TY - THES A1 - Koschitzki, Kim Christine Cornelia T1 - Evaluation of preclinical animal models in bone tissue engineering and their success in clinical translation T1 - Evaluierung von vorklinischen Tiermodellen für Bone Tissue Engineering und von ihrem Erfolg in der klinischen Umsetzung N2 - Autologous bone still represents today’s gold standard for the treatment of critical size bone defects and fracture non-unions despite associated disadvantages regarding limitations in availability, donor site morbidity, costs and efficacy. Bone tissue engineered constructs would present a promising alternative to currently available treatments. However, research on preclinical animal studies still fails to provide clinical applicable results able to allow the replacement of currently applied methods. It seems that the idea of bone tissue engineering, which has now been integral part of academic studies for over 30 years, got somehow stuck at an intermediate level, in between intense preclinical research and striven stages of initial clinical trial phases. A clear discrepancy exists between the number of studies with preclinical animal models for bone tissue engineering and the number of clinically approved bone tissue engineered constructs available to patients. The aim of this thesis was hence to evaluate preclinical animal models for bone tissue engineering as well as the perception of scientists and clinicians towards these models. Moreover, the general role of bone tissue engineering and its clinical need assessed by scientists and surgeons was investigated. A survey was conducted questioning both scientific and clinical opinions on currently available study designs and researchers’ satisfaction with preclinical animal models. Additionally, a literature research was conducted, resulting in 167 papers from the last 10 years that report current designs of preclinical orthotopic animal studies in bone tissue engineering. Thereby, the focus lied on the description of the models regarding animal species, strain, age, gender and defect design. The outcome of the literature search was evaluated and compared to the outcome obtained from the survey. The survey data revealed that both scientists and surgeons generally remain positive about the future role of bone tissue engineering and its step to clinical translation, at least in the distant future, where it then might replace the current gold standard, autologous bone. Moreover, most of the participants considered preclinical animal models as relevant and well developed but the results as not yet realizable in the clinics. Surgeons thereby demonstrated a slightly more optimistic perception of currently conducted research with animal models compared to scientists. However, a rather inconsistent description of present preclinical study designs could be discerned when evaluating the reported study designs in the survey and the papers of the literature search. Indeed, defining an appropriate animal species, strain, age, gender, observation time, observation method and surgical design often depends on different indications and research questions and represents a highly challenging task for the establishment of a preclinical animal model. The existing lack of valid guidelines for preclinical testing of bone tissue engineering leads hence to a lack of well standardized preclinical animal models. Moreover, still existing knowledge gaps regarding aspects that affect the process of fracture healing, such as vascularization or immunological aspects, were found to hinder clinical translation of bone tissue engineered constructs. Using literature review and survey, this thesis points out critical issues that need to be addressed to allow clinical translation of bone tissue engineered constructs. It can be concluded that currently existing study designs with preclinical animal models cannot live up to the claim of providing suitable results for clinical implementation. The here presented comprehensive summary of currently used preclinical animal models for bone tissue engineering reveals a missing consensus on the usage of models such as an apparent lack of reporting and standardization regarding the study designs described in both papers from the literature review and the survey. It thereby indicates a crucial need to improve preclinical animal models in order to allow clinical translation. Despite the fact that participants of the survey generally revealed a positive perception towards the use of bone tissue engineered constructs and affirmed the clinical need for such novel designs, the missing standardization constitutes a main weak point for the provision of reliable study outcome and the translational success of the models. The optimization of reproducibility and reliability, as well as the further understanding of ongoing mechanisms in bone healing in order to develop effective tissue engineered constructs, need to form the basis of all study designs. The study outcomes might then fulfill the requirements of maybe today's and hopefully tomorrow's aging population. N2 - Über die letzten 30 Jahre hat die Rolle von Bone Tissue Engineering vielversprechenden Fortschritt gemacht und immer neue Ansätze werden etabliert. Somit stellt Bone Tissue Engineering eine aussichtsvolle Alternative zu dem heutigen Goldstandard (autogene Knochenersatzmaterialien) dar, nachdem diese häufig mit Nachteilen einhergehen: limitierte Verfügbarkeit, Morbidität durch Zweiteingriffe, ungenügend Stabilität und Kosten. Die klinische Umsetzung findet jedoch nicht so schnell statt, wie ursprünglich erhofft und es scheint, als würde die vorklinische Forschung auf der Stelle treten. Das Ausbleiben von reproduzierbaren und standardisierten vorklinischen Studien verhindert dabei eine "bench to bedside" Translation. Ziel dieser Doktorarbeit war es, derzeitige präklinische Tiermodelle für Bone Tissue Engineering zu evaluieren und dabei zu untersuchen, woran es liegen könnte, dass die Lücke zwischen vorklinischen Studienergebnissen und klinischer Umsetzung noch immer existiert. Es wurde ein Fragebogen erstellt, anhand dessen die generelle Meinung gegenüber Bone Tissue Engineering und die Effizienz derzeitiger präklinischer Studienmodelle aus sowohl klinischer, als auch wissenschaftlicher Sicht hinterfragt wurde. Hier wurde außerdem auf die Beurteilung der Zufriedenstellung solcher Modelle seitens der Forscher eingegangen. Darüber hinaus erfolgte eine systemische Literatursuche auf der Online-Plattform “Pubmed” mit dem Ziel Studien der letzten zehn Jahre über präklinische orthotopische Tiermodelle in Bone Tissue Engineering zusammenzufassen und die verschiedenen Studiendesigns zu evaluieren. Der Fokus lag dabei auf der Beschreibung der Tiermodelle bezüglich Tierart, Geschlecht, Alter und Defektdesign. Ergebnisse der Literatursuche wurden anschließend evaluiert und mit den Antworten aus dem Fragebogen verglichen und diskutiert. Es hat sich anhand des Fragebogens gezeigt, dass sowohl Wissenschaftler, als auch Chirurgen positiv gestimmt sind, was die zukünftige Anwendung von Bone Tissue Engineering in den Kliniken betrifft. Jedoch beurteilten die meisten Teilnehmer des Fragebogens die präklinischen Tiermodelle zwar als relevant und gut entwickelt, deren Ergebnisse als klinisch allerdings nicht anwendbar. Dabei fiel die Einschätzung präklinischer Forschung mit Tiermodellen unter den Chirurgen etwas optimistischer aus als unter den Forschern. Die Evaluierung der Studien aus dem Fragebogens und der Literatursuche zeigte jedoch auch, dass die darin beschriebenen Tiermodelle einen eher uneinheitlichen Studienaufbau aufweisen. Tatsächlich stellt die Etablierung eines fundierten Studiendesigns im Anbetracht der zahlreichen Möglichkeiten eine immense Herausforderung dar. Die Festlegung eines Versuchsaufbaus hängt dabei von der Wahl der Tierart, dessen Geschlecht und Alter, des chirurgischen Ablaufs, sowie der technischen und zeitlichen Beobachtungsmöglichkeit ab. Es stellte sich heraus, dass für viele Studien eine diesbezüglich notwendige Standardisierung kaum existiert und dadurch Studienergebnisse entstehen, die schwer reproduzierbar sind und somit den Ansprüchen einer klinischen Umsetzung nicht gerecht werden können. Hinzu kommen außerdem die noch immer bestehenden Wissenslücken in Bezug auf Knochenheilung beeinflussende Faktoren wie Vaskularisation und Abläufe des Immunsystems. Abschließend lässt sich sagen, dass die durchgeführte Evaluierung von Studien mit präklinischen Tiermodellen eine fehlende Standardisierung derzeit existierender Studiendesigns darlegt und eine klinische Umsetzung der daraus resultierenden Studienergebnissen somit noch nicht möglich ist. Auch wenn die Teilnehmer des Fragebogens den Bedarf an neuen, klinisch anerkannten Methoden für Knochenaufbauten nahelegten und eine generell positive Einstellung gegenüber dem potentiellen Gebrauch von Bone Tissue Engineering Konstrukte in den Kliniken zeigten, ist die Ablösung von autologem Knochen durch solch neuartige Designs nicht realisierbar, solange die Reproduzierbarkeit der Daten aus präklinischen Tiermodellstudien fehlt. Zusammen mit wegweisenden Richtlinien und fundiertem Wissen über grundliegende Mechanismen im Knochenheilungsprozess, sollte sie die Basis eines jeden Studienaufbaus mit präklinischen Tiermodellen darstellen, um schließlich zu den Ergebnissen zu gelangen, die es für eine klinische Umsetzung von Bone Tissue Engineering bedarf. KW - bone KW - tissue KW - engineering Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-207593 ER - TY - THES A1 - Wiesner, Miriam T1 - Stem Cell-based Adipose Tissue Engineering - Engineering of Prevascularized Adipose Tissue Constructs In Vitro & Investigation on Gap Junctional Intercellular Communication in Adipose-derived Stem Cells T1 - Stammzellbasiertes Tissue Engineering von Fettgewebe - Entwicklung eines prävaskularisierten