TY - THES A1 - Bolaños-Rosales, Alejandro T1 - Low Mach Number Simulations of Convective Boundary Mixing in Classical Novae T1 - Simulationen der konvektiven Mischung in Klassischen Novae im Strömungsbereich kleiner Machzahlen N2 - Classical novae are thermonuclear explosions occurring on the surface of white dwarfs. When co-existing in a binary system with a main sequence or more evolved star, mass accretion from the companion star to the white dwarf can take place if the companion overflows its Roche lobe. The envelope of hydrogen-rich matter which builds on top of the white dwarf eventually ignites under degenerate conditions, leading to a thermonuclear runaway and an explosion in the order of 1046 erg, while leaving the white dwarf intact. Spectral analyses from the debris indicate an abundance of isotopes that are tracers of nuclear burning via the hot CNO cycle, which in turn reveal some sort of mixing between the envelope and the white dwarf underneath. The exact mechanism is still a matter of debate. The convection and deflagration in novae develop in the low Mach number regime. We used the Seven League Hydro code (SLH ), which employs numerical schemes designed to correctly simulate low Mach number flows, to perform two and three- dimensional simulations of classical novae. Based on a spherically-symmetric model created with aid of a stellar evolution code, we developed our own nova model and tested it on a variety of numerical grids and boundary conditions for validation. We focused on the evolution of temperature, density and nuclear energy generation rate at the layers between white dwarf and envelope, where most of the energy is generated, to understand the structure of the transition region, and its effect on the nuclear burning. We analyzed the resulting dredge-up efficiency stemming from the convective motions in the envelope. Our models yield similar results to the literature, but seem to depend very strongly on the numerical resolution. We followed the evolution of the nuclear species involved in the CNO cycle and concluded that the thermonuclear reactions primarily taking place are those of the cold and not the hot CNO cycle. The reason behind this could be that under the conditions generally assumed for multi-dimensional simulations, the envelope is in fact not degenerate. We performed initial tests for 3D simulations and realized that alternative boundary conditions are needed. N2 - Klassische Novae sind thermonukleare Explosionen an der Oberfläche von Weißen Zwergen. Wenn ein solcher sich in einem Doppelsternsystem zusammen mit einem Hauptreihenstern oder einem späteren Stern befindet, kann Akkretion vom Begleiter zum Weißen Zwerg stattfinden, falls der Begleitstern seine Roche-Grenze überschre- itet. Die wasserstoffreiche Hülle, die sich auf der Oberfläche des Sterns bildet, zündet aufgrund des enormen Gravitationsdrucks in einer Deflagration. Aufgrund der Entar- tung des Gases führt das nukleare Brennen zu einem thermonuklearen Durchgehen (engl. runaway)und schließlich zu einer Explosion mit Energien in der Größenord- nung von 1046 erg. Der Weiße Zwerg bleibt dabei unberührt. Spektralanalysen der ausgestoßenen Gase deuten auf Isotope hin, die am heißen CNO-Zyklus beteiligt sind. Dies legt nahe, dass vor oder während der Brennphase eine Durchmischung von Materie zwischen der akkretierten Hülle und dem Weißen Zwerg stattfinden muss. Die Konvektion und Deflagration entwickeln sich im Strömungsbereich kleiner Machzahlen. Wir benutzten den Seven League Hydro code (SLH ), welcher ëber numerische Verfahren verfügt, die auf einen weiten Bereich von Machzahlen anwend- bar sind. Daraus errechneten wir Simulationen von Klassischen Novae in zwei und drei Dimensionen. Basierend auf einem sphärisch-symmetrischen Modell, das wir mit einem Sternentwicklungscode erstellten, entwickelten wir ein eigenes Nova-Modell. Wir testeten dies in Kombination mit eienr Reihe von Gittern und Randbedingun- gen. Anschließend analysierten wir im Detail das Verhalten von Temperatur, Dichte und nuklearer Energieerzeugungsrate in den Schichten zwischen Weißem Zwerg und Wasserstoffhülle, wo die Kernfusion hauptsächlich stattfindet, um die Struktur der Brennzone und deren Einfluss auf die Nukleosynthese zu verstehen. Wir analysierten die Effizienz der Konvektion, welche Elemente aus dem Weißen Zwerg nach oben in die Hülle transportiert. Die Ergebnisse entsprechen denen der Literatur, dennoch hängen sie stark von der numerischen Auflösung ab. Wir untersuchten die Isotopen- häufigkeit der im CNO-Zyklus beteiligten Elemente, und schloßen hieraus, dass das