TY - THES A1 - Wojtkowiak, Harald T1 - Planungssystem zur Steigerung der Autonomie von Kleinstsatelliten T1 - Planningsystem to increase the autonomy of small satellites N2 - Der Betrieb von Satelliten wird sich in Zukunft gravierend ändern. Die bisher ausgeübte konventionelle Vorgehensweise, bei der die Planung der vom Satelliten auszuführenden Aktivitäten sowie die Kontrolle hierüber ausschließlich vom Boden aus erfolgen, stößt bei heutigen Anwendungen an ihre Grenzen. Im schlimmsten Fall verhindert dieser Umstand sogar die Erschließung bisher ungenutzter Möglichkeiten. Der Gewinn eines Satelliten, sei es in Form wissenschaftlicher Daten oder der Vermarktung satellitengestützter Dienste, wird daher nicht optimal ausgeschöpft. Die Ursache für dieses Problem lässt sich im Grunde auf eine ausschlaggebende Tatsache zurückführen: Konventionelle Satelliten können ihr Verhalten, d.h. die Folge ihrer Tätigkeiten, nicht eigenständig anpassen. Stattdessen erstellt das Bedienpersonal am Boden - vor allem die Operatoren - mit Hilfe von Planungssoftware feste Ablaufpläne, die dann in Form von Kommandosequenzen von den Bodenstationen aus an die jeweiligen Satelliten hochgeladen werden. Dort werden die Befehle lediglich überprüft, interpretiert und strikt ausgeführt. Die Abarbeitung erfolgt linear. Situationsbedingte Änderungen, wie sie vergleichsweise bei der Codeausführung von Softwareprogrammen durch Kontrollkonstrukte, zum Beispiel Schleifen und Verzweigungen, üblich sind, sind typischerweise nicht vorgesehen. Der Operator ist daher die einzige Instanz, die das Verhalten des Satelliten mittels Kommandierung, per Upload, beeinflussen kann, und auch nur dann, wenn ein direkter Funkkontakt zwischen Satellit und Bodenstation besteht. Die dadurch möglichen Reaktionszeiten des Satelliten liegen bestenfalls bei einigen Sekunden, falls er sich im Wirkungsbereich der Bodenstation befindet. Außerhalb des Kontaktfensters kann sich die Zeitschranke, gegeben durch den Orbit und die aktuelle Position des Satelliten, von einigen Minuten bis hin zu einigen Stunden erstrecken. Die Signallaufzeiten der Funkübertragung verlängern die Reaktionszeiten um weitere Sekunden im erdnahen Bereich. Im interplanetaren Raum erstrecken sich die Zeitspannen aufgrund der immensen Entfernungen sogar auf mehrere Minuten. Dadurch bedingt liegt die derzeit technologisch mögliche, bodengestützte, Reaktionszeit von Satelliten bestenfalls im Bereich von einigen Sekunden. Diese Einschränkung stellt ein schweres Hindernis für neuartige Satellitenmissionen, bei denen insbesondere nichtdeterministische und kurzzeitige Phänomene (z.B. Blitze und Meteoreintritte in die Erdatmosphäre) Gegenstand der Beobachtungen sind, dar. Die langen Reaktionszeiten des konventionellen Satellitenbetriebs verhindern die Realisierung solcher Missionen, da die verzögerte Reaktion erst erfolgt, nachdem das zu beobachtende Ereignis bereits abgeschlossen ist. Die vorliegende Dissertation zeigt eine Möglichkeit, das durch die langen Reaktionszeiten entstandene Problem zu lösen, auf. Im Zentrum des Lösungsansatzes steht dabei die Autonomie. Im Wesentlichen geht es dabei darum, den Satelliten mit der Fähigkeit auszustatten, sein Verhalten, d.h. die Folge seiner Tätigkeiten, eigenständig zu bestimmen bzw. zu ändern. Dadurch wird die direkte Abhängigkeit des Satelliten vom Operator bei Reaktionen aufgehoben. Im Grunde wird der Satellit in die Lage versetzt, sich selbst zu kommandieren. Die Idee der Autonomie wurde im Rahmen der zugrunde liegenden Forschungsarbeiten umgesetzt. Das Ergebnis ist ein autonomes Planungssystem. Dabei handelt es sich um ein Softwaresystem, mit dem sich autonomes Verhalten im Satelliten realisieren lässt. Es kann an unterschiedliche Satellitenmissionen angepasst werden. Ferner deckt es verschiedene Aspekte des autonomen Satellitenbetriebs, angefangen bei der generellen Entscheidungsfindung der Tätigkeiten, über die zeitliche Ablaufplanung unter Einbeziehung von Randbedingungen (z.B. Ressourcen) bis hin zur eigentlichen Ausführung, d.h. Kommandierung, ab. Das Planungssystem kommt als Anwendung in ASAP, einer autonomen Sensorplattform, zum Einsatz. Es ist ein optisches System und dient der Detektion