Fettgewebekonstrukts in vitro & Untersuchung der interzellulären Kommunikation über Gap Junctions in Stammzellen aus dem Fettgewebe N2 - In reconstructive and plastic surgery, there exists a growing demand of adequate tissue implants, since currently available strategies for autologous transplantation are limited by complications including transplant failure and donor site morbidity. By developing in vitro and in vivo autologous substitutes for defective tissue sites, adipose tissue engineering can address these challenges, although there are several obstacles to overcome. One of the major limitations is the sufficient vascularization of in vitro engineered large constructs that remains crucial and demanding for functional tissues. Decellularized jejunal segments may represent a suitable scaffolding system with preexisting capillary structures that can be repopulated with human microvascular endothelial cells (hMVECs), and a luminal matrix applicable for the adipogenic differentiation of human adipose-derived stem cells (hASCs). Hence, co-culture of these cells in jejunal segments, utilizing a custom-made bioreactor system, was characterized in terms of vascularization and adipose tissue development. Substantial adipogenesis of hASCs was demonstrated within the jejunal lumen in contrast to non-induced controls, and the increase of key adipogenic markers was verified over time upon induction. The development of major extracellular matrix components of mature adipose tissue, such as laminin and collagen IV, was shown within the scaffold in induced samples. Successful reseeding of the vascular network with hMVECs was demonstrated in long-term culture and co-localization of vascular structures and adipogenically differentiated hASCs was observed. Therefore, these results represent a novel approach for in vitro engineering of vascularized adipose tissue constructs that warrants further investigations in preclinical studies. Another still existing obstacle in adipose tissue engineering is the insufficient knowledge about the applied cells, for instance the understanding of how cells can be optimally expanded and differentiated for successful engineering of tissue transplants. Even though hASCs can be easily isolated from liposuction of abdominal fat depots, yielding low donor site morbidity, huge numbers of cells are required to entirely seed complex and large 3D matrices or scaffolds. Thus, cells need to be large-scale expanded in vitro on the premise of not losing their differentiation capacity caused by replicative aging. Accordingly, an improved differentiation of hASCs in adipose tissue engineering approaches remains still desirable since most engineered constructs exhibit an inhomogeneous differentiation pattern. For mesenchymal stem cells (MSCs), it has been shown that growth factor application can lead to a significant improvement of both proliferation and differentiation capacity. Especially basic fibroblast growth factor (bFGF) represents a potent mitogen for MSCs, while maintaining or even promoting their osteogenic, chondrogenic and adipogenic differentiation potential. As there are currently different contradictory information present in literature about the applied bFGF concentration and the explicit effect of bFGF on ASC differentiation, here, the effect of bFGF on hASC proliferation and differentiation capacity was investigated at different concentrations and time points in 2D culture. Preculture of hASCs with bFGF prior to adipogenic induction showed a remarkable effect, whereas administration of bFGF during culture did not improve adipogenic differentiation capacity. Furthermore, the observations indicated as mode of action an impact of this preculture on cell proliferation capacity, resulting in increased cellular density at the time of adipogenic induction. The difference in cell density at this time point appeared to be pivotal for increased adipogenic capacity of the cells, which was confirmed in a further experiment employing different seeding densities. Interestingly, furthermore, the obtained results suggested a cell-cell contact-mediated mechanism positively influencing adipogenic differentiation. As a consequence, subsequently, studies were conducted focusing on intercellular communication of these cells, which has hardly been investigated to date. Despite the multitude of literature on the differentiation capacity of ASCs, little is reported about the physiological properties contributing to and controlling the process of lineage differentiation. Direct intercellular communication between adjacent cells via gap junctions has been shown to modulate differentiation processes in other cell types, with connexin 43 (Cx43) being the most abundant isoform of the gap junction-forming connexins. Thus, in the present study we focused on the expression of Cx43 and gap junctional intercellular communication (GJIC) in hASCs, and its significance for adipogenic differentiation of these cells. Cx43 expression in hASCs was demonstrated histologically and on the gene and protein expression level and was shown to be greatly positively influenced by cell seeding density. Functionality of gap junctions was proven by dye transfer analysis in growth medium. Adipogenic differentiation of hASCs was shown to be also distinctly elevated at higher cell seeding densities. Inhibition of GJIC by 18α-glycyrrhetinic acid significantly compromised adipogenic differentiation, as demonstrated by histology, triglyceride quantification, and adipogenic marker gene expression. Flow cytometry analysis showed a lower proportion of cells undergoing adipogenesis when GJIC was inhibited, further indicating the importance of GJIC in the differentiation process. Altogether, these results demonstrate the impact of direct cell-cell communication via gap junctions on the adipogenic differentiation process of hASCs and may contribute to further integrate direct intercellular crosstalk in rationales for tissue engineering approaches. N2 - In der rekonstruktiven und plastischen Chirurgie besteht ein wachsender Bedarf an adäquaten Gewebetransplantaten, da die derzeit verfügbaren Strategien für autologe Transplantationen von Geweben durch Komplikationen wie beispielsweise Transplantatversagen sowie Morbiditäten an der Entnahmestelle beeinträchtigt werden. Das Tissue Engineering kann dieser Problematik jedoch durch die Entwicklung von in vitro und in vivo gezüchtetem, autologen Gewebeersatz für defekte Gewebestellen begegnen, wobei es dabei noch mehrere Hindernisse zu überwinden gilt. Eine der größten Limitationen ist die ausreichende Vaskularisierung der in vitro hergestellten, großen Konstrukte, welche für die Funktion des Gewebes entscheidend ist. Hierfür können dezellularisierte, jejunale Segmente ein geeignetes Gerüstsystem darstellen, deren bereits vorhandene Kapillarstrukturen mit humanen, mikrovaskulären Endothelzellen (hMVECs) und deren luminale Matrix mit humanen Stammzellen aus dem Fettgewebe (hASCs), mit anschließender adipogen Differenzierung, besiedelt werden können. Im Rahmen der vorliegenden Arbeit wurden diese Konstrukte mit Hilfe eines maßgeschneiderten Bioreaktorsystems kultiviert und die Kokultur der Zellen in der jejunalen Matrix hinsichtlich der Fettgewebeentwicklung untersucht. Im Gegensatz zu nicht-induzierten Kontrollen wurde nach adipogener Induktion innerhalb des jejunalen Lumens eine substanzielle Fettgewebebildung der hASCs, sowie ein Anstieg wichtiger adipogener Marker im zeitlichen Verlauf nachgewiesen. Die Bildung wesentlicher extrazellulärer Matrixkomponenten des reifen Fettgewebes, wie beispielsweise Laminin und Kollagen IV, wurde innerhalb der Matrix bei induzierten Proben ebenso beobachtet. Die erfolgreiche Neubesiedlung des Gefäßnetzes mit hMVECs konnte in der Langzeitkultur gezeigt und eine Kolokalisation von Gefäßstrukturen und differenzierten hASCs beobachtet werden. Somit stellen diese Ergebnisse einen vielversprechenden, neuen Ansatz für die in vitro Entwicklung von vaskularisierten Fettgewebekonstrukten dar, welcher jedoch noch weitere Untersuchungen in präklinischen Studien erfordert. Eine weitere Limitation in der Entwicklung von Fettgewebe ist das unzureichende Wissen über die verwendeten Zellen – so zum Beispiel wie Zellen optimal expandiert und differenziert werden können, um einen Gewebeersatz erfolgreich herzustellen. Auch wenn hASCs leicht aus abdominalen Liposuktionen, welche zu einer relativ geringen Morbidität an der Entnahmestelle führen, isoliert werden können, ist eine sehr große Anzahl an Zellen erforderlich, um komplexe und große 3D-Matrizes vollständig mit Zellen zu besiedeln. So müssen Zellen in vitro im großen Maßstab expandiert werden, wobei auf die Erhaltung ihrer Differenzierungskapazität und die Vermeidung des replikativen Alterns geachtet werden muss. Da viele der entwickelten Konstrukte des Weiteren ein inhomogenes Differenzierungsmuster aufweisen, ist eine Verbesserung der adipogenen Differenzierung von ASCs im Rahmen von Tissue Engineering Ansätzen wünschenswert. Für mesenchymale Stammzellen (MSCs) wurde bereits gezeigt, dass die Anwendung von Wachstumsfaktoren zu einer deutlichen Verbesserung der Proliferations- und Differenzierungskapazität führen kann. Insbesondere der Wachstumsfaktor bFGF (basic fibroblast growth factor) stellt ein starkes Mitogen für MSCs dar, wobei er das osteogene, chondrogene und adipogene Differenzierungspotenzial der Zellen aufrechterhält und sogar fördert. Da es in der Literatur derzeit unterschiedliche und teilweise widersprüchliche Informationen über die verwendeten bFGF Konzentrationen und den expliziten Effekt von bFGF auf die Differenzierung von ASCs gibt, wurde der Effekt von bFGF auf die Proliferations- und Differenzierungsfähigkeit mit unterschiedlichen Konzentrationen und zu unterschiedlichen Zeitpunkten in der 2D Kultur untersucht. Die Vorkultur der hASCs mit