Brennen durch den weniger energetischen “kalten” CNO-Zyklus verläuft. Dies kann darauf zurückgeführt werden, dass unter den Bedingungen, die die Mehrzahl der multi- dimensionalen Modelle aus der Fachliteratur mit sich bringen, die Wasserstoffhülle tatsächlich nicht entartet ist. Abschließend simulierten wir testweise 3D-Modelle, aber neue Randbedingungen sind nötig, um mit den Berechnungen fortfahren zu können. KW - Nova KW - Weißer Zwerg KW - classical novae KW - convection KW - numerical hydrodynamics KW - nuclear reactions KW - stellar evolution KW - simulation KW - low Mach number flows KW - numerische Hydrodynamik KW - thermonukelare Reaktionen KW - Sternentwicklung Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-132863 ER - TY - THES A1 - Summa, Alexander T1 - Modelling high-energy observables of supernova explosions T1 - Modellierung hochenergetischer Beobachtungsgrößen von Supernova-Explosionen N2 - In this work, high-energy observables arising during different phases of SN explosions are studied with respect to their potential for allowing conclusions on suggested explosion scenarios and physical mechanisms that are thought to influence the evolution of SNe in a major way. The focus on selected observables at keV and MeV energies is motivated by the appearance of large degeneracies that can even be found for disparate scenarios in many wavelength regimes. Since the discussed emission in the high-energy regime is directly linked to nuclear processes being usually very distinct for different suggested physical models, the signatures at keV and MeV energies allow for meaningful comparisons of simulations with observations. N2 - In der vorliegenden Arbeit werden Hochenergie-Beobachtungsgrößen, die während verschiedener Phasen von Supernova-Explosionen entstehen, hinsichtlich der Möglichkeit von Rückschlüssen auf vorgeschlagene Explosionsszenarien und physikalische Mechanismen, welche einen wichtigen Einfluss auf die Entwicklung dieser Explosionen ausüben, untersucht. Die Schwerpunktsetzung auf Beobachtungsgrößen im keV- und MeV-Energiebereich ist dabei durch die großen Ähnlichkeiten begründet, die grundverschiedene Szenarien in ihrer Emission in vielen Wellenlängenbereichen zeigen. Da die diskutierten Beobachtungsgrößen im Hochenergie-Bereich direkt mit nuklearen Prozessen verknüpft sind, die bei unterschiedlichen physikalischen Modellen sehr charakteristisch ausgeprägt sein können, eignen sich gerade die vorgestellten Signaturen im keV- und MeV-Bereich für aussagekräftige Vergleiche von Simulationen und Beobachtungen. KW - Supernova KW - Hochenergieastronomie KW - supernovae KW - nucleosynthesis KW - gamma rays KW - X-rays KW - cosmic rays KW - Nukleosynthese KW - Gammastrahlung KW - Röntgenstrahlung KW - Kosmische Strahlung Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-94608 ER - TY - THES A1 - Zenk, Markus T1 - On Numerical Methods for Astrophysical Applications T1 - Über numerische Methoden für astrophysikalische Anwendungen N2 - Diese Arbeit befasst sich mit der Approximation der Lösungen von Modellen zur Beschreibung des Strömungsverhaltens in Atmosphären. Im Speziellen umfassen die hier behandelten Modelle die kompressiblen Euler Gleichungen der Gasdynamik mit einem Quellterm bezüglich der Gravitation und die Flachwassergleichungen mit einem nicht konstanten Bodenprofil. Verschiedene Methoden wurden bereits entwickelt um die Lösungen dieser Gleichungen zu approximieren. Im Speziellen geht diese Arbeit auf die Approximation von Lösungen nahe des Gleichgewichts und, im Falle der Euler Gleichungen, bei kleinen Mach Zahlen ein. Die meisten numerischen Methoden haben die Eigenschaft, dass die Qualität der Approximation sich mit der Anzahl der Freiheitsgrade verbessert. In der Praxis werden deswegen diese numerischen Methoden auf großen Computern implementiert um eine möglichst hohe Approximationsgüte zu erreichen. Jedoch sind auch manchmal diese großen Maschinen nicht ausreichend, um die gewünschte Qualität zu erreichen. Das Hauptaugenmerk dieser Arbeit ist darauf gerichtet, die Qualität der Approximation bei gleicher Anzahl von Freiheitsgrade zu verbessern. Diese Arbeit ist im Zusammenhang einer Kollaboration zwischen Prof. Klingenberg des Mathemaitschen Instituts in Würzburg und Prof. Röpke des Astrophysikalischen Instituts in Würzburg entstanden. Das Ziel dieser Kollaboration ist es, Methoden zur Berechnung von stellarer Atmosphären zu entwickeln. In dieser Arbeit werden vor allem zwei Problemstellungen behandelt. Die erste Problemstellung bezieht sich auf die akkurate Approximation des Quellterms, was zu den so genannten