waals radius obtained by 1H DOSY nicely matches with the result from the solid state and thus proves the dimer of 16 is persistent in solution. Finally, different Lewis acids (e.g., TMSCl, BF3•Et2O, AlCl3, HCl) were used to attempt to detach the methoxy group of [16]2. However, we observed either decomposition or selective cleavage of the Tip group, or no reaction at all, rather than cleavage of the methoxy group from boron. N2 - 1 Kapitel 1 N-Heterocyclische Olefine (NHOs) sind Verwandte der N-heterocyclischen Carbene (NHCs) und weisen eine hohe Nukleophilie sowie einen weichen Lewis-Grundcharakter auf. Um ihre Fähigkeit als π-Elektronendonor zu untersuchen, wurden diese NHOs an π-Triarylboran-Akzeptoren (A) gebunden, wodurch die Donor(D)-π-A-Verbindungen 1-3 erhalten wurden. Zusätzlich wurde zum Vergleich das Enamin π-Donoranalogon (4) synthetisiert. Studien zur UV/Vis-Absorption zeigen für die NHO-haltigen Borane eine stärkere Rotverschiebung als für das Enamin-Analogon, welches ein Verwandter von CAACs ist. Die rotverschobene Absorption der NHO-haltigen Borane weist auf kleinere Energielücken bei den NHO-haltigen Boranen als bei den CAAC-haltigen Boranen hin. Des Weiteren zeigen Lösungsmittel-abhängige Emissionsstudien, dass die Verbindungen 1-4 ein moderates intramolekulares Ladungstransfer(ICT)-Verhalten aufweisen. Elektrochemische Untersuchungen zeigen, dass die NHO-haltigen Borane extrem niedrige reversible Oxidationspotentiale aufweisen (z.B. für 3, E1/2ox = –0,40 V vs. Fc/Fc+ in THF), was auf die elektronenreiche Eigenschaft der NHOs hinweist. Darüber hinaus wurden TD-DFT-Berechnungen für diese vier D-π-A-Borane durchgeführt. Die Ergebnisse zeigen, dass die jeweiligen LUMOs von 1-4 nur einen geringen Unterschied zueinander aufweisen, die HOMOs von 1-3 jedoch viel stärker destabilisiert sind als die des enaminhaltigen 4, was mit den elektrochemischen Untersuchungen übereinstimmt und die stärkere Donorfähigkeit der NHOs bestätigt. 2 Kapitel 2 Seit Beginn dieses Jahrhunderts hat die Chemie von (Hetero)aren-kondensierten Borolen zunehmendes Interesse geweckt. (Hetero)aren-kondensierte Borole weisen eine starke Lewis-Acidität, ausgeprägte Fluoreszenzeigenschaften, starke Elektronenakzeptor-fähigkeiten, etc. auf. Ihre Chemie wurde jedoch bislang nur wenig untersucht und es gibt kaum Übersichten zu ihren Eigenschaften, entweder als Teil von Übersichtsarbeiten über "freie" Borole oder über bordotierte polyzyklische aromatische Kohlenwasserstoffe (PAK). In diesem Kapitel wird die Chemie von (Hetero)aren-kondensierten Borolen von den Grundlagen bis zu ihren sehr unterschiedlichen Anwendungen behandelt. Es umfasst: 1) Synthetische Methoden  Sowohl historische als auch kürzlich entwickelte Strategien für die Synthese von kondensierten Borolen. 2) Stabilitäten  Ein Vergleich verschiedener kinetischer Schutzstrategien. 3) 9-Borafluorene mit fluoriertem Rückgrat  Anwendung als Lewis-Säure, Bildung von Ionenpaaren mit Cp2Zr(CH3)2 und Anwendung als Aktivatoren für die Polymerisation, Aktivatoren von H2 und andere verwandte Anwendungen. 4) Donor-Akzeptor 9-Borafluorene  mögliche Anwendungen als F– "Einschalt"-Sensoren, als elektronenakzeptierende Einheit für die organische (Opto-)Elektronik, bipolare Transportmaterialien, TADF-Materialien und verschiedene Funktionalisierungsstrategien. 5) Heteroaren-kondensierte Borole  Gesteigerte Antiaromatizität, einzigartiger Koordinationsmodus und interessante Eigenschaften. 6) Intramolekulare dative Bindung in 9-Borafluorenen  Bindungsbruch-induzierter intramolekularer Ladungstransfer (BICT), BICT-induzierte große Stokes-Verschiebungen und duale Emissionen, Anwendung als ratiometrischer Sensor. 