TY - THES A1 - Vogt, Marius Lothar T1 - Klinisches und diagnostisches Spektrum der pädiatrischen Hypophosphatasie : eine retrospektive Auswertung der Daten von 50 Patienten T1 - Pediatric hypophosphatasia: a retrospective single-centre chart review of 50 children N2 - Die Hypophosphatasie (HPP) ist eine seltene, angeborene Knochen- und Systemerkrankung, welche Patienten allen Alters betrifft. Verursacht wird die Erkrankung durch Mutationen im ALPL-Gen, welches für die gewebeunspezifische Alkalische Phosphatase codiert und mit einem Funktionsverlust des Enzyms einhergeht. Die Ausprägung der klinischen Symptomatik ist sehr heterogen und reicht von milden und unspezifischen bis hin zu potenziell lebensbedrohlichen Symptomen, was die korrekte Diagnose zusätzlich erschwert und verzögert. Um das Verständnis der pädiatrischen HPP zu verbessern und die Dauer von Symptombeginn bis zur korrekten Diagnose zu verkürzen, haben wir den Verlauf der Erkrankung anhand einer retrospektiven Aufarbeitung der Daten von 50 pädiatrischen HPP Patienten, die in den letzten 25 Jahren an der Universitäts-Kinderklinik in Würzburg vorstellig waren, untersucht. Diese Ergebnisse bestätigen den klinischen Eindruck der HPP als chronische Systemerkrankung, welche aufgrund ihrer unspezifischen klinischen Präsentation oftmals nur mit zeitlicher Verzögerung diagnostiziert wird. Dieser Verzögerung kommt insbesondere im Hinblick auf die 2015 zur Behandlung der pädiatrischen HPP zugelassenen Enzymersatztherapie mit dem Wirkstoff Asfotase alfa eine besondere Bedeutung zu, da die Patienten von einer frühzeitigen Diagnose und einem damit einhergehenden frühzeitigen Beginn der Behandlung profitieren können. Diese Ergebnisse tragen einen Teil dazu bei, das Bewusstsein und die Kenntnis der Erkrankung zu verbessern, um so die die Zeitspanne zwischen Symptombeginn und Diagnosestellung zu verkürzen und die medizinische Versorgung der Patienten zu verbessern. N2 - Hypophosphatasia (HPP) is a rare, inherited metabolic disorder caused by loss-of-function mutations in the ALPL gene that encodes the tissue-nonspecific alkaline phosphatase TNAP (ORPHA 436). Its clinical presentation is highly heterogeneous with a remarkably wide-ranging severity. HPP affects patients of all age. Therefore, diagnosis is often difficult and delayed. To improve the understanding of HPP in children and in order to shorten the diagnostic time span in the future we studied the natural history of the disease in our large cohort of pediatric patients. In light of the enzyme replacement therapy (Asfotase alfa, a recombinant mineral-targeted TNAP), HPP patients may benefit from early treatment in the course of the disease. This single centre retrospective chart review included longitudinal data from 50 patients with HPP diagnosed and followed at the University Children`s Hospital Wuerzburg, Germany over the last 25 years. Reported findings support our clinical impression of a chronic multi-systemic disease with often delayed diagnosis. Our natural history information provides detailed insights into the prevalence of different symptoms which can help to improve and to shorten diagnostics and thereby lead to an optimised medical care, especially with promising therapeutic options like enzyme-replacement-therapy with Asfotase alfa in mind. KW - Hypophosphatasie KW - Alkalische Phosphatase KW - Stoffwechselkrankheit KW - Erbkrankheit KW - Asfotase alfa KW - Enzymersatztherapie Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-204076 ER - TY - THES A1 - Momper, Laurent T1 - Interaktion der Schlüsselenzyme der Mineralisierung (AP, ENPP1, AnkH, PHOSPHO1) im Phosphatstoffwechsel in vitro T1 - Interaction of the Key Enzymes of Mineralization (AP, ENPP1, AnkH, PHOSPHO1) in the Phosphate Metabolism in vitro N2 - Die Enzyme TNSALP (Tissue Non-Specific Alkaline Phosphatase), ENPP1 (Ectonucleotide Pyrophosphatase/Phosphodiesterase 1) und ANKH (Ankylosis, progressive human homolog) bilden zusammen eine zentrale Regulierungseinheit für den Pyrophosphat (PPi)-Stoffwechsel der Zelle [1, 2]. Störungen dieses genau geregelten Prozesses resultieren in schwerwiegenden Erkrankungen, wie z.B. bei der Hypophosphatasie [3]. Dieser meist autosomal rezessiv vererbten Erkrankung liegt eine durch genetische Mutationen beeinträchtigte Funktion der TNSALP