von kurzzeitigen Phänomenen und Ereignissen in der Erdatmosphäre. Die Forschungsarbeiten an dem autonomen Planungssystem, an ASAP sowie an anderen zu diesen in Bezug stehenden Systemen wurden an der Professur für Raumfahrttechnik des Lehrstuhls Informatik VIII der Julius-Maximilians-Universität Würzburg durchgeführt. N2 - Satellite operation will change thoroughly in future. So far the currently performed conventional approach of controlling satellites is hitting its limitation by todays application. This is due to the fact that activities of the satellite are planned and controlled exclusively by ground infrastructure. In the worst case this circumstance prevents the exploitation of potential but so far unused opportunities. Thus the yield of satellites, may it be in the form of scientific research data or the commercialization of satellite services, is not optimized. After all the cause of this problem can be tracked back to one crucial matter: Conventional satellites are not able to alter their behaviour, i.e. the order of their actions, themselves. Instead schedules are created by ground staff – mainly operators - utilizing specialized planning software. The output is then transformed into command sequences and uploaded to the dedicated satellite via ground stations. On-board the commands are solely checked, interpreted and strictly executed. The flow is linear. Situational changes, like in the code execution of software programs via control constructs, e.g. loops and branches, are typically not present. Thus the operator is the only instance which is able to change the behaviour of the satellite via command upload. Therefore a direct radio link between satellite and ground station is required. Reaction times are hereby restricted. In the best case, means when the satellite is inside the area of effect, the limitations are to a few seconds. Outside the contact window, the time bound may increase from minutes to hours. The exact timing are dependant from the orbit of the satellite and its position on it. The signal flow of the radio links adds additional reaction time from a few seconds in near earth up to some minutes in interplanetary space due to the vast distances. In sum the best achievable ground based reaction time lies in the area of some seconds. This restriction is a severe handicap for novel satellite missions with focus on non-deterministic and short-time phenomena, e.g. lightning and meteor entries into Earth atmosphere. The long reaction times of conventional satellite operations prevent the realization of such missions. This is due to the fact that delayed reactions take place after the event to observe has finished. This dissertation shows a possibility to solve the problem caused by long reaction times. Autonomy lies in the centre of the main approach. The key is to augment the satellite with the ability to alter its behaviour, i.e. the sequence of its actions, and to deliberate about it. Thus, the direct reaction dependency of the satellite from operators will be lifted. In principle the satellite will be able to command itself. The herein idea of autonomy is based on research work, which provides the context for design and implementation. The output is an autonomous planning system. It’s a software system which enables a satellite to behave autonomously and can be adapted to different types of satellite missions. Additionally, it covers different aspects of autonomous satellite operation, starting with general decision making of activities, going over to time scheduling inclusive constraint consideration, e.g. resources, and finishing at last with the actual execution, i.e. commanding. The autonomous planning system runs as one application of ASAP, an autonomous sensor platform. It is an optical system with the purpose to detect short-time phenomena and events in Earth atmosphere. The research work for the autonomous planning system, for ASAP and for other related systems has been executed at the professorship for space technology which is part of the department for computer science VIII at the Julius-Maximilians-Universität Würzburg. KW - Planungssystem KW - Autonomie KW - Satellit KW - Entscheidungsfindung KW - Ablaufplanung