bFGF vor der adipogenen Induktion hatte einen beachtlichen Effekt auf die Differenzierung, während die Verabreichung von bFGF während der Kultur, die adipogene Differenzierungsfähigkeit der Zellen nicht verbesserte. Darüber hinaus zeigten die Ergebnisse einen Einfluss der Vorkultur auf die Zellproliferation, was zu einer erhöhten Zelldichte zum Zeitpunkt der adipogenen Induktion führte. Der Unterschied in der Zelldichte zu diesem Zeitpunkt schien entscheidend für die gesteigerte Differenzierungskapazität der Zellen zu sein, was sich in einem weiteren Experiment mit unterschiedlichen Aussaatdichten bestätigte. Interessanterweise deuteten die Ergebnisse außerdem darauf hin, dass ein Zell-Zell-Kontakt-vermittelter Mechanismus die adipogene Differenzierung positiv beeinflusst. Daher wurden anschließend Untersuchungen zur interzellulären Kommunikation dieser Zellen durchgeführt, welche bisher kaum erforscht wurde. Trotz der Vielzahl an Literatur über die Differenzierungsfähigkeit von ASCs ist wenig über die physiologischen Prozesse bekannt, die zur Differenzierung in verschiedene Zelltypen beitragen und diese kontrollieren. So wurde gezeigt, dass die direkte interzelluläre Kommunikation zwischen benachbarten Zellen über Gap Junctions Differenzierungsprozesse moduliert. Connexin 43 (Cx43) stellt dabei die häufigste Isoform der Gap Junction-bildenden Connexine dar. Im Rahmen dieser Arbeit wurde die Expression von Cx43 und die interzelluläre Kommunikation durch Gap Junctions (gap junctional intercellular communication; GJIC) in hASCs, sowie ihre Bedeutung für die adipogene Differenzierung untersucht. Die Cx43 Expression in hASCs wurde histologisch und auf Gen- und Proteinexpressionsebene nachgewiesen und wurde durch die Zellaussaatdichte nachweislich stark beeinflusst. Die Funktionalität der Gap Junctions konnte mit Hilfe eines Assays zur Übertragung von Farbstoffen untersucht werden. Es zeigte sich hierbei eine zelldichteabhängige, adipogene Differenzierungkapazität der hASCs. Die Hemmung der GJIC durch 18α-Glycyrrhetinsäure beeinträchtigte die adipogene Differenzierung deutlich, wie sich durch die Histologie, die Triglyceridquantifizierung und die adipogene Markergenexpression beobachten ließ. Bei Hemmung der GJIC zeigte sich mit Hilfe der Durchflusszytometrie, dass weniger Zellen adipogen differenzieren konnten, was die Bedeutung von GJIC im Differenzierungsprozess hervorhebt. Zusammenfassend veranschaulichen diese Ergebnisse den Einfluss direkter Zell-Zell-Kommunikation über Gap Junctions auf den adipogenen Differenzierungsprozess von hASCs und könnten somit in Zukunft dazu beitragen, direkte interzelluläre Kommunikation in Tissue Engineering Ansätze zu integrieren. KW - Tissue Engineering KW - Fettgewebe KW - Gap Junction KW - Adipose Tissue Engineering Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-185005 ER - TY - THES A1 - Tylek, Tina T1 - Establishment of a Co-culture System of human Macrophages and hMSCs to Evaluate the Immunomodulatory Properties of Biomaterials T1 - Etablierung eines Co-Kultur-Systems von humanen Makrophagen und hMSCs zur Bewertung der Immunmodulatorischen Eigenschaften von Biomaterialien N2 - The outcome of the innate immune response to biomaterials mainly determines whether the material will be incorporated in the body to fulfill its desired function or, when it gets encapsulated, will be rejected in the worst case. Macrophages are key players in this process, and their polarization state with either pro- (M1), anti-inflammatory (M2), or intermediate characteristics is crucial for deciding on the biomaterial’s fate. While a transient initial pro-inflammatory state is helpful, a prolonged inflammation deteriorates the proper healing and subsequent regeneration. Therefore, biomaterial-based polarization may aid in driving macrophages in the desired direction. However, the in vivo process is highly complex, and a mono-culture of macrophages in vitro displays only one part of the cellular system, but, to this date, there is a lack of established co-cultures to assess the immune response to biomaterials. Thus, this thesis aimed to establish a functional co-culture system of human macrophages and human mesenchymal stromal cells (hMSCs) to improve the assessment of the immune response to biomaterials in vitro. Together with macrophages, hMSCs are involved in tissue regeneration and inflammatory reactions and can modulate the immune response. In particular, endogenously derived hMSCs considerably contribute to the successful engrafting of biomaterials. This thesis focused on poly(ε-caprolactone) (PCL) fiber-based scaffolds produced by the technique of melt electrowriting (MEW) as biomaterial constructs. Via this fabrication technique, uniform, precisely ordered scaffolds varying in geometry and pore size have been created in-house. To determine the impact of scaffold geometries and pore sizes on macrophages, mono-cultures incubated on scaffolds were conducted. As a pre-requisite to achieve a functional co-culture system on scaffolds, setups for direct and indirect systems in 2D have initially been established. These setups were analyzed for the capability of cell-cell communication. In parallel, a co-culture medium suitable for both cell types was defined, prior to the establishment of a step-by-step procedure for the co-cultivation of human macrophages and hMSCs on fiber-based scaffolds. Regarding the scaffold morphologies tested within this thesis to improve M2-like polarization, box-shaped scaffolds outperformed triangular-, round- or disordered-shaped ones. Upon further investigation of scaffolds with box-shaped pores and precise inter-fiber spacing from 100 µm down to only 40 µm, decreasing pore sizes facilitated primary human macrophage elongation accompanied by their differentiation towards the M2 type, which was most pronounced for the smallest pore size of 40 µm. To the best of my knowledge, this was the first time that the elongation of human macrophages in a 3D environment has been correlated to their M2-like polarization. Thus, these results may set the stage for the design, the assessment, and the selection of new biomaterials, which can positively affect the tissue regeneration. The cell communication of both cell types, detected via mitochondria exchange in direct and indirect co-cultures systems, took place in both directions, i.e., from hMSCs to macrophages and vice versa. Thereby, in direct co-culture, tunneling nanotubes enabled the transfer from one cell type to the respective other, while in indirect co-culture, a non-directional transfer through extracellular vesicles (EVs) released into the medium seemed likely. Moreover, the phagocytic activity of macrophages after 2D co-cultivation and hence immunomodulation by hMSCs increased with the highest phagocytic rate after 48 h being most pronounced in direct co-cultivation. As the commonly used serum supplements for macrophages and hMSCs, i.e., human serum (hS) and fetal calf serum (FCS), respectively, failed to support the respective other cell type during prolonged cultivation, these sera were replaced by human platelet lysate (hPL), which has been proven to be the optimal supplement for the co-cultivation of human macrophages with hMSCs within this thesis. Thereby, the phenotype of both cell types, the distribution of both cell populations, the phagocytic activity of macrophages, and the gene expression profiles were maintained and comparable to the respective standard mono-culture conditions. This was even true when hPL was applied without the anticoagulant heparin in all cultures with macrophages, and therefore, heparin was omitted for further experiments comprising hPL and macrophages. Accordingly, a step-by-step operating procedure for the co-cultivation on fiber-based scaffolds has been established comprising the setup for 3D cultivation as well as the description of methods for the analysis of phenotypical and molecular changes upon contact with the biomaterial. The evaluation of the macrophage response depending on the cultivation with or without hMSCs and either on scaffolds or on plastic surfaces has been successfully achieved and confirmed the functionality of the suggested procedures. In conclusion, the functional co-culture system of human macrophages and hMSCs established here can now be employed to assess biomaterials in terms of the immune response in a more in vivo-related way. Moreover, specifically designed scaffolds used within the present thesis showed auspicious design criteria positively influencing the macrophage polarization towards the anti-inflammatory, pro-healing type and might be adaptable to other biomaterials in future approaches. Hence, follow-up experiments should focus on the evaluation of the co-culture outcome on promising scaffolds, and the suggested operating procedures should be adjusted to further kinds of biomaterials, such as cements or hydrogels. N2 - Der Verlauf der angeborene Immunantwort auf Biomaterialien bestimmt maßgebend, ob das Material vom Körper angenommen wird, um so seine gewünschte Funktion zu erfüllen, oder ob es zur Einkapselung und im schlimmsten Fall zur Abstoßung kommt. Makrophagen spielen in diesem Prozess eine Schlüsselrolle, und ihr Polarisationszustand, entweder pro (M1), antiinflammatorisch (M2) oder ein dazwischenliegender Subtyp, ist dabei von entscheidender Bedeutung. Während ein vorübergehender proinflammatorischer Anfangszustand hilfreich ist, verschlechtert eine anhaltende Entzündung eine zeitnahe Heilung und die anschließende Regeneration. Daher könnte eine durch Biomaterialien beeinflusste Polarisation hilfreich sein, um die Makrophagen in die gewünschte Richtung zu lenken. Die in vivo Reaktion ist jedoch äußerst komplex und die Kultivierung von Makrophagen in vitro stellt nur einen Teil des Prozesses dar. An etablierten Co-Kultursystem zur Untersuchung der