7) 9-Borafluoren-basierte Hauptkettenpolymere  Anwendung in der Polymerchemie und deren charakteristische Eigenschaften, z.B. als Sensoren für gasförmiges NH3. 8) Elektrochemie  Ein Vergleich der Elektronenakzeptorfähigkeit unterschiedlicher funktionalisierter kondensierter Borole durch elektrochemische Untersuchungen. 9) Chemische Reduktion von kondensierten Borolen  Stabile Radikalanionen und Dianionen von kondensierten Borolen und deren Eigenschaften. 10) Dreifach koordinierte Borafluorenium-Kationen  Kationische 9-Borafluorene und ihre spannenden Eigenschaften, wie z.B. die reversible thermische Schaltbarkeit durch Farbe in THF. Am Ende des Kapitels werden Schlussfolgerungen gezogen und ein Ausblick zur weiteren Chemie, etwaigen Eigenschaften sowie möglichen Anwendungen gegeben. Ferner werden Vorschläge zu Feldern gemacht, die weitere Untersuchungen bedürfen. 3 Kapitel 3 Um elektronenarme Arene mit Borolen zu kondensieren, wurden zwei elektronenarme Phenylpyridyl-kondensierte Borole, [TipPBB1]4 und TipPBB2, hergestellt. [TipPBB1]4 ist ein weißer Feststoff, der einen einzigartigen Koordinationsmodus aufweist. Sowohl im Festkörper als auch in Lösung (1H DOSY) liegt ein Tetramer mit einem Hohlraum vor. Das Borzentrum von TipPBB2 ist im Festkörper 4-fach koordiniert, was durch ein Festkörper 11B{1H} nachgewiesen wurde. RSHE/MAS-NMR-Studien zeigten aber, dass das System in Lösung dissoziiert, was zu einer 3-fach koordinierten-Borolspezies führt. [TipPBB1]4 zeigt zwei Reduktionsprozesse, die den Phenylpyridylkernen zugeschrieben werden. TipPBB2 zeigt ebenfalls zwei Reduktionsprozesse mit dem ersten Halb- Reduktionspotential von E1/2red. = –1,94 V. Die Elektronenakzeptorfähigkeit von TipPBB2 ist somit weitgehend verbessert und mit der von FMesBf vergleichbar. Diese verbesserte Elektronenakzeptorfähigkeit ist auf den elektronenziehenden Effekt der Pyridylgruppe zurückzuführen. TipPBB2 zeigt konzentrations- und temperaturabhängige duale Fluoreszenz in Lösung. Mit sinkender Temperatur nimmt die Emissionsintensität ab. Es liegt die Vermutung nahe, dass die duale Fluoreszenz durch ein Gleichgewicht zwischen 3-fach koordinierten-TipPBB2 und einem schwachen intermolekularen Addukt von TipPBB2 über eine B–N-Bindung verursacht wird. Diese Hypothese wurde durch Lebenszeitmessungen bei verschiedenen Konzentrationen, Niedrigtemperatur-Anregungsspektren, Niedrigtemperatur-1H-NMR-Spektren und Lebenszeitmessungen nach Zugabe von DMAP zu einer Lösung von TipPBB2 zur Simulation der 4-fach koordinierten-TipPBB2-Spezies weiter untermauert. Interessanterweise zeigt das Verhältnis der relativen Prozentsätze der beiden Lebenszeiten eine lineare Beziehung mit der Temperatur; daher könnte TipPBB2 als Fluoreszenzthermometer dienen. Darüber hinaus wurden theoretische Studien zu TipPBB2 durchgeführt und zwei Modellverbindungen ((BMe3)TipPBB1(NMe3) und (BMe3)TipPBB2(NMe3)) wurden untersucht, um [TipPBB1]4 bzw. das intermolekular-4-fach koordinierte TipPBB2 zu simulieren. Die BMe3-Gruppe koordiniert als Lewis-Säure an Pyridin und die NMe3-Gruppe als Lewis-Base an das Borzentrum des Borols. Die theoretischen Studien weisen darauf hin, dass das HOMO von TipPBB2 an der Tip-Gruppe lokalisiert ist, was im Gegensatz zu den entsprechenden Borafluoren-Derivaten steht, bei denen sich die HOMOs auf den Borafluoren-Kernen befinden. 