zugrunde, wodurch sich die PPi- Konzentration im Microenvironment der Zelle erhöht. Diese kann im Knochengewebe zu schweren Mineralisierungsstörungen führen [1, 2]. Andere Krankheiten, mit erniedrigten PPi- Konzentrationen, werden mit pathologischen Verkalkungen in verschiedensten Geweben in Verbindung gebracht [4, 5]. Diese gehen unter anderem auf genetische Defekte von ENPP1 zurück[4]. Auch der Mevalonat-Pathway trägt zur Komposition des Microenvironments bezüglich der Homöostase von Phosphaten bei [6, 7]. Hier bestehen auch medizinisch relevante Einflussmöglichkeiten, zum Beispiel durch Bisphosphonate, bei der sogenannten Volkskrankheit Osteoporose. In dieser Arbeit wurden die Auswirkungen einer PPi-Belastung auf die in vitro Mineralisierung von Mesenchymalen Stammzellen untersucht, wobei Modulatoren der Enzymaktivität für ALP und ENPP1 und der Aktivität des PPi-Kanals ANKH sowie des Mevalonatstoffwechsels zum Einsatz kamen (PPi, Pyridoxalphosphat (PLP), Probenecid, Vitamin D, PPADS (Pyridoxalphosphat-6-azophenyl-2‘,4‘-disulfid Säure) und ß-γmeATP (ß-γ Methylentriphosphat)). Die Resultate zeigen, dass die Modulation der PPi-Konzentration bei der osteogenen Differenzierung von hMSCs in vitro keine eindeutigen Effekte bewirkt. Geringe Änderungen des Genexpressionsmusters sind letztlich nicht auszuschliessen, blieben jedoch aufgrund der hohen Spendervariabilität durch eine erhöhte Anzahl von Experimenten zu beweisen. Diese Arbeit zeigt insgesamt eine unerwartet geringe Auswirkung einer exogenen und endogenen Modulation der PPi-Konzentration sowohl mit Blick auf die rein physikalischen Phänomene der Mineralisierung, als auch mit Blick auf die untersuchte Genregulation der wichtigsten beteiligten Proteine, was möglicherweise die hohe Kompensationskapazität der Systeme unter physiologischen Bedingungen reflektiert. Untersuchungen auf proteomischer Ebene, besonders mit Blick auf die Prozessierung von Polypeptiden mit Mineralisierungs-modulierender Wirkung würden möglicherweise genaueren Einblick vermitteln. Eine genauere Untersuchung der Einflüsse von ENPP1 erscheint für die Zukunft vielversprechend. Allerdings treten hier, besonders auch durch die verwendeten Hemmstoffe der ENPP1, die Phänomene der Vernetzung des Stoffwechsels der Phosphate (inklusive ATP und seiner Metabolite) mit dem Purinergen Signalling deutlich zutage. Diese Vernetzung generiert durch ihre Komplexität sowohl klinisch als auch zellbiologisch/biochemisch erhebliche Interpretationsprobleme, die zukünftige Arbeiten auflösen müssen. Dabei sollte besondere Aufmerksamkeit auf zwei für HPP-PatientInnen klinisch in Zukunft potentiell bedeutsame Ergebnisse gelegt werden, die möglicherweise ungünstigen Auswirkungen einer Therapie mit Probenecid auf die ALPL Expression und die Steigerung der ALPL Expression unter Hemmstoffen des Enzyms ENPP1. 1. Dympna Harmey, L.H., Sonoko Narisawa, Kirsten A. Johnson, Robert Terkeltaub, José Luis Millán, Concerted Regulation of Inorganic Pyrophosphate and osteopontin by Akp2, Enpp1 and Ank. American Journal of Pathology, 2003. 164, No. 4: p. 1199-1209. 2. Manisha C Yadav, A.M.S.S., Sonoko Narisawa, Carmen Huesa, Marc D McKee, Colin Farquharson, José Luis Millán, Loss of Skeletal Mineralization by the Simultaneous Ablation of PHOSPHO1 and Alkaline Phosphatase Function: A Unified Model of the Mechanisms od Initiation of Skeletal Calcification. Journal of Bone and Mineral Research, 2011. 26, No2: p. 286-297. 3. Beck, C., Hypophosphatasia. Klin Padiatr, 2009: p. 219-226. 4. Harmey, D.e.a., Concerted Regulation of Inorganic Pyrophosphate and Osteopontin by Akp2, Enpp1, and Ank. American Journal of Pathology, 2004. 164: p. 1199-1209. 5. Peter Nürnberg, H.T., David Chandler et all, Heterozygous mutations in ANKH, the human ortholog of the mouse progressive ankylosis gene, result in craniometaphyseal dysplasia. Nature Genetics, May 2001. 28: p. 37-41. 6. Löffler, P., Heinrich, ed. Biochemie & Pathobiochemie. Vol. 8. 2007, Springer Verlag. 7. Joseph L. Goldstein, M.S.B., Regulation of the mevalonate Pathway. Nature Genetics, 1990. 