KW - Planausführung KW - System KW - Missionsbetrieb KW - decission finding KW - scheduling KW - plan execution KW - system KW - mission operation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-163569 ER - TY - THES A1 - Schiemenz, Fabian T1 - Covariance and Uncertainty Realism for Low Earth Orbiting Satellites via Quantification of Dominant Force Model Uncertainties T1 - Kovarianz- und Unsicherheitsrealismus für Satelliten in erdnahen Umlaufbahnen mittels Quantifizierung der dominanten Kräftemodellunsicherheiten N2 - The safety of future spaceflight depends on space surveillance and space traffic management, as the density of objects in Earth orbit has reached a level that requires collision avoidance maneuvers to be performed on a regular basis to avoid a mission or, in the context of human space flight, life-endangering threat. Driven by enhanced sensor systems capable of detecting centimeter-sized debris, megaconstellations and satellite miniaturization, the space debris problem has revealed many parallels to the plastic waste in our oceans, however with much less visibility to the eye. Future catalog sizes are expected to increase drastically, making it even more important to detect potentially dangerous encounters as early as possible. Due to the limited number of monitoring sensors, continuous observation of all objects is impossible, resulting in the need to predict the orbital paths and their uncertainty via models to perform collision risk assessment and space object catalog maintenance. For many years the uncertainty models used for orbit determination neglected any uncertainty in the astrodynamic force models, thereby implicitly assuming them to be flawless descriptions of the true space environment. This assumption is known to result in overly optimistic uncertainty estimates, which in turn complicate collision risk analysis. The keynote of this doctoral thesis is to establish uncertainty realism for low Earth orbiting satellites via a physically connected quantification of the dominant force model uncertainties, particularly multiple sources of atmospheric density uncertainty and orbital gravity uncertainty. The resulting process noise models are subsequently integrated into classical and state of the art orbit determination algorithms. Their positive impact is demonstrated via numerical orbit determination simulations and a collision risk assessment study using all non-restricted objects in the official United States space catalogs. It is shown that the consideration of atmospheric density uncertainty and gravity uncertainty significantly improves the quality of the orbit determination and thus makes a contribution to future spaceflight safety by increasing the reliability of the uncertainty estimates used for collision risk assessment. N2 - Die Sicherheit der künftigen Raumfahrt hängt von der Weltraumüberwachung und dem Weltraumobjektmanagement ab, da inzwischen die Dichte an Objekten im Erdorbit ein Niveau erreicht hat, welches regelmäßige Kollisionsvermeidungsmanöver erfordert um eine missions- oder, im Kontext der bemannten Raumfahrt, lebensgefährdende Situation zu vermeiden. Durch verbesserte Sensorsysteme, die in der Lage sind, zentimetergroße Objekte zu erkennen, Megakonstellationen und die Satellitenminiaturisierung hat das Weltraummüllproblem viele Parallelen zu den Plastikabfällen in unseren Weltmeeren offenbart, jedoch mit deutlich geringerer Sichtbarkeit für das Auge. Es ist zu erwarten, dass die Größe der Weltraumobjektkataloge in Zukunft drastisch ansteigen wird, was es umso wichtiger macht, potenziell gefährliche Begegnungen so früh wie möglich zu erkennen. Durch die begrenzte Anzahl an Überwachungssensoren ist eine kontinuierliche Beobachtung aller Objekte unmöglich, sodass die Umlaufbahnen und deren Unsicherheiten über Modelle vorausberechnet werden müssen, um die Bewertung von Kollisionsrisiken vorzunehmen und die Wartung der Objektkataloge sicherzustellen. Viele Jahre haben die zur Bahnbestimmung verwendeten Unsicherheitsmodelle jegliche Unsicherheit in den astrodynamischen Kräftemodellen vernachlässigt und somit implizit angenommen, dass diese fehlerfreie Beschreibungen der wahren Weltraumumgebung