immunmodulierenden Eigenschaften von Biomaterialien mangelt es jedoch. Daher war es Ziel dieser Arbeit ein funktionelles Co-Kultursystem von humanen Makrophagen und humanen mesenchymalen Stromazellen (hMSCs) zu etablieren um die in vitro Bewertung der Immunantwort nach Kontakt mit Biomaterialien zu verbessern. Von Interesse sind hMSCs hierbei, da sie zusammen mit Makrophagen an der Geweberegeneration und an Entzündungsreaktionen beteiligt sind. Zudem weisen MSCs immunmodulierende Eigenschaften in Hinblick auf Makrophagen auf und sind aktiv am Verlauf der Fremdkörperreaktion nach der Transplantation von Biomaterial beteiligt. Im Rahmen dieser Arbeit wurden Poly(ε-caprolactone) (PCL)-Scaffolds auf Faserbasis als Biomaterialkonstrukte verwendet, welche mit der Technik des Melt Electrowriting (MEW) hergestellt wurden. Mit dieser Technik kann sowohl die Form der Scaffolds als auch die Porengröße variiert werden. Um Unterschiede der Scaffoldgeometrien und Porengrößen in Hinblick auf die Makrophagenreaktion zu untersuchen, wurden zunächst Versuche mit Makrophagen-Monokulturen durchgeführt. Zur Etablierung eines funktionellen Co-Kultursystem, wurde zu Beginn ein Aufbau für ein direktes und indirektes System in 2D erstellt. Dieser Aufbau wurde anschließend auf die Möglichkeit der Zell-Zell-Kommunikation darin analysiert. Weiterhin wurde ein, für beide Zelltypen, geeignetes Kulturmedium definiert, gefolgt von der Etablierung eines Protokoll für die Co-Kultivierung beider Zelltypen auf faserbasierten Scaffolds. Im Bezug zu dieser Arbeit wurden Scaffolds mit unterschiedlicher Geometrie mittels der Technik des Melt Electrowriting hergestellt um die Veränderung der Makrophagenpolarisation zu untersuchen. Dabei zeigte sich eine verstärkte M2-Polarisation auf Scaffolds mit einer kastenförmigen Morphologie, verglichen mit dreieckigen, runden oder ungeordnet-strukturierten Scaffolds. Die weitere Untersuchung von Scaffolds mit kastenförmigen Poren und präzisen Faserabständen von 100 µm bis zu 40 µm zeigte das kleinere Porengrößen die Elongation primärer menschlicher Makrophagen förderten. Begleitet wurde die verstärkte Elongation mit einer gesteigerten Polarisation in Richtung des M2 Typs. Dieser Effekt war nach Kultivierung von Makrophagen auf Scaffolds mit 40 µm Poren am stärksten ausgeprägt. Im Rahmen dieser Arbeit konnte damit erstmals eine länglichen Morphologie humaner Makrophagen mit einer Polarisierung in den M2 Typ korreliert werden. Diese Ergebnisse könnten daher für das Design neuer Biomaterialien, welche sich positiv auf die Geweberegeneration auswirken sollen, von Bedeutung sein. Die Zellkommunikation beider Zelltypen, welche über Mitochondrienaustausch im direkten und indirekten Co-Kultur-System nachgewiesen wurde, fand sowohl ausgehend von Makrophagen als auch von hMSCs statt. Dabei ermöglichten „Tunneling Nanotubes“ in der direkten Co-Kultur den Transfer von Mitochondrien von einem Zelltyp zum jeweils anderen, während in der indirekter Co-Kultur ein ungerichteter Transfer durch in das Medium freigesetzte extrazelluläre Vesikel (EVs) stattfand. Darüber hinaus wurde die phagozytotische Aktivität von Makrophagen nach Co-Kultivierung untersucht, um die immunmodulatorischen Eigenschaften von hMSCs nachzuweisen, wobei die höchste phagozytotische Aktivität nach 48 stündiger Co-Kultivierung festgestellt wurde. Da die üblicherweise verwendeten Serumzusätze für Makrophagen (humanes Serum (hS)) und hMSCs (fötales Kälberserum (FCS)) bei längerer Kultivierung den jeweils anderen Zelltyp nicht unterstützen konnten, wurden diese Seren durch humanes Thrombozytenlysat (hPL) ersetzt. Dieses erwies sich im Rahmen dieser Arbeit als optimale Ergänzung für die gemeinsame Kultivierung beider Zelltypen in der Co-Kultur. Dabei wurden der Phänotyp und die Populationsverteilung beider Zelltypen, sowie die phagozytotische Aktivität und die Veränderung des Genexpressionsprofils von Makrophagen untersucht und mit den jeweiligen Standard-Monokulturbedingungen verglichen. Des Weiteren konnte gezeigt werde, dass eine Zugabe von Heparin in Zellkulturen mit Makrophagen und hPL nicht nötig ist. Daher wurde auf den Zusatz von Heparin für alle weitere Experimente, die hPL und Makrophagen umfassten, verzichtet. Im letzten Teil der Arbeit wurde ein Protokoll für die Co-Kultivierung auf MEW Scaffolds erstellt. Neben der Etablierung eines Setups für die 3D-Kultivierung wurden sowohl Protokolle zur Bewertung phänotypischer als auch molekularer Veränderungen entwickelt. Durch Feststellung von Unterschieden in der Makrophagenreaktion in Abhängigkeit zu der Kultivierung mit / ohne hMSCs und entweder auf Scaffolds oder Plastik-Kulturschalen konnte die Funktionalität der Protokolle nachgewiesen werden. Mit dem in dieser Arbeit etabliertem funktionellen Co-Kultursystem von humanen Makrophagen und hMSCs können zukünftig Biomaterialien mit einem stärkeren in vivo -Bezug in Hinblick auf die Immunantwort bewertet werden. Darüber hinaus deuten Ergebnisse auf speziell konstruierte MEW-Scaffolds ein vielversprechendes Designkriterium für neu entwickelte Biomaterialien an, wobei die Polarisation der Makrophagen in Richtung des entzündungshemmenden, heilungsfördernden Typens durch eine gesteuerte Morphologieänderung beeinflusst werden kann. An diese Arbeit anschließende Experimente sollten sich auf die Untersuchung vielversprechender Scaffolds mittels Co-Kultivierung sowie auf die Anpassung der etablierten Protokolle an andere Biomaterialgruppen, wie beispielsweiße für Zemente oder Hydrogele, konzentrieren. KW - Makrophage KW - Biomaterial KW - Co-culture system KW - Mesenchymal stromal cells KW - Macrophages Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-203570 ER - TY - THES A1 - Simann, Meike T1 - Aufklärung der Effekte von Fibroblasten-Wachstumsfaktor 1 und 2 auf die Adipogenese und Osteogenese von primären humanen Knochenmark-Stroma-Zellen T1 - Elucidation of fibroblast growth factor 1 and 2 effects on the adipogenesis and osteogenesis of primary human bone marrow stromal cells N2 - Regulating and reverting the adipo-osteogenic lineage decision of trabecular human bone marrow stromal cells (hBMSCs) represents a promising approach for osteoporosis therapy and prevention. Fibroblast growth factor 1 (FGF1) and its subfamily member FGF2 were scored as lead candidates to exercise control over lineage switching processes (conversion) in favor of osteogenesis previously. However, their impact on differentiation events is controversially discussed in literature. Hence, the present study aimed to investigate the effects of these FGFs on the adipogenic and osteogenic differentiation and conversion of primary hBMSCs. Moreover, involved downstream signaling mechanisms should be elucidated and, finally, the results should be evaluated with regard to the possible therapeutic approach. This study clearly revealed that culture in the presence of FGF1 strongly prevented the adipogenic differentiation of hBMSCs as well as the adipogenic conversion of pre-differentiated osteoblastic cells. Lipid droplet formation was completely inhibited by a concentration of 25 ng/µL. Meanwhile, the expression of genetic markers for adipogenic initiation, peroxisome proliferator-activated receptor gamma 2 (PPARg2) and CCAAT/enhancer binding protein alpha (C/EBPa), as well as subsequent adipocyte maturation, fatty acid binding protein 4 (FABP4) and lipoprotein lipase (LPL), were significantly downregulated. Yet, the genetic markers of osteogenic commitment and differentiation were not upregulated during adipogenic differentiation and conversion under FGF supplementation, not supporting an event of osteogenic lineage switching. Moreover, when examining the effects on the osteogenic differentiation of hBMSCs and the osteogenic conversion of pre-differentiated adipocytic cells, culture in the presence of FGF1 markedly decreased extracellular matrix (ECM) mineralization. Additionally, the gene expression of the osteogenic marker alkaline phosphatase (ALP) was significantly reduced and ALP enzyme activity was decreased. Furthermore, genetic markers of osteogenic commitment, like the master regulator runt-related transcription factor 2 (RUNX2) and bone morphogenetic protein 4 (BMP4), as well as markers of osteogenic differentiation and ECM formation, like collagen 1 A1 (COL1A1) and integrin-binding sialoprotein (IBSP), were downregulated. In contrast, genes known to inhibit ECM mineralization, like ANKH inorganic pyrophosphate transport regulator (ANKH) and osteopontin (OPN), were upregulated. ANKH inhibition revealed that its transcriptional elevation was not crucial for the reduced matrix mineralization, perhaps due to decreased expression of ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) that likely annulled ANKH upregulation. Like FGF1, also the culture in the presence of FGF2 displayed a marked anti-adipogenic and anti-osteogenic effect. The FGF receptor 1 (FGFR1) was found to be crucial for mediating the described FGF effects in adipogenic and osteogenic differentiation and conversion. Yet, adipogenic conversion displayed a lower involvement of the FGFR1. For adipogenic differentiation and osteogenic differentiation/conversion, downstream signal transduction involved the extracellular signal-regulated kinases 1 and 2 (ERK1/2) and the mitogen-activated protein kinase (MAPK)/ERK kinases 1 and 2 (MEK1/2), probably via the phosphorylation of FGFR docking protein FGFR substrate 2a (FRS2a) and its effector Ras/MAPK. The c-Jun N-terminal kinase (JNK), p38-MAPK, and protein kinase C (PKC) were not crucial for the signal transduction, yet were in part responsible for the rate of adipogenic and/or osteogenic differentiation itself, in line with current literature. Taken together, to the best of our knowledge, our study was the first to describe the strong impact of FGF1 and FGF2 on both the adipogenic and osteogenic