4 Kapitel 4 Zwei Derivate von Phenylpyridyl-kondensierten Borolen wurden durch Funktionalisierung der Pyridylgruppe an zwei unterschiedlichen Positionen hergestellt, zum einen eine elektronenreiche Dihydropyridin-Einheit (Verbindung 10) und zum anderen ein elektronenarmes N-Methylpyridinium-Kation (Verbindung 11). Beide Verbindungen wurden vollständig charakterisiert. Das 11B-NMR-Signal von Verbindung 10 wurde bei 58,8 ppm in CDCl3 beobachtet, was auf eine starke Konjugation zwischen dem Boratom und der Dihydropyridin-Einheit schließen lässt. Verbindung 11 zeigt eine reversible Koordination zu THF, was durch NMR-Studien bestätigt wurde. Im Vergleich zu anderen 2,4,6-Triisopropylphenyl-geschützten 9-Borafluorenen, die nur an CH3CN oder DMF koordinieren, weist die Koordination des schwächeren und voluminöseren THF zu Verbindung 11 auf ein extrem elektronenarmes Borzentrum in Verbindung 11 hin. Der Elektronenreichtum der Dihydropyridin-Einheit von Verbindung 10 wurde durch sein Oxidationspotential (Epc = +0,37 V) bestätigt. Aufgrund der starken Konjugation des Dihydropyridinteils mit dem Boratom verschiebt sich das Reduktionspotential von Verbindung 10 kathodisch und ist negativer als –2,5 V. Verbindung 11 zeigt drei Reduktionsprozesse mit dem ersten reversiblen Reduktionspotential bei Ered1/2 = –1,23 V, das im Vergleich zu dem der Vorstufe (TipPBB2) oder ihres Gerüstes 1-Methyl-2-phenylpyridin-1-ium-Triflat (12) signifikant anodisch verschoben ist. Dieses signifikant anodisch verschobene Reduktionspotential bestätigt das Elektronendefizit von Verbindung 11. Photophysikalische Studien zeigen, dass der niedrigste Energieübergang von Verbindung 10 eher ein lokal angeregter (LE) Übergang ist und Verbindung 11 einen polarisierten Grundzustand aufweist. Darüber hinaus wurden für beide Verbindungen theoretische Studien durchgeführt. Die Elektronenverteilung des HOMO von Verbindung 10 belegt die starke Konjugation zwischen dem Boratom und der Dihydropyridin-Einheit im Grundzustand. Eine sehr niedrige LUMO-Energie wurde durch theoretische Studien ermittelt, die das Elektronendefizit von Verbindung 11 bestätigt. 5 Kapitel 5 Inspiriert durch die zunehmende Elektronenakzeptorfähigkeit mit wachsender Anzahl elektronenziehender Gruppen am Boratom versuchten wir, die Eigenschaften eines Bis(pyridyl)arylborans zu untersuchen. Bei unserem Versuch, ein Bis(pyridyl)arylboran zu synthetisieren, erhielten wir jedoch einen Bis(2-pyridyl)methoxyborat-Li+-Komplex, der als Dimer sowohl in Lösung als auch im festen Zustand vorliegt. Im Festkörper ist die Verbindung [16]2 ein Dimer, das zwei Bis(2-pyridyl)methoxyborat-Einheiten enthält welche durch zwei Lithiumkationen verbunden sind. Jedes Lithiumkation koordiniert an eine Methoxygruppe und an zwei Pyridylgruppen, jeweils eine von jedem der beiden Bis(2-pyridyl)methoxyborat-Anionen. Die Parameter von [16]2 wurden mit anderen Bis(2-pyridyl)methoxyborat-stabilisierten Pt(IV)-Komplexen, Bis(2-pyridyl)hydroxylborat-stabilisierten Ru(II)-Komplexen und dem Dimer von EtAl(OMe)(2-pyridyl)2Li verglichen. Um den Koordinationsmodus in Lösung zu bestätigen, wurde eine 1H-DOSY-Studie in CD2Cl2 durchgeführt. Der aus den Daten ermittelte van-der-Waals-Radius stimmt gut mit dem Ergebnis aus den Festkörperuntersuchungen überein und beweist somit, dass das Dimer von 16 in Lösung persistent ist. Schließlich wurde mit verschiedenen Lewis-Säuren (z.B. TMSCl, BF3•Et2O, AlCl3, HCl) versucht, die Methoxygruppe von [16]2 abzuspalten. Wir beobachteten jedoch entweder eine Zersetzung oder selektive Abspaltung der Tip-Gruppe oder gar keine Reaktion und nicht die Abspaltung der Methoxy-Gruppe von Bor. KW - Triarylborane KW - Borole KW - Pyridinderivate KW - Heterocyclische Verbindungen Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-217175 ER - TY - THES A1 - Menekşe, Kaan T1 - Fabrication of Organic Solar Cells, Screening of Non-Fullerene Acceptors and the Investigation of their Intermolecular Interactions T1 - Herstellung von organischen Solarzellen, Screening