343: p. 425-430. N2 - Together, the enzymes TNSALP (Tissue Non-Specific Alkaline Phosphatase), ENPP1 (Ectonucleotide Pyrophosphatase/Phosphodiesterase 1) and ANKH (Ankylosis, progressive human homolog) form a central regulation entity for the cellular metabolism of pyrophosphate (PPi)[1, 2]. Dysregulation of these coordinated processes result in severe diseases, such as Hypophosphatasia (HPP) [3]. This condition is caused by an autosomal recessive inheritance pattern, which restricts the function of TNSALP, thus resulting in an increased concentration of PPi in the micro-environment of the cell. This can lead to severe disruption of skeletal mineralization [1, 2]. Other diseases with low PPi concentrations are associated with the pathological calcification of different tissues [1, 5] and can be traced back to genetic defects of ENPP1 [1]. The mevalonate pathway contributes to the composition of the micro-environment and hence to the homeostasis of phosphates [6, 7]. This constitutes a medically relevant possibility of influence, for example through bisphosphonates as a treatment for widespread diseases like Osteoporosis. This study analyzed the impact of a PPi exposure on the in vitro mineralization of human mesenchymal stem cells (hMSCs) in the process of osteogenic differentiation. For this purpose, we used enzymatic activity modulators for ALP, ENPP1 as well as for ANKH and the Mevalonate pathway (PPi, Pyridoxalphosphate, Probenecid, Vitamine D, PPADS (Pyridoxalphosphate-6-azophenyl-2‘,4‘-disulfid acid) and ß-γmeATP (ß-γ Methylentriphosphate)). The results show no clear effects due to the modulation of the PPi concentration during osteogenic differentiation of hMSCs in vitro. Minor changes in genetic expression patterns cannot be ruled out due to an elevated variability among the donor cells, said discrepancy would have to be consolidated through an increased number of experiments. Altogether, this study shows unexpectedly low impacts of exogenic an endogenic modulation of the PPi concentration, in regards to the physical effects of mineralization as well as the genetic regulation of the key proteins involved. This could be a reflection of the compensation capacity of these mechanisms under physiological circumstances. In order to provide indepth insight into this matter, further examination on a proteomic level would be necessary, especially with an outlook onto the processing of polypeptides with mineralization-modulating effects. A promising strategy for future studies seems to be a further investigation of the effects of ENPP1. However, this approach will be confronted, especially due to inhibitors of ENPP1, with the complex networking of the phosphate metabolism (included ATP and his metabolites) with purinerg signaling. Due to its complexity, this interconnectedness generates considerable interpretation issues on a clinical as well as a cell biological level, which would have to be investigated further in future studies. The focus here should be put on two results of potential clinical significance for HPP-patients, namely the unfavorable effects on the ALPL-expression of a Probenecid therapy as well as the increased expression of ALPL during ENPP1 inhibition. 1. Dympna Harmey, L.H., Sonoko Narisawa, Kirsten A. Johnson, Robert Terkeltaub, José Luis Millán, Concerted Regulation of Inorganic Pyrophosphate and osteopontin by Akp2, Enpp1 and Ank. American Journal of Pathology, 2003. 164, No. 4: p. 1199-1209. 2. Manisha C Yadav, A.M.S.S., Sonoko Narisawa, Carmen Huesa, Marc D McKee, Colin Farquharson, José Luis Millán, Loss of Skeletal Mineralization by the Simultaneous Ablation of PHOSPHO1 and Alkaline Phosphatase Function: A Unified Model of the Mechanisms od Initiation of Skeletal Calcification. Journal of Bone and Mineral Research, 2011. 26, No2: p. 286-297. 3. Beck, C., Hypophosphatasia. Klin Padiatr, 2009: p. 219-226. 4. Harmey, D.e.a., Concerted Regulation of Inorganic Pyrophosphate and Osteopontin by Akp2, Enpp1, and Ank. American Journal of Pathology, 2004. 164: p. 1199-1209. 5. Peter Nürnberg, H.T., David Chandler et all, Heterozygous mutations in ANKH, the human ortholog of the mouse progressive ankylosis gene, result in craniometaphyseal dysplasia. Nature Genetics, May 2001. 28: p. 37-41. 6. Löffler, P., Heinrich, ed. Biochemie & Pathobiochemie. Vol. 8. 2007, Springer Verlag. 7. Joseph L. Goldstein, M.S.B., Regulation of the mevalonate Pathway. Nature Genetics, 1990. 343: p. 425-430. KW - Hypophosphatasie KW - Hypophosphatasia Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-238529 ER -