differentiation and conversion processes of primary hBMSCs in parallel. It clearly revealed that although both FGFs were not able to promote the differentiation and lineage switching towards the osteogenic fate, they strongly prevented adipogenic differentiation and lineage switching, which seem to be elevated during osteoporosis. Our findings indicate that FGF1 and FGF2 entrapped hBMSCs in a pre-committed state. In conclusion, these agents could be applied to potently prevent unwanted adipogenesis in vitro. Moreover, our results might aid in unraveling a pharmacological control point to eliminate the increased adipogenic differentiation and conversion as potential cause of adipose tissue accumulation and decreased osteoblastogenesis in bone marrow during aging and especially in osteoporosis. N2 - Die Regulation und Umkehr des adipogenen und osteogenen Commitments von trabekulären humanen Knochenmarks-Stroma Zellen (hBMSCs) stellt einen vielversprechenden Ansatz für die Prävention und Therapie der Knochenerkrankung Osteoporose dar. Der Fibroblasten-Wachstumsfaktor 1 (FGF1) und sein Proteinfamilien-Mitglied FGF2 wurden in einer vorhergehenden Studie als Hauptkandidaten bezüglich der Kontrolle einer Konversion (Schicksalsänderung) von hBMSCs in die osteogene Richtung bewertet. Der Effekt von FGF1 und FGF2 auf die Differenzierung von hBMSCs wird jedoch in der Literatur kontrovers diskutiert. Folglich zielte die aktuelle Studie darauf ab, die Effekte dieser Faktoren auf die adipogene und osteogene Differenzierung und Konversion von primären hBMSCs zu untersuchen. Außerdem sollten die nachgeschalteten Signalmechanismen aufgeklärt und die Ergebnisse abschließend bezüglich des angestrebten Therapieansatzes bewertet werden. Die vorliegende Studie zeigte eindeutig, dass die adipogene Differenzierung von hBMSCs sowie die adipogene Konversion von vordifferenzierten osteoblastischen Zellen durch die Kultur in Gegenwart von FGF1 stark inhibiert wurden. Die typische Bildung von intrazellulären Fetttropfen war bei einer Konzentration von 25 ng/µL vollständig inhibiert, während die Genexpression von frühen und späten adipogenen Markern signifikant herunterreguliert war. Die osteogenen Marker waren jedoch während der adipogenen Differenzierung und Konversion unter FGF-Zugabe nicht hochreguliert, was eine etwaige Schicksalsänderung zugunsten der osteogenen Richtung nicht unterstützte. Bei der Untersuchung der osteogenen Differenzierung von hBMSCs und der osteogenen Konversion von vordifferenzierten adipozytischen Zellen bewirkte die Zugabe von FGF1 zum Differenzierungsmedium eine deutliche Verminderung der Mineralisierung der extrazellulären Matrix (ECM). Darüber hinaus war die Genexpression der alkalischen Phosphatase (ALP) signifikant reduziert; außerdem wurde die ALP Enzymaktivität erniedrigt. Sowohl Marker des osteogenen Commitments einschließlich des osteogenen Master-Transkriptionsfaktors RUNX2 (Runt-related transcription factor 2), als auch Marker der weiterführenden osteogenen Differenzierung waren herunterreguliert. Im Kontrast dazu waren Inhibitoren der ECM-Mineralisierung hochreguliert. Die Hochregulation von ANKH (ANKH inorganic pyrophosphate transport regulator) schien hierbei jedoch keine direkte Auswirkung auf die Reduzierung der Mineralisierung zu haben; seine Wirkung wurde wahrscheinlich durch die Herunterregulation von ENPP1 (Ectonucleotide pyrophosphatase/ phosphodiesterase 1) aufgehoben. Wie FGF1 zeigte auch FGF2 eine anti-adipogene und anti-osteogene Wirkung. Der FGF Rezeptor 1 (FGFR1) war für die Weiterleitung der beschriebenen FGF-Effekte entscheidend, wobei die adipogene Konversion eine erniedrigte Beteiligung dieses Rezeptors zeigte. Bei der adipogenen Differenzierung und der osteogenen Differenzierung und Konversion waren die nachgeschalteten Signalwege ERK1/2 (Extracellular signal-regulated kinases 1 and 2) bzw. MEK1/2 (Mitogenactivated protein kinase (MAPK)/ ERK kinases 1 and 2) involviert, vermutlich über eine Phosphorylierung des FGFR Substrats FRS2a (FGFR substrate 2a) und der Ras/MAP Kinase. Im Gegensatz dazu waren die c-Jun N-terminale Kinase (JNK), die p38-MAP Kinase und die Proteinkinase C (PKC) nicht an der Weiterleitung des FGF-Signals beteiligt. Sie zeigten sich jedoch, in Übereinstimmung mit der aktuellen Literatur, verantwortlich für das Ausmaß der adipogenen bzw. osteogenen Differenzierung selbst. Zusammenfassend war die vorliegende Studie nach unserem besten Wissen die erste, die den starken Einfluss von FGF1 und FGF2 parallel sowohl auf die adipogene als auch die osteogene Differenzierung und Konversion von primären hBMSCs untersucht hat. Sie zeigte deutlich, dass, obwohl beide FGFs nicht die Differenzierung und Konversion zum osteogenen Zellschicksal hin unterstützen konnten, sie dennoch wirkungsvoll die adipogene Differenzierung und Konversion verhinderten, die während der Osteoporose erhöht zu sein scheinen. Unsere Ergebnisse lassen den Schluss zu, dass hBMSCs durch FGF1 und FGF2 in einem Stadium vor dem Schicksals-Commitment festgehalten werden. Folglich könnten diese Proteine verwendet werden, um eine ungewollte Adipogenese in vitro zu verhindern. Außerdem könnten unsere Ergebnisse helfen, einen pharmakologischen Kontrollpunkt zur Eliminierung der gesteigerten adipogenen Differenzierung und Konversion aufzudecken, welche potentielle Gründe für die Fettakkumulation und die reduzierte Osteoblastogenese im Knochenmark während des Alterns und besonders in der Osteoporose sind. KW - Mesenchymzelle KW - Genexpression KW - Fibroblastenwachstumsfaktor KW - Osteoporose KW - Fettzelle KW - Bone marrow stromal cell (BMSC) KW - Osteogenesis KW - Adipogenesis KW - Differentiation KW - adipocytes KW - Mesenchymale Stammzelle Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119322 ER - TY - THES A1 - Ramani Mohan, Ramkumar T1 - Effect of Mechanical Stress On Stem Cells to Improve Better Bone Regeneration T1 - Die Auswirkung von mechanischer Belastung auf Stammzellen zur Verbesserung der Knochenregeneration N2 - Critical size bone defects and nonunion fractures remain difficult to treat. Although cell‐loaded bone substitutes have improved bone ingrowth and formation, the lack of methods for achieving viability and the uniform distribution of cells in the scaffold limits their use as bone grafts. In addition, the predominant mechanical stimulus that drives early osteogenic cell maturation has not been clearly identified. Further, it is challenging to evaluate mechanical stimuli (i.e., deformation and fluid–flow-induced shear stress) because they are interdependent. This thesis compares different mechanical stimuli applied to cell-seeded scaffolds to develop bone grafts efficiently for the treatment of critical size bone defects. It also seeks to understand how deformation strain and interstitial fluid–flow-induced shear stress promote osteogenic lineage commitment. In this thesis, different scaffolds were seeded with primary human bone marrow mesenchymal stem cells (BM-MSCs) from different donors and subjected to static and dynamic culture conditions. In contrast with the static culture conditions, homogenous cell distributions were accomplished under dynamic culture conditions. Additionally, the induction of osteogenic lineage commitment without the addition of soluble factors was observed in the bioreactor system after one week of cell culture. To determine the role of mechanical stimuli, a bioreactor was developed to apply mechanical deformation force to a mesenchymal stem sell (MSC) line (telomerase reverse transcriptase (TERT)) expressing a strain-responsive AP-1 luciferase reporter construct on porous scaffolds. Increased luciferase expression was observed in the deformation strain compared with the shear stress strain. Furthermore, the expression of osteogenic lineage commitment markers such as osteonectin, osteocalcin (OC), osteopontin, runt-related transcription factor 2 (RUNX2), alkaline phosphate (AP), and collagen type 1 was significantly downregulated in the shear stress strain compared with the deformation strain. These findings establish that the deformation strain was the predominant stimulus causing skeletal precursors to undergo osteogenesis in earlier stages of osteogenic cell maturation. Finally, these findings were used to develop a bioreactor in vitro test system in which the effect of medication on osteoporosis could be tested. Primary human BM-MSCs from osteoporotic donors were subjected to strontium ranelate (an osteoporotic drug marketed as Protelos®). Increased expression of collagen type 1 and calcification was seen in the drugtreated osteoporotic stem cells compared with the nondrug-treated osteoporotic stem cells. Thus, this bioreactor technology can easily be adapted into an in vitro osteoporotic drug testing system. N2 - Knochendefekte kritischer Größe und Frakturen mit Pseudoarthrose bleiben schwierig zu behandeln. Obwohl zellbeladene Knochenersatzprodukte das Einwachsen und die Bildung von Knochen verbessert haben, schränken fehlende Methoden zur Erreichung der Lebensfähigkeit und der gleichmäßigen Verteilung der Zellen im Gerüst die Verwendung von Knochenersatzprodukten als Knochentransplantate ein. Ebenfalls konnte der vorherrschende mechanische Reiz, der die frühe osteogene Zellreifung antreibt nicht eindeutig identifiziert werden. Ferner ist es schwierig, mechanische Reize (d. H. Verformung und durch Flüssigkeitsströmung induzierte Scherbeanspruchung) zu bewerten, da diese Größen sie voneinander abhängig sind. Diese Arbeit vergleicht die Auswirkung verschiedener mechanischer Reize auf mit Zellen besiedelte Gerüste, um herauszufinden, ob Knochentransplantate effizient entwickelt werden können damit sie für die Behandlung von Knochendefekten einsetzbar sind. Des Weiteren wird versucht zu verstehen, wie Verformungsdehnung und durch interstitielle Flüssigkeitsströmung induzierte