well-balanced Schemata führt. Diese erlauben genaue Approximationen von Lösungen nahe des Gleichgewichts. Die zweite Problemstellung bezieht sich auf die Approximation von Strömungen bei kleinen Mach Zahlen. Es ist bekannt, dass Lösungen der kompressiblen Euler Gleichungen zu Lösungen der inkompressiblen Euler Gleichungen konvergieren, wenn die Mach Zahl gegen null geht. Klassische numerische Schemata zeigen ein stark diffusives Verhalten bei kleinen Mach Zahlen. Das hier entwickelte Schema fällt in die Kategorie der asymptotic preserving Schematas, d.h. das numerische Schema ist auf einem diskrete Level kompatibel mit dem auf dem Kontinuum gezeigten verhalten. Zusätzlich wird gezeigt, dass die Diffusion des hier entwickelten Schemas unabhängig von der Mach Zahl ist. In Kapitel 3 wird ein HLL approximativer Riemann Löser für die Approximation der Lösungen der Flachwassergleichungen mit einem nicht konstanten Bodenprofil angewendet und ein well-balanced Schema entwickelt. Die meisten well-balanced Schemata für die Flachwassergleichungen behandeln nur den Fall eines Fluids im Ruhezustand, die so genannten Lake at Rest Lösungen. Hier wird ein Schema entwickelt, welches sich mit allen Gleichgewichten befasst. Zudem wird eine zweiter Ordnung Methode entwickelt, welche im Gegensatz zu anderen in der Literatur nicht auf einem iterativen Verfahren basiert. Numerische Experimente werden durchgeführt um die Vorteile des neuen Verfahrens zu zeigen. In Kapitel 4 wird ein Suliciu Relaxations Löser angepasst um die hydrostatischen Gleichgewichte der Euler Gleichungen mit einem Gravitationspotential aufzulösen. Die Gleichungen der hydrostatischen Gleichgewichte sind unterbestimmt und lassen deshalb keine Eindeutigen Lösungen zu. Es wird jedoch gezeigt, dass das neue Schema für eine große Klasse dieser Lösungen die well-balanced Eigenschaft besitzt. Für bestimmte Klassen werden Quadraturformeln zur Approximation des Quellterms entwickelt. Es wird auch gezeigt, dass das Schema robust, d.h. es erhält die Positivität der Masse und Energie, und stabil bezüglich der Entropieungleichung ist. Die numerischen Experimente konzentrieren sich vor allem auf den Einfluss der Quadraturformeln auf die well-balanced Eigenschaften. In Kapitel 5 wird ein Suliciu Relaxations Schema angepasst für Simulationen im Bereich kleiner Mach Zahlen. Es wird gezeigt, dass das neue Schema asymptotic preserving und die Diffusion kontrolliert ist. Zudem wird gezeigt, dass das Schema für bestimmte Parameter robust ist. Eine Stabilität wird aus einer Chapman-Enskog Analyse abgeleitet. Resultate numerische Experimente werden gezeigt um die Vorteile des neuen Verfahrens zu zeigen. In Kapitel 6 werden die Schemata aus den Kapiteln 4 und 5 kombiniert um das Verhalten des numerischen Schemas bei Flüssen mit kleiner Mach Zahl in durch die Gravitation geschichteten Atmosphären zu untersuchen. Es wird gezeigt, dass das Schema well-balanced ist. Die Robustheit und die Stabilität werden analog zu Kapitel 5 behandelt. Auch hier werden numerische Tests durchgeführt. Es zeigt sich, dass das neu entwickelte Schema in der Lage ist, die Dynamiken besser Aufzulösen als vor der Anpassung. Das Kapitel 7 beschäftigt sich mit der Entwicklung eines multidimensionalen Schemas basierend auf der Suliciu Relaxation. Jedoch ist die Arbeit an diesem Ansatz noch nicht beendet und numerische Resultate können nicht präsentiert werden. Es wird aufgezeigt, wo sich die Schwächen dieses Ansatzes befinden und weiterer Entwicklungsbedarf besteht. N2 - This work is concerned with the numerical approximation of solutions to models that are used to describe atmospheric or oceanographic flows. In particular, this work concen- trates on the approximation of the Shallow Water equations with bottom topography and the compressible Euler equations with a gravitational potential. Numerous methods have been developed to approximate solutions of these models. Of specific interest here are the approximations of near equilibrium solutions and, in the case of the Euler equations, the low Mach number flow regime. It is inherent in most of the numerical methods that the quality of the approximation increases with the number of degrees of freedom that are used. Therefore, these schemes are often run in parallel on big computers to achieve the best pos- sible approximation. However, even on those big machines, the desired accuracy can not be achieved by the given maximal number of degrees of freedom that these machines allow. The main focus in this work therefore lies in the development of numerical schemes that give better resolution of the resulting