darstellen. Diese Annahme ist jedoch dafür bekannt, zu übermäßig optimistischen Unsicherheitsabschätzungen zu führen, was die Kollisionsrisikobewertung erschwert. Das Leitthema dieser Doktorarbeit ist die Berechnung realistischer Unsicherheiten von Objekten in einer niedrigen Erdumlaufbahn anhand einer Unsicherheitsquantifizierung mit physikalischem Bezug zu den Kräftemodellen, welche die größten Anteile an der Propagationsunsicherheit aufweisen. Dies sind insbesondere mehrere Quellen von atmosphärischer Dichteunsicherheit, sowie Gravitationsunsicherheit. Die resultierenden Prozessrauschmodelle werden anschließend in klassische und moderne Algorithmen zur Umlaufbahnbestimmung integriert. Die positiven Auswirkungen dieser Technik werden durch numerische Simulationen zur Orbitbestimmung, sowie durch eine Risikobewertungsstudie anhand aller nicht-sensitiven Objekte in den amerikanischen Weltraumkatalogen belegt. Es wird gezeigt, dass die Berücksichtigung von Unsicherheiten in der atmosphärischen Dichte und dem Gravitationsmodell die Qualität der Umlaufbahnbestimmung signifikant verbessert und somit durch zuverlässigere Unsicherheitsschätzungen bei der Kollisionsrisikobewertung einen Beitrag zur künftigen Sicherheit im Weltraum leistet. KW - Space Debris KW - Thermospheric density uncertainty KW - Gravity model uncertainty KW - Uncertainty realism KW - Orbit determination KW - Conjunction analysis KW - Thermosphärische Dichteunsicherheit KW - Gravitationsmodellunsicherheit KW - Unsicherheitsrealismus KW - Orbitbestimung KW - Konjunktionsanalyse Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-249474 ER - TY - GEN A1 - Reitemeyer, Malte A1 - Weinmann, Felix T1 - Detection of UAP with a Nano Satellite T1 - Detektion von UAP mit einem Nanosatelliten BT - A feasibility study N2 - Continued reports over the past decades of unknown aerial phenomena (short UAP) have given high relevance to the investigation and research of these. Especially reports by US Navy pilots and official investigations by the US Office of the director of national intelligence have emphasized the value of such efforts. Due to the inherently limited scope of earth based observations, a satellite based instrument for detection of such phenomena may prove especially useful. This paper as such investigates the possible viability of such an instrument on a nano satellite mission. T3 - Research on Unidentified Aerial Phenomena - 1 KW - Satellit KW - UFO KW - Forschungssatellit KW - Kleinsatellit KW - Erderkundungssatellit KW - UAP KW - Nano-Satellite KW - Nanosatellit KW - UAP Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-261391 ER - TY - THES A1 - Djebko, Kirill T1 - Quantitative modellbasierte Diagnose am Beispiel der Energieversorgung des SONATE-Nanosatelliten mit automatisch kalibrierten Modellkomponenten T1 - Quantitative model-based diagnosis using the example of the power supply of the SONATE nanosatellite with automatically calibrated model components N2 - Von technischen Systemen wird in der heutigen Zeit erwartet, dass diese stets fehlerfrei funktionieren, um einen reibungslosen Ablauf des Alltags zu gewährleisten. Technische Systeme jedoch können Defekte aufweisen, die deren Funktionsweise einschränken oder zu deren Totalausfall führen können. Grundsätzlich zeigen sich Defekte durch eine Veränderung im Verhalten von einzelnen Komponenten. Diese Abweichungen vom Nominalverhalten nehmen dabei an Intensität zu, je näher die entsprechende Komponente an einem Totalausfall ist. Aus diesem Grund sollte das Fehlverhalten von Komponenten rechtzeitig erkannt werden, um permanenten Schaden zu verhindern. Von besonderer Bedeutung ist dies für die Luft- und Raumfahrt. Bei einem Satelliten kann keine Wartung seiner Komponenten durchgeführt werden, wenn er sich bereits im Orbit befindet. Der Defekt einer einzelnen Komponente, wie der Batterie der Energieversorgung, kann hierbei den Verlust der gesamten Mission bedeuten. Grundsätzlich lässt sich Fehlererkennung manuell durchführen, wie es im Satellitenbetrieb oft üblich ist. Hierfür muss ein menschlicher Experte, ein sogenannter Operator, das System überwachen. Diese Form der Überwachung ist allerdings stark von der