Scherbeanspruchung die Bindung osteogener Linien fördern. In dieser Arbeit wurden verschiedene Gerüste mit primären mesenchymalen Knochenmarkstammzellen (BM-MSCs) von verschiedenen Spendern ausgesät und statischen und dynamischen Kulturbedingungen ausgesetzt. Im Gegensatz zu den statischen Kulturbedingungen wurde unter dynamischen Kulturbedingungen eine homogene Zellverteilungen erreicht. Zusätzlich wurde im Bioreaktorsystem nach einer Woche Zellkultur eine Formung einer osteogenen Linienbindung auch ohne Zusätze von löslichen Faktoren beobachtet. Um die Rolle mechanischer Stimuli zu bestimmen, wurde ein Bioreaktor entwickelt, um auf porösen Scaffolds eine mechanische Verformungskraft auf eine mesenchymale Stammzelllinie (MSC) (Telomerase Reverse Transkriptase (TERT)) auszuüben. Diese exprimiert ein auf Dehnung ansprechendes AP-1-Luciferase-Reporterkonstrukt. Eine erhöhte LuciferaseExpression wurde in der Verformungsdehnung im Vergleich zur Scherspannungsdehnung beobachtet. Darüber hinaus war die Expression von osteogenen Linien Marker wie Osteonektin, Osteocalcin (OC), Osteopontin, Runt-verwandtem Transkriptionsfaktor 2 (RUNX2), alkalischem Phosphat (AP) und Kollagen Typ 1 in der Scherbeanspruchungsbelastung im Vergleich zur Verformungsdehnung signifikant herabreguliert. Diese Befunde belegen, dass die Verformungsdehnung der vorherrschende Stimulus war, der dazu führte, dass Skelettvorläufer in früheren Stadien der osteogenen Zellreifung eine Osteogenese durchliefen. Schließlich wurden diese Ergebnisse verwendet, um ein Bioreaktor-In-vitro-Testsystem zu entwickeln, in dem die Wirkung von Medikamenten auf Osteoporose getestet werden konnte. Primäre humane BM-MSCs von osteoporotischen Spendern wurden Strontiumranelat (einem als Protelos® vertriebenen Arzneimittel zur Therapie der Osteoporose) ausgesetzt. Eine erhöhte Expression von Kollagen Typ 1 und Verkalkung wurde in den mit Arzneimitteln behandelten osteoporotischen Stammzellen im Vergleich zu den nicht mit Arzneimitteln behandelten osteoporotischen Stammzellen beobachtet. Somit kann diese Bioreaktortechnologie leicht in ein in vitro Arzneimitteltestsystem angepasst werden. KW - Bioreactor KW - Mechanical deformation KW - Scaffold bone implant Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-240134 ER - TY - THES A1 - Oliveira Alves Pereira, Ana Rita T1 - Modelling of Mesenchymal Stromal Cells Interactions within the Skeletal Niche T1 - Modellierung der Interaktionen von Mesenchymalen Stromazellen in der skelettalen Nische N2 - Mesenchymal stem/stromal cells (MSCs) are a rare subpopulation of cells first identified in bone marrow with the potential to proliferate in plastic-adherent colonies and to generate de novo bone marrow stroma and its environment upon serial transplantation to heterotopic anatomical sites. Given their multipotency and self renewal competence, MSCs are prime prospective candidates for most modern musculoskeletal-tissue engineering and regenerative medicine approaches. Still, their envisioned therapeutic use is being questioned with concerns regarding their definition, characterization and integrative functions in vivo. It is well established that microenvironmental cues such as the extracellular matrix (ECM)-chemistry, the mechanical environment and local cellular and/or paracrine interactions critically control MSCs behavior. Yet, most of the scientific knowledge regarding the biology and therapeutic effect of MSCs originates from mechanistic in vitro studies where microenvironmental cues are hardly addressed. Therefore, manifestable changes in cell proliferation behavior and multilineage differentiation potential might be triggered that eventually compromise the translation of results to clinics. This thesis aims to address the complexity of MSCs interactions within the skeletal niche microenvironment in order to provide alternative methods to bypass the current MSCs in vitro culture limitations. Firstly, the influence of ECM-chemistry on MSCs behavior in vitro was explored by means of decellularized human bone models here established. Basal or osteogenic tailored cell-derived decellularized 2D matrices (dECM), proved to be suitable culture substrates for MSCs expansion by providing close-to-native cell-ECM interactions. Moreover, quantified morphological shape changes suggested a material osteo supportive potential, further functionally validated by observable spontaneous mineralization of MSCs. Aiming to identify novel intrinsic ECM regulatory features specific to the skeletal niche, 3D decellularized human trabecular bone scaffolds (dBone) were additionally developed and comprehensively characterized. Remarkably, the MSCs cultured on dBone scaffolds exhibit upregulation of genes associated with stemness as well as niche-related protein expression advocating for the conservation of the naïve MSCs phenotype. vi On the other hand, the effect of biomimetic mineralization on MSCs osteogenic lineage differentiation potential was further addressed by hydroxyapatite functionalization of type-I collagen in presence of magnesium. Mineralized scaffolds exhibited higher cell viability and a clear trend of osteogenic genes upregulation comparing with non-mineralized scaffolds. Lastly, in order to mimic the complexity of the native MSCs environment, a dynamic culture system was applied to the 3D decellularized bone constructs, previously studied in single static conditions. Mechanical stimuli generated by (1) continuous perfusion of cell culture medium at 1.7 mL/min and (2) compressive stress from 10% uniaxial load at 1 Hz, resulted in an improved cell repopulation within the scaffold and boosting of de novo ECM production. The stress-induced gene expression pattern suggested early MSCs commitment towards the osteogenic lineage mediated by integrin matrix adhesion, therefore further corroborating the recapitulation of a reliable in vitro bone niche model in dBone scaffolds. To conclude, the here developed in vitro models provide a progressive increased biomimicking complexity through which significant insights regarding MSC interactions with microenvironmental features in the skeletal niche can be obtained, thus surely paving the way for a better understanding of the role of MSCs in bone homeostasis and regeneration. N2 - Mesenchymale Stamm-/Stromazellen (MSZ) sind eine seltene Subpopulation von Zellen, die erstmals im Knochenmark identifiziert wurden und die das Potenzial haben, sich in plastikadhärenten Kolonien zu vermehren und bei serieller Transplantation an heterotopen anatomischen Stellen de novo das Knochenmarkstroma und seine Umgebung zu bilden. Aufgrund ihrer Multipotenz und ihrer Fähigkeit zur Selbsterneuerung sind MSZ erstklassige Kandidaten für moderne Ansätze des muskuloskelettalem Gewebe-Engineering und der regenerativen Medizin. Dennoch wird ihr therapeutischer Einsatz aufgrund von Bedenken hinsichtlich ihrer Definition, Charakterisierung und in vivo Integration in Frage gestellt. Es ist hinlänglich bekannt, dass die Mikroumgebung wie die Komposition der extrazellulären Matrix (EZM), die mechanische Umgebung und die lokalen zellulären und/oder parakrinen Interaktionen das Verhalten der MSZ entscheidend beeinflussen. Die meisten wissenschaftlichen Erkenntnisse über die Biologie und die therapeutische Wirkung von MSZ stammen jedoch aus mechanistischen In-vitro-Studien, in denen Faktoren aus der naiven Mikroumgebung von MSZ kaum berücksichtigt wurden. Dies kann zu offensichtlichen Veränderungen des Zellproliferationsverhaltens und des Differenzierungspotenzials der Zellen führen, was die Übertragung der Ergebnisse in die klinische Praxis beeinträchtigt. Diese Arbeit zielt darauf ab, die Komplexität der Interaktionen von MSZ in der Mikroumgebung der skelettalen Nische zu untersuchen, um Methoden zur Umgehung der derzeitigen Limitationen bei der In-vitro-Kultur von MSZ zu etablieren. Zunächst wurde der Einfluss der EZM auf das Verhalten von MSZ in vitro mit Hilfe von dezellularisierten menschlichen Knochenmodellen untersucht. Basale oder dezellularisierte 2D-Matrizen (dECM) osteogen differenzierter Zellen erwiesen sich als geeignete Zellkultursubstrate für die MSZ-Expansion, da sie nahezu native Zell-EZM-Interaktionen ermöglichen. Darüber hinaus deutet die quantifizierten morphologischen Formveränderungen in MSZ auf ein osteoinduktives Potenzial des Materials hin, was durch eine beobachtete spontane Mineralisierung der MSZ funktionell bestätigt wurde. Mit dem Ziel, neue intrinsische EZM-Faktoren zu identifizieren, die für die skelettale Nische spezifisch sind, wurden zusätzlich dezellularisierte 3D-Gerüste aus menschlichem trabekulärem Knochen (dBone) entwickelt und umfassend charakterisiert. Bemerkenswerterweise zeigen die auf dBone-Gerüsten kultivierten MSZ eine Hochregulierung von typischen Stammzell-assoziierten Genen, sowie die Expression von charakteristischen Nischenproteinen, was für die Erhaltung des Phänotyps naiver MSZ spricht. Andererseits wurde die Auswirkung einer biomimetischen Mineralisierung auf das osteogene Potenzial von MSZ durch Hydroxyapatit-Funktionalisierung von Typ-I-Kollagen Trägermaterialien in Gegenwart von Magnesium untersucht. Mineralisierte Gerüste zeigten eine höhere Zellviabilität und einen klaren Trend zur Hochregulierung osteogener Gene im Vergleich zu nicht-mineralisierten Gerüsten. Um die Komplexität der nativen MSZ-Umgebung zu imitieren, wurde schließlich ein dynamisches Kultursystem auf die dezellularisierten 3D-Knochenkonstrukte angewandt, die zuvor unter statischen Bedingungen untersucht worden waren. Mechanische Stimuli, die durch (1) kontinuierliche Perfusion des Zellkulturmediums bei 1,7 ml/min und (2) Druckbelastung durch eine einachsige Last von 10 % bei 1 Hz erzeugt wurden, führten nachweislich zu einer verbesserten Zellrepopulation innerhalb des Gerüsts und zu einer Steigerung der de novo EZM-Produktion. Das