dynamics on the same number of degrees of freedom, compared to classical schemes. This work is the result of a cooperation of Prof. Klingenberg of the Institute of Mathe- matics in Wu¨rzburg and Prof. R¨opke of the Astrophysical Institute in Wu¨rzburg. The aim of this collaboration is the development of methods to compute stellar atmospheres. Two main challenges are tackled in this work. First, the accurate treatment of source terms in the numerical scheme. This leads to the so called well-balanced schemes. They allow for an accurate approximation of near equilibrium dynamics. The second challenge is the approx- imation of flows in the low Mach number regime. It is known that the compressible Euler equations tend towards the incompressible Euler equations when the Mach number tends to zero. Classical schemes often show excessive diffusion in that flow regime. The here devel- oped scheme falls into the category of an asymptotic preserving scheme, i.e. the numerical scheme reflects the behavior that is computed on the continuous equations. Moreover, it is shown that the diffusion of the numerical scheme is independent of the Mach number. In chapter 3, an HLL-type approximate Riemann solver is adapted for simulations of the Shallow Water equations with bottom topography to develop a well-balanced scheme. In the literature, most schemes only tackle the equilibria when the fluid is at rest, the so called Lake at rest solutions. Here a scheme is developed to accurately capture all the equilibria of the Shallow Water equations. Moreover, in contrast to other works, a second order extension is proposed, that does not rely on an iterative scheme inside the reconstruction procedure, leading to a more efficient scheme. In chapter 4, a Suliciu relaxation scheme is adapted for the resolution of hydrostatic equilibria of the Euler equations with a gravitational potential. The hydrostatic relations are underdetermined and therefore the solutions to that equations are not unique. However, the scheme is shown to be well-balanced for a wide class of hydrostatic equilibria. For specific classes, some quadrature rules are computed to ensure the exact well-balanced property. Moreover, the scheme is shown to be robust, i.e. it preserves the positivity of mass and energy, and stable with respect to the entropy. Numerical results are presented in order to investigate the impact of the different quadrature rules on the well-balanced property. In chapter 5, a Suliciu relaxation scheme is adapted for the simulations of low Mach number flows. The scheme is shown to be asymptotic preserving and not suffering from excessive diffusion in the low Mach number regime. Moreover, it is shown to be robust under certain parameter combinations and to be stable from an Chapman-Enskog analysis. Numerical results are presented in order to show the advantages of the new approach. In chapter 6, the schemes developed in the chapters 4 and 5 are combined in order to investigate the performance of the numerical scheme in the low Mach number regime in a gravitational stratified atmosphere. The scheme is shown the be well-balanced, robust and stable with respect to a Chapman-Enskog analysis. Numerical tests are presented to show the advantage of the newly proposed method over the classical scheme. In chapter 7, some remarks on an alternative way to tackle multidimensional simulations are presented. However no numerical simulations are performed and it is shown why further research on the suggested approach is necessary. KW - Strömung KW - Numerical Methods KW - Hyperbolic Partial Differential Equations KW - Well-Balanced KW - Asymptotic Preserving KW - Atmosphäre KW - Mathematisches Modell KW - PDE Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-162669 ER - TY - THES A1 - Birke, Claudius B. T1 - Low Mach and Well-Balanced Numerical Methods for Compressible Euler and Ideal MHD Equations with Gravity T1 - Low Mach und Well-Balanced Numerische Verfahren für die kompressiblen Euler und idealen MHD Gleichungen mit Gravitation N2 - Physical regimes characterized by low Mach numbers and steep stratifications pose severe challenges to standard finite volume methods. We present three new methods specifically designed to navigate these challenges by being both low Mach compliant and well-balanced. These properties are crucial for numerical methods to efficiently and accurately compute solutions in the regimes considered. First, we concentrate on the construction of an approximate Riemann solver within Godunov-type finite volume methods. A new relaxation system gives rise to a two-speed relaxation