Zeit, Verfügbarkeit und Expertise des Operators, der die Überwachung durchführt, abhängig. Ein anderer Ansatz ist die Verwendung eines dedizierten Diagnosesystems. Dieses kann das technische System permanent überwachen und selbstständig Diagnosen berechnen. Die Diagnosen können dann durch einen Experten eingesehen werden, der auf ihrer Basis Aktionen durchführen kann. Das in dieser Arbeit vorgestellte modellbasierte Diagnosesystem verwendet ein quantitatives Modell eines technischen Systems, das dessen Nominalverhalten beschreibt. Das beobachtete Verhalten des technischen Systems, gegeben durch Messwerte, wird mit seinem erwarteten Verhalten, gegeben durch simulierte Werte des Modells, verglichen und Diskrepanzen bestimmt. Jede Diskrepanz ist dabei ein Symptom. Diagnosen werden dadurch berechnet, dass zunächst zu jedem Symptom eine sogenannte Konfliktmenge berechnet wird. Dies ist eine Menge von Komponenten, sodass der Defekt einer dieser Komponenten das entsprechende Symptom erklären könnte. Mithilfe dieser Konfliktmengen werden sogenannte Treffermengen berechnet. Eine Treffermenge ist eine Menge von Komponenten, sodass der gleichzeitige Defekt aller Komponenten dieser Menge alle beobachteten Symptome erklären könnte. Jede minimale Treffermenge entspricht dabei einer Diagnose. Zur Berechnung dieser Mengen nutzt das Diagnosesystem ein Verfahren, bei dem zunächst abhängige Komponenten bestimmt werden und diese von symptombehafteten Komponenten belastet und von korrekt funktionierenden Komponenten entlastet werden. Für die einzelnen Komponenten werden Bewertungen auf Basis dieser Be- und Entlastungen berechnet und mit ihnen Diagnosen gestellt. Da das Diagnosesystem auf ausreichend genaue Modelle angewiesen ist und die manuelle Kalibrierung dieser Modelle mit erheblichem Aufwand verbunden ist, wurde ein Verfahren zur automatischen Kalibrierung entwickelt. Dieses verwendet einen Zyklischen Genetischen Algorithmus, um mithilfe von aufgezeichneten Werten der realen Komponenten Modellparameter zu bestimmen, sodass die Modelle die aufgezeichneten Daten möglichst gut reproduzieren können. Zur Evaluation der automatischen Kalibrierung wurden ein Testaufbau und verschiedene dynamische und manuell schwierig zu kalibrierende Komponenten des Qualifikationsmodells eines realen Nanosatelliten, dem SONATE-Nanosatelliten modelliert und kalibriert. Der Testaufbau bestand dabei aus einem Batteriepack, einem Laderegler, einem Tiefentladeschutz, einem Entladeregler, einem Stepper Motor HAT und einem Motor. Er wurde zusätzlich zur automatischen Kalibrierung unabhängig manuell kalibriert. Die automatisch kalibrierten Satellitenkomponenten waren ein Reaktionsrad, ein Entladeregler, Magnetspulen, bestehend aus einer Ferritkernspule und zwei Luftspulen, eine Abschlussleiterplatine und eine Batterie. Zur Evaluation des Diagnosesystems wurde die Energieversorgung des Qualifikationsmodells des SONATE-Nanosatelliten modelliert. Für die Batterien, die Entladeregler, die Magnetspulen und die Reaktionsräder wurden die vorher automatisch kalibrierten Modelle genutzt. Für das Modell der Energieversorgung wurden Fehler simuliert und diese diagnostiziert. Die Ergebnisse der Evaluation der automatischen Kalibrierung waren, dass die automatische Kalibrierung eine mit der manuellen Kalibrierung vergleichbare Genauigkeit für den Testaufbau lieferte und diese sogar leicht übertraf und dass die automatisch kalibrierten Satellitenkomponenten eine durchweg hohe Genauigkeit aufwiesen und damit für den Einsatz im Diagnosesystem geeignet waren. Die Ergebnisse der Evaluation des Diagnosesystems waren, dass die simulierten Fehler zuverlässig gefunden wurden und dass das Diagnosesystem in der Lage war die plausiblen Ursachen dieser Fehler zu diagnostizieren. N2 - In today's world, technical systems are expected to always work faultlessly to ensure that everyday life runs smoothly. However, technical systems can have defects that limit their functionality or that can lead to their complete failure. In General, defects become apparent through a change in the behavior of individual components. These deviations from the nominal behavior increase in intensity the closer the corresponding component is to a