stressinduzierte Genexpressionsmuster deutet darauf hin, dass es schon früh durch Integrin-Matrix-Adhäsion zu einer Festlegung der MSZ auf die osteogene Linie kommt, was die Rekapitulation eines Zuverlässigen in vitro-Knochennischenmodells in dBone-Konstrukten weiter bestätigt. Zusammenfassend lässt sich sagen, dass die hier entwickelten in vitro-Modelle eine zunehmende Komplexität der zellulären Mikroumgebung darstellen, durch die wichtige Erkenntnisse über die Interaktionen von MSZ mit der Mikroumgebung in der Knochennische gewonnen werden können, was sicherlich den Weg für ein besseres Verständnis der Rolle von MSZ in der Knochenhomöostase und -regeneration ebnet. KW - Stem Cells KW - In vitro models KW - Bone regeneration Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-266603 ER - TY - THES A1 - Confalonieri, Davide T1 - Development and characterization of a bone marrow stem cell niche model T1 - Aufbau und Charakterisierung eines Knochenmark-Stammzellnischen-Modells N2 - Kritische Knochendefekte stellen heutzutage ein ungelöstes Problem in der klinischen Praxis dar, da die verfügbaren prothetischen Optionen oft die mechanische Anpassung an das Gewebe nicht gewährleisten oder zu wichtigen immunologischen und Implantat-bedingten Komplikationen führen. In diesem Kontext ermöglichen Tissue Engineering-Ansätze neue Strategien, um in vitro Zell-Material Interaktionen zu untersuchen und so die Implantatmaterialien zu optimieren. In dieser Arbeit habe ich Zell-Material Interaktionen eines neuen Kollagen-basierten Scaffolds untersucht, das langfristig als Trägerstruktur für eine zellbasierte Therapie für kritische Knochendefekte entwickelt werden soll. Im Rahmen der Dissertation konnte ich belegen, dass die Kollagen-basierten makroporöse Mikrocarrier für die Zellvermehrung humaner mesenchymaler Stammzellen (MSC) und deren osteogene Differenzierung unter GMP Bedingungen verwendet werden können. Außerdem habe ich die die Kokultur von hämatopoietischen Stammzellen des Knochenmarks und multiplen Myelomzellen funktionell charakterisiert. Ich konnte erstmals Kulturbedingungen etablieren, die die Langzeitkultur ohne die Verwendung von Zytokinen ermöglicht. Mittels dieser Kokultur konnte ich ein Knochenmarknischen-Modell etablieren und die Untersuchung der Expression von zentralen Signalkaskaden der Homöostase dieser Nische untersuchen. Ich konnte die Expression von zwei verschiedenen Isoformen von Osteopontin nachweisen, die in Tiermodellen nicht gefunden werden. Diese Isoformen des Osteopontins habe ich kloniert und die rekombinanten Isoformen exprimiert und ihre Rollen in der Homöostase der Knochenmarknische untersucht. Critical size bone defects represent nowadays an unresolved problem in the clinical practice, where the available prosthetic options often lack adequate mechanical matching to the host tissue or lead to important immunological and implant-related complications. In this context, Tissue Engineering approaches promise more effective strategies to study cell-material interactions in vitro and consequently optimize implant materials. In this work, I investigated the cell-scaffold interactions of a new collagen-based scaffold for a putative cell-based therapy for critical size defects to be developed. In the context of this thesis, I could demonstrate that the collagen-based macroporous microcarriers could be employed for the expansion and osteogenic differentiation of human mesenchymal stromal cells (MSCs) under GMP-compliant conditions. Moreover, I functionally characterized the co-culture of bone marrow hematopoietic stem cells and multiple myeloma cells. I was for the first time able to establish culture conditions allowing their long-term culture in absence of externally supplemented cytokines. Using this co-culture, I was able to establish a bone marrow niche model to investigate the expression of key signaling pathways involved in the niche´s homeostasis. I was able to demonstrate the expression of two different isoforms of Osteopontin, that could not previously be detected in animal models. Finally, I cloned these Osteopontin isoforms, expressed recombinant versions of the isoforms, and investigated their roles in the homeostasis of the bone marrow niche. N2 - Kritische Knochendefekte stellen heutzutage ein ungelöstes Problem in der klinischen Praxis dar, da die verfügbaren prothetischen Optionen oft die mechanische Anpassung an das Gewebe nicht gewährleisten oder zu wichtigen immunologischen und Implantat-bedingten Komplikationen führen. In diesem Kontext ermöglichen Tissue Engineering-Ansätze neue Strategien, um in vitro Zell-Material Interaktionen zu untersuchen und so die Implantatmaterialien zu optimieren. In dieser Arbeit habe ich Zell-Material Interaktionen eines neuen Kollagen-basierten Scaffolds untersucht, das langfristig als Trägerstruktur für eine zellbasierte Therapie für kritische Knochendefekte entwickelt werden soll. Im Rahmen der Dissertation konnte ich belegen, dass die Kollagen-basierten makroporöse Mikrocarrier für die Zellvermehrung humaner mesenchymaler Stammzellen (MSC) und deren osteogene Differenzierung unter GMP Bedingungen verwendet werden können. Außerdem habe ich die die Kokultur von hämatopoietischen Stammzellen des Knochenmarks und multiplen Myelomzellen funktionell charakterisiert. Ich konnte erstmals Kulturbedingungen etablieren, die die Langzeitkultur ohne die Verwendung von Zytokinen ermöglicht. Mittels dieser Kokultur konnte ich ein Knochenmarknischen-Modell etablieren und die Untersuchung der Expression von zentralen Signalkaskaden der Homöostase dieser Nische untersuchen. Ich konnte die Expression von zwei verschiedenen Isoformen von Osteopontin nachweisen, die in Tiermodellen nicht gefunden werden. Diese Isoformen des Osteopontins habe ich kloniert und die rekombinanten Isoformen exprimiert und ihre Rollen in der Homöostase der Knochenmarknische untersucht. KW - bone marrow niche KW - Bone KW - Marrow KW - Mesenchymal Stem Cell KW - Model KW - Hematopoietic Stem Cell Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-163128 ER - TY - THES A1 - Youssef, Almoatazbellah T1 - Fabrication of Micro-Engineered Scaffolds for Biomedical Application T1 - Fabrikation von Scaffolds mit optimierter Mikroarchitektur für biomedizinische Anwendungen N2 - Thermoplastic polymers have a history of decades of safe and effective use in the clinic as implantable medical devices. In recent years additive manufacturing (AM) saw increased clinical interest for the fabrication of customizable and implantable medical devices and training models using the patients’ own radiological data. However, approval from the various regulatory bodies remains a significant hurdle. A possible solution is to fabricate the AM scaffolds using materials and techniques with a clinical safety record, e.g. melt processing of polymers. Melt Electrowriting (MEW) is a novel, high resolution AM technique which uses thermoplastic polymers. MEW produces scaffolds with microscale fibers and precise fiber placement, allowing the control of the scaffold microarchitecture. Additionally, MEW can process medical-grade thermoplastic polymers, without the use of solvents paving the way for the production of medical devices for clinical applications. This pathway is investigated in this thesis, where the layout is designed to resemble the journey of a medical device produced via MEW from conception to early in vivo experiments. To do so, first, a brief history of the development of medical implants and the regenerative capability of the human body is given in Chapter 1. In Chapter 2, a review of the use of thermoplastic polymers in medicine, with a focus on poly(ε-caprolactone) (PCL), is illustrated, as this is the polymer used in the rest of the thesis. This review is followed by a comparison of the state of the art, regarding in vivo and clinical experiments, of three polymer melt AM technologies: melt-extrusion, selective laser sintering and MEW. The first two techniques already saw successful translation to the bedside, producing patient-specific, regulatory-approved AM implants. To follow in the footsteps of these two technologies, the MEW device parameters need to be optimized. The MEW process parameters and their interplay are further discussed in Chapter 3 focusing on the importance of a steady mass flow rate of the polymer during printing. MEW reaches a balance between polymer flow, the stabilizing electric field and moving collector to produce reproducible, high-resolution scaffolds. An imbalance creates phenomena like fiber pulsing or arcing which result in defective scaffolds and potential printer damage. Chapter 4 shows the use of X-ray microtomography (µCT) as a non-destructive method to characterize the pore-related features: total porosity and the pore size distribution. MEW scaffolds are three-dimensional (3D) constructs but have long been treated in the literature as two-dimensional (2D) ones and characterized mainly by microscopy, including stereo- and scanning electron microscopy, where pore size was simply reported as the distance between the fibers in a single layer. These methods, together with the trend of producing scaffolds with symmetrical pores in the 0/90° and 0/60/120° laydown patterns, disregarded the lateral connections between pores and the potential of MEW to be used for more complex 3D structures, mimicking the extracellular matrix. Here we characterized scaffolds in the aforementioned symmetrical laydown patterns, along with the more complex 0/45/90/135° and 0/30/60/90/120/150° ones. A 2D pore size estimation was done first using stereomicroscopy, followed by and compared to µCT scanning. The scaffolds with symmetrical laydown patterns resulted in the predominance of one pore size, while those with more complex patterns had a broader distribution, which could be better shown by µCT scans. Moreover, in