solver for the Euler equations with gravity. Derived from fundamental mathematical principles, this solver reduces the artificial dissipation in the subsonic regime and preserves hydrostatic equilibria. The solver is particularly stable as it satisfies a discrete entropy inequality, preserves positivity of density and internal energy, and suppresses checkerboard modes. The second scheme is designed to solve the equations of ideal MHD and combines different approaches. In order to deal with low Mach numbers, it makes use of a low-dissipation version of the HLLD solver and a partially implicit time discretization to relax the CFL time step constraint. A Deviation Well-Balancing method is employed to preserve a priori known magnetohydrostatic equilibria and thereby reduces the magnitude of spatial discretization errors in strongly stratified setups. The third scheme relies on an IMEX approach based on a splitting of the MHD equations. The slow scale part of the system is discretized by a time-explicit Godunov-type method, whereas the fast scale part is discretized implicitly by central finite differences. Numerical dissipation terms and CFL time step restriction of the method depend solely on the slow waves of the explicit part, making the method particularly suited for subsonic regimes. Deviation Well-Balancing ensures the preservation of a priori known magnetohydrostatic equilibria. The three schemes are applied to various numerical experiments for the compressible Euler and ideal MHD equations, demonstrating their ability to accurately simulate flows in regimes with low Mach numbers and strong stratification even on coarse grids. N2 - Physikalische Regime mit sehr niedrigen Machzahlen und starken Abschichtungen stellen konventionelle Finite Volumen Verfahren vor erhebliche Herausforderungen. In dieser Arbeit präsentieren wir drei neue Verfahren, die in der Lage sind, die Herausforderungen zu bewältigen. Die neuen Verfahren sind speziell an kleine Machzahlen angepasst und können (magneto-)hydrostatische Gleichgewichte exakt erhalten. Diese Eigenschaften sind essentiell für eine effiziente Berechnung präziser Lösungen in den betrachteten Regimen. Zunächst konzentrieren wir uns auf die Konstruktion eines approximativen Riemannlösers innerhalb von Godunov-artigen Finite Volumen Verfahren. Ein neues Relaxationssystem führt zu einem Relaxationslöser für die Euler Gleichungen mit Gravitation, der zwei Relaxationsgeschwindigkeiten verwendet. Abgeleitet von grundlegenden mathematischen Prinzipien reduziert dieser Löser die künstliche Dissipation im subsonischen Bereich und erhält hydrostatische Gleichgewichte. Der Löser ist besonders stabil, da er eine diskrete Entropieungleichung erfüllt, die Positivität von Dichte und interner Energie bewahrt und Schachbrettmuster unterdrückt. Das zweite Verfahren löst die idealen MHD Gleichungen und kombiniert verschiedene Ansätze, um die einzelnen numerischen Herausforderungen zu bewältigen. Für einen effizienten Umgang mit niedrigen Machzahlen wird eine Variante des HLLD Lösers mit künstlich niedriger Dissipation sowie eine teilweise implizite Zeitdiskretisierung zur Lockerung der CFL Zeitschrittbeschränkung gewählt. Eine Deviation Well-Balancing Methode wird angewendet, um magnetohydrostatische Gleichgewichte zu bewahren und dadurch das Ausmaß von räumlichen Diskretisierungsfehlern in stark geschichteten Atmosphären zu reduzieren. Das dritte Verfahren verwendet einen IMEX Ansatz, welcher auf einer Aufspaltung der MHD Gleichungen basiert. Das Teilsystem mit langsamen Ausbreitungsgeschwindigkeiten wird durch eine zeit-explizite Godunov-artige Methode diskretisiert, während das Teilsystem mit schnellen Ausbreitungsgeschwindigkiten implizit durch zentrale finite Differenzen diskretisiert wird. Numerische Dissipationsterme und die CFL Zeitschrittbeschränkung der Methode hängen somit nur von den langsamen Wellen des expliziten Teils ab, so dass die Methode besonders für subsonische Regime geeignet ist. Deviation Well-Balancing gewährleistet die Erhaltung a priori bekannter magnetohydrostatischer Gleichgewichte. Die drei Verfahren werden auf numerische Experimente für die kompressiblen Euler und idealen MHD Gleichungen angewendet und zeigen darin ihre Fähigkeit, Strömungen in Regimen mit niedrigen Machzahlen und starker Schichtung auch auf groben diskreten Gittern akkurat zu simulieren. KW - Magnetohydrodynamik KW - Numerische Strömungssimulation KW - Finite-Volumen-Methode KW - relaxation method KW - IMEX scheme KW - low Mach number KW - well-balanced Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-363303 ER -