complete failure. For this reason, the malfunction of components should be recognized in time to prevent permanent damage. This is of particular importance for the field of aerospace. When a satellite is already in orbit, no physical maintenance of its components can be performed. The failure of a single component, such as the battery of the power supply, can cause the loss of the entire mission. In principle, fault detection can be carried out manually, as is often the case in satellite operation. For this, a human expert, a so-called operator, has to monitor the system. However, this form of monitoring is heavily dependent on the time, availability and expertise of the operator who performs the monitoring. A different approach is to use a dedicated diagnostic system. Such a diagnostic system can continuously monitor the technical system and calculate diagnoses autonomously. These diagnoses can then be viewed by an expert who can perform actions based on them. The model-based diagnostic system presented in this work uses a quantitative model of a technical system that describes its nominal behavior. The observed behavior of the technical system, given by measured values, is compared with its expected behavior, given by simulated values of the model, and discrepancies are determined. Every discrepancy is a symptom. Diagnoses are calculated by first calculating a so-called conflict set for each symptom. This is a set of components for which holds, that the failure of any single one of these components could explain the corresponding symptom. Using these conflict sets, so-called hitting sets are computed. A hitting set is a set of components for which holds that the simultaneous defect of all components of this set could explain all the observed symptoms. Each minimal hitting set corresponds to one single diagnosis. To compute these sets, the diagnostic system uses a method in which dependent components are determined initially. These components are then suspected by symptomatic components and relieved by correctly functioning components. For the individual components, scores are calculated on the basis of these suspicions and reliefs and diagnoses are computed. Since the diagnostic system relies on sufficiently accurate models and the manual calibration of these models involves considerable effort, a procedure for automatic calibration was developed. This procedure uses a cyclic genetic algorithm to determine model parameters using recorded values of the real components, so that the models can reproduce the recorded data as well as possible. To evaluate the automatic calibration, a test set-up and various dynamic and manually difficult to calibrate components of the qualification model of a real nanosatellite, the SONATE-nanosatellite, were modeled and calibrated. The test setup consisted of a battery pack, a charge controller, a deep discharge protection unit, a discharge controller, a stepper motor HAT and a motor. It was independently manually calibrated, in addition to the automatic calibration. The automatically calibrated satellite components were a reaction wheel, magnetorquers, consisting of a ferrite core coil and two air core coils, a termination board and a battery. To evaluate the diagnostic system, the power supply of the qualification model of the SONATE nanosatellite was modeled. For the batteries, the discharge controller, the magnetorquers and the reaction wheels, the previously automatically calibrated models were used. For the model of the power supply, faults were simulated and diagnosed. The results of the evaluation of the automatic calibration were that the automatic calibration provided a level of accuracy that was comparable to, and even slightly exceeded, that of manual calibration for the test setup, and that the automatically calibrated satellite components were consistently of high accuracy and were therefore suitable to be used for the diagnostic system. The results of the evaluation of the diagnostic system were that the simulated faults were found reliably and that the diagnostic system was able to diagnose the plausible causes of these faults. KW - Satellit KW - Energieversorgung KW - Modellbasierte Diagnose KW - Diagnosesystem KW - Automatisches Kalibrieren Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-206628 ER - TY - THES A1 - Balagurin, Oleksii T1 - Designoptimierung von Sternsensoren für Pico- und Nanosatelliten T1 - Design optimization of star sensors for pico- and nanosatellites N2 - Die Raumfahrt ist eine der konservativsten Industriebranchen. Neue Entwicklungen von Komponenten und Systemen beruhen auf existierenden Standards und eigene Erfahrungen der Entwickler. Die Systeme sollen in einem vorgegebenen engen Zeitrahmen projektiert, in sehr kleiner Stückzahl gefertigt und schließlich aufwendig qualifiziert werden. Erfahrungsgemäß reicht die Zeit für Entwicklungsiterationen und weitgehende Perfektionierung des Systems oft nicht aus. Fertige Sensoren, Subsysteme und Systeme sind Unikate, die nur für eine bestimme Funktion und in manchen Fällen sogar nur für bestimmte Missionen konzipiert sind. Eine Neuentwicklung solcher Komponenten ist extrem teuer und risikobehaftet. Deswegen werden flugerprobte Systeme ohne Änderungen und Optimierung mehrere Jahre eingesetzt, ohne Technologiefortschritte zu berücksichtigen. Aufgrund des enormen finanziellen Aufwandes und der Trägheit ist die konventionelle Vorgehensweise in der Entwicklung nicht direkt auf Kleinsatelliten übertragbar. Eine dynamische Entwicklung im Low Cost Bereich benötigt eine universale und für unterschiedliche Anwendungsbereiche leicht modifizierbare Strategie. Diese Strategie soll nicht nur flexibel sein, sondern auch zu einer möglichst optimalen und effizienten Hardwarelösung führen. Diese Arbeit stellt ein Software-Tool für eine zeit- und kosteneffiziente Entwicklung von Sternsensoren für Kleinsatelliten vor. Um eine maximale Leistung des Komplettsystems zu erreichen, soll der Sensor die Anforderungen und Randbedingungen vorgegebener Anwendungen erfüllen und darüber hinaus für diese Anwendungen optimiert sein. Wegen der komplexen Zusammenhänge zwischen den Parametern optischer Sensorsysteme ist keine „straightforward" Lösung des Problems möglich. Nur durch den Einsatz computerbasierter Optimierungsverfahren kann schnell und effizient ein bestmögliches Systemkonzept für die gegebenen Randbedingungen ausgearbeitet werden. N2 - Aerospace is one of the most conservative industries. New developments of components and systems are based on existing standards and experience of developers. The systems should be projected in a given tight time frame, manufactured in very small quantities and finally qualified in a costly way. Experience shows that there is often insufficient time for development iterations and extensive perfection of the system. Finished sensors, subsystems and systems are unique, designed only for a specific function and in some cases even only for specific missions. New development of such components is extremely expensive and risky. For this reason, flight-proven systems are used for several years without modifications or optimization, and without taking technological advances into account. Due to the enormous financial effort and lethargy, the common approach to development is not directly applicable to small satellites. Dynamic development in the low-cost sector requires a universal strategy that can be easily modified for different applications. This strategy should not only be flexible, but also lead to the most optimal and efficient hardware solution. This work presents a software tool for a time and cost efficient development of star sensors for small satellites. In order to achieve maximal performance of the complete system, the sensor should fulfil the requirements and constraints of specified applications and, moreover, be optimized for these applications. Due to the complex interrelationships between the parameters of optical sensor systems, no straight forward solution of the problem is possible. Only by using computer based optimization methods, a best possible system concept for the given boundary conditions can be worked out quickly and efficiently. T3 - Raumfahrttechnik und Extraterrestrik - 1 KW - Sternsensor KW - CubeSat KW - Satellit KW - Optimisation KW - Star sensor KW - Star tracker Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258966 ER -