the symmetrical scaffolds, the size of 3D pores was not able to reach the value of the fiber spacing due to a flattening effect of the scaffold, where the thickness of the scaffold was less than the fiber spacing, further restricting the pore size distribution in such scaffolds. This method could be used for quality assurance of fabricated scaffolds prior to use in in vitro or in vivo experiments and would be important for a clinical translation. Chapter 5 illustrates a proof of principle subcutaneous implantation in vivo experiment. MEW scaffolds were already featured in small animal in vivo experiments, but to date, no analysis of the foreign body reaction (FBR) to such implants was performed. FBR is an immune reaction to implanted foreign materials, including medical devices, aimed at protecting the host from potential adverse effects and can interfere with the function of some medical implants. Medical-grade PCL was used to melt electrowrite scaffolds with 50 and 60 µm fiber spacing for the 0/90° and 0/60/120° laydown patterns, respectively. These implants were implanted subcutaneously in immunocompetent, outbred mice, with appropriate controls, and explanted after 2, 4, 7 and 14 days. A thorough characterization of the scaffolds before implantation was done, followed by a full histopathological analysis of the FBR to the implants after excision. The scaffolds, irrespective of their pore geometry, induced an extensive FBR in the form of accumulation of foreign body giant cells around the fiber walls, in a manner that almost occluded available pore spaces with little to no neovascularization. This reaction was not induced by the material itself, as the same reaction failed to develop in the PCL solid film controls. A discussion of the results was given with special regard to the literature available on flat surgical meshes, as well as other hydrogel-based porous scaffolds with similar pore sizes. Finally, a general summary of the thesis in Chapter 6 recapitulates the most important points with a focus on future directions for MEW. N2 - Thermoplastische Polymere werden seit Jahrzehnten erfolgreich in der Klinik eingesetzt und für die Herstellung von Medizinprodukten verwendet. Vorangetrieben durch das zunehmende klinische Interesse an additiven Fertigungsverfahren, z.B. zur Herstellung patientenspezifischer Trainingsmodelle und implantierbarer Medizinprodukte, rücken thermoplastische Materialien noch mehr in den Fokus der klinischen Forschung. Allerdings stellt die Marktzulassung durch die verschiedenen Gesundheitsbehörden eine große Hürde dar. Eine mögliche Lösung ist die Gerüstfabrikation mit Materialien und Verfahren, die bereits etablierte Sicherheitsstandards durchlaufen haben, z. B. die Schmelzverarbeitung der Polymere. Ein neuartiges und hochauflösendes additives Fertigungsverfahren, welches die Verarbeitung von Thermoplasten ermöglicht, ist Melt Electrowriting (MEW). Mittels MEW lassen sich Gerüste, die aus Fasern mit Durchmessern im Mikrometerbereich zusammengesetzt sind, herstellen. Neben der hohen Kontrolle über den Faserdurchmesser ermöglicht MEW auch eine genaue Ablage der Fasern und erlaubt dadurch, die Mikroarchitektur der Konstrukte vorzugeben. Zudem kann das Verfahren medizinisch zugelassene thermoplastische Polymere ohne die Verwendung von Lösungsmitteln verarbeiten und ist somit für die Herstellung medizinischer Produkte sehr relevant. Diese Relevanz sollte im Rahmen der vorliegenden Dissertation evaluiert werden, indem der Weg, den ein Medizinprodukt von der Konzeption bis hin zu in vivo Vorversuchen durchlaufen muss, anhand von Konstrukten, die mittels MEW hergestellt wurden, nachgeahmt wurde. Um eine Basis für das Verständnis dieses Prozesses zu schaffen, wird in Kapitel 1 erst die Geschichte der Entwicklung medizinischer Implantate zusammengefasst sowie ein Einblick in die regenerativen Fähigkeiten des menschlichen Körpers gegeben. Das zweite Kapitel befasst sich mit der Anwendung von thermoplastischen Polymeren im Bereich implantierbarer Medizinprodukte, wobei der Hauptfokus auf Poly(ε-caprolactone) (PCL) liegt, da dies der in der vorliegenden Arbeit verwendete Thermoplast ist. Es folgt ein Vergleich von in vivo sowie klinischen Versuchen dreier für die Biomedizin relevanten additiven Fertigungsverfahren, mit denen sich thermoplastische Polymere verarbeiten lassen: Die Mikro-Schmelzextrusion, das selektive Lasersintern und das MEW. Die ersten zwei Verfahren sind bereits erfolgreich in klinischen Anwendungen etabliert und ermöglichen die routinemäßige Herstellung von additiv gefertigten, patientenspezifischen, auf dem Markt zugelassenen Implantaten. Damit MEW in diese Fußstapfen treten kann, müssen die Prozessparameter und deren Zusammenspiel genau analysiert werden. Dieser Thematik widmet sich Kapitel 3, wobei die Untersuchung des Massendurchsatzes des Polymers während des Druckens diskutiert wird. Um den MEW-Prozess kontrollieren zu können, muss eine Balance zwischen Polymerdurchsatz, dem stabilisierenden elektrischen Feld und dem beweglichen Kollektor erreicht werden. Dies ist Grundlage für die reproduzierbare Herstellung hochaufgelöster Konstrukte. Ein Ungleichgewicht der Prozessparameter verursacht Phänomene wie Fiber Pulsing oder sogar elektrischen Durchschlag, welche zu defekten Konstrukten oder sogar zur Schädigung des Druckers führen können. Kapitel 4 zeigt die Anwendung der Röntgenmikrocomputertomographie (µCT) als eine zerstörungsfreie Charakterisierungsmethode für MEW-Konstrukte, die die Quantifizierung charakteristischer Eigenschaften wie der Porosität und der Porengrößenverteilung ermöglicht. MEW-Konstrukte wurden in der Literatur lange als zweidimensional behandelt und hauptsächlich durch mikroskopische Verfahren wie die Stereo- und Rasterelektronmikroskopie charakterisiert. Die zweidimensionale Porengröße wurde hauptsächlich durch die Bestimmung des Faserabstands definiert und daraus errechnet, mit einer Tendenz der Herstellung der Konstrukte mit symmetrischen Poren in 0/90° und 0/60/120° Ablagemustern. Da es sich bei den Konstrukten jedoch um dreidimensionale (3D) Fasergerüste handelt, wurden die seitlichen Verbindungen zwischen den Poren und das Potential der Anwendung des MEW für die Herstellung von komplexeren 3D-Strukturen, wie bei der extrazellulären Matrix mit interkonnektierenden Poren, vernachlässigt. Aus diesem Grund wurden in der vorliegenden Arbeit µCT-Scans verwendet, um die Porosität der Konstrukte besser wiedergeben zu können. Hierzu wurden verschiedene Ablagemuster mit symmetrischen Poren in 0/90° und 0/60/120° Mustern und komplexere Porenstrukturen durch Ablagen von 0/45/90/135° und 0/30/60/90/120/150° Geometrien hergestellt. Diese Konstrukte wurden dann mittels mikroskopischer und tomographischer Aufnahmen charakterisiert und die Ergebnisse miteinander verglichen. Es zeigte sich, dass symmetrische Ablagemuster zu Konstrukten mit der Prädominanz einer Porengröße geführt haben. Bei den komplexeren Strukturen ergab sich jedoch ein klarer Unterschied, weil die interkonnektierenden Poren nur mit Hilfe von µCT-Scans erfasst werden konnten. Dies zeigte sich durch eine breitere Porenverteilung bei der Auswertung der rekonstruierten Scans. Die Porengrößen in den Konstrukten mit den symmetrischen Mustern konnten aufgrund einer Verflachungswirkung nicht die des Faserabstands erreichen. Die Dicke der Konstrukte war geringer als der Faserabstand mit einer weiteren einschränkenden Wirkung auf die Porenverteilung in den symmetrischen Konstrukten. µCT kann deshalb für die Qualitätssicherung von medizinischen Produkten, die mittels MEW hergestellt wurden, eingesetzt werden. Da die Methode zerstörungsfrei ist, könnte sie auch vor in vitro oder in vivo Versuchen verwendet werden. Kapitel 5 präsentiert eine Machbarkeitsstudie eines subkutanen in vivo Implantationsversuchs. Aus der Literatur ist zwar bekannt, dass MEW-Konstrukte bereits in vivo in Kleintierversuchen verwendet wurden, eine Analyse der Fremdkörperreaktion (FKR) zu solchen Implantaten wurde bisher jedoch noch nicht durchgeführt. FKR ist eine Immunreaktion gegen fremde, implantierte Materialien, einschließlich medizinischer Geräte, um den Wirt vor potenziellen Nebenwirkungen zu schützen. Allerdings könnte sie die Funktion verschiedener medizinischer Implantate beeinträchtigen Um dieser Fragestellung nachzugehen, wurde im Rahmen der vorliegenden Dissertation PCL mittels MEW zu Konstrukten mit 50 und 60 µm Fiberabstand in 0/90° bzw. 0/60/120° Ablagemuster verarbeitet. Diese Konstrukte wurden subkutan in immunkompetente, fremdgezüchtete Mäuse mit entsprechenden Kontrollen implantiert und nach 2, 4, 7 und 14 Tagen explantiert. Vor der Implantation wurde die Konstrukte ausführlich charakterisiert, gefolgt von einer vollen histopathologischen Analyse des FKR. Unabhängig von der Porengeometrie haben die Konstrukte eine deutliche Immunreaktion im Sinne einer Ansammlung von Fremdkörperriesenzellen um die Fasern der Konstrukte hervorgerufen. Hierbei wurden die Poren fast komplett verschlossen, ohne dass es zu einer Neovaskularisation kam. Es konnte nachgewiesen werden, dass die deutliche Immunantwort nicht durch das Material hervorgerufen wurde, da sie bei der Implantation von dichtem PCL-Film nicht beobachtet wurde. Eine Diskussion der Ergebnisse erfolgte unter Berücksichtigung aktueller Literatur zu klinischen Versuchen von flachen chirurgischen Netzen sowie porösen Hydrogel-basierten Implantaten mit vergleichbarer Porengröße. Abschließend wird die Arbeit in Kapitel 6 zusammengefasst und die wichtigsten Punkte rekapituliert. Der Fokus des Kapitels liegt hierbei auf dem zukünftigen Potential des MEW als Fabrikationsmethode für medizinische Produkte. KW - melt electrowriting KW - medical device KW - biomaterials KW - subcutaneous implanation KW - x-ray micro computed tomography Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-235457 ER -