von Nicht-Fulleren-Akzeptoren und die Untersuchung ihrer intermolekularen Wechselwirkungen N2 - In this thesis, intermolecular acceptor-acceptor interactions in organic solar cells based on new non-fullerene acceptors are addressed. For this purpose, first the reproducibility of organic electronic devices was tested on a new facility for their fabrication. This was followed by the screening for new acceptor materials. Based on this, three molecular systems were investigated with regard to their acceptor-acceptor interactions and their influence on solar cell efficiency. N2 - In der vorliegenden Doktorarbeit werden zwischenmolekulare Akzeptor-Akzeptor Wechselwirkungen in organischen Solarzellen auf Basis von neuen nichtfulleren Akzeptoren behandelt. Dazu wurde zuerst die Reproduzierbarkeit von organischen Bauteilelementen an einer neuen Anlage zur Fertigung ebendieser getestet. Anschließend erfolgte die Suche nach neuen Akzeptormaterialien. Darauf aufbauend wurden drei Molekülsysteme hinsichtlich ihrer Akzeptor-Akzeptor Wechselwirkungen und deren Einfluss auf die Solarzelleneffizienz untersucht. KW - Organische Solarzelle KW - Nicht-Fulleren Akzeptor KW - Non-Fullerene Acceptor KW - Intermolekulare Wechselwirkungen KW - Intermolecular Interactions Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-291124 ER - TY - THES A1 - Sánchez Naya, Roberto T1 - Synthesis and Characterization of Dye-Containing Covalent Organic Frameworks T1 - Synthese und Charakterisierung von farbstoffhaltigen kovalenten organischen Netzwerken N2 - The present thesis adress the synthesis and characterization of novel COFs that contain dye molecules as integral components of the organic backbone. These chromophore-containing frameworks open new research lines in the field and call for the exploration of applications such as catalysis, sensing, or in optoelectronic devices. Initially, the fabrication of organic-inorganic composites by the growth of DPP TAPP COF around functionalized iron oxide nanoparticles is reported. By varying the ratio between inorganic nanoparticles and organic COFs, optoelectronic properties of the materials are adjusted. The document also reports the synthesis of a novel boron dipyrromethene-containing (BODIPY) COF. Synthesis, full characterization and the scope of potential applications with a focus on environmental remediation are discussed in detail. Last, a novel diketopyrrolopyrrole-containing (DPP) DPP-Py-COF based on the combination of DDP and pyrene building blocks is presented. The very low bandgap of these materials and initial investigations on the photosensitizing properties are discussed. N2 - Die Forschung an modernen porösen Materialien hat die Entwicklung von COFs als robuste, leichtgewichtige, hochgeordnete und vielseitig einsetzbare organische Materialien vorangetrieben. Der Einsatz von DCC ist entscheidend für den Aufbau hochkristalliner Netzwerke, die in der Lage sind, strukturelle Defekte selbst zu heilen (Kapitel 2.2). Für die einfache Bildung wohldefinierter Kristallite wurden verschiedene synthetische Strategien entwickelt (Kapitel 2.3). Darüber hinaus ist ein detailliertes Verständnis über die verschiedenen Reaktionen, die für die kovalente Verknüpfung organischer Bausteine eingesetzt werden (Kapitel 2.4), und der verschiedenen Topologien, die sich nach der Vernetzung ergeben (Kapitel 2.5), von grundlegender Bedeutung für die Entwicklung einer breiten Auswahl von Materialien für gezielte Anwendungen. ... KW - Organische Chemie KW - Porosität KW - Covalent Organic Framework KW - Reticular Chemistry KW - Dye KW - Porous Materials Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-288996 ER -