TY - THES A1 - Leikeim, Anna T1 - Vascularization Strategies for Full-Thickness Skin Equivalents to Model Melanoma Progression T1 - Vaskularisierungsstrategien für Vollhautäquivalente zur Modellierung der Melanom-Progression N2 - Malignant melanoma (MM) is the most dangerous type of skin cancer with rising incidences worldwide. Melanoma skin models can help to elucidate its causes and formation or to develop new treatment strategies. However, most of the current skin models lack a vasculature, limiting their functionality and applicability. MM relies on the vascular system for its own supply and for its dissemination to distant body sites via lymphatic and blood vessels. Thus, to accurately study MM progression, a functional vasculature is indispensable. To date, there are no vascularized skin models to study melanoma metastasis in vitro, which is why such studies still rely on animal experimentation. In the present thesis, two different approaches for the vascularization of skin models are employed with the aim to establish a vascularized 3D in vitro full-thickness skin equivalent (FTSE) that can serve as a test system for the investigation of the progression of MM. Initially, endothelial cells were incorporated in the dermal part of FTSEs. The optimal seeding density, a spheroid conformation of the cells and the cell culture medium were tested. A high cell density resulted in the formation of lumen-forming shapes distributed in the dermal part of the model. These capillary-like structures were proven to be of endothelial origin by staining for the endothelial cell marker CD31. The established vascularized FTSE (vFTSE) was characterized histologically after 4 weeks of culture, revealing an architecture similar to human skin in vivo with a stratified epidermis, separated from the dermal equivalent by a basement membrane indicated by collagen type IV. However, this random capillary-like network is not functional as it cannot be perfused. Therefore, the second vascularization approach focused on the generation of a perfusable tissue construct. A channel was molded within a collagen hydrogel and seeded with endothelial cells to mimic a central, perfusable vessel. The generation and the perfusion culture of the collagen hydrogel was enabled by the use of two custom-made, 3D printed bioreactors. Histological assessment of the hydrogels revealed the lining of the channel with a monolayer of endothelial cells, expressing the cell specific marker CD31. For the investigation of MM progression in vitro, a 3D melanoma skin equivalent was established. Melanoma cells were incorporated in the epidermal part of FTSEs, representing the native microenvironment of the tumor. Melanoma nests grew at the dermo-epidermal junction within the well stratified epidermis and were characterized by the expression of common melanoma markers. First experiments were conducted showing the feasibility of combining the melanoma model with the vFTSE, resulting in skin models with tumors at the dermo-epidermal junction and lumen-like structures in the dermis. Taken together, the models presented in this thesis provide further steps towards the establishment of a vascularized, perfusable melanoma model to study melanoma progression and metastasis. N2 - Das maligne Melanom (MM) ist die gefährlichste Form von Hautkrebs mit weltweit steigender Inzidenz. Melanom-Hautmodelle können helfen, seine Ursachen und Entstehung aufzuklären oder neue Behandlungsstrategien zu entwickeln. Den meisten bisherigen Hautmodellen fehlt jedoch ein Gefäßsystem, was ihre Funktionalität und Anwendbarkeit einschränkt. Das MM ist auf das Gefäßsystem angewiesen, sowohl für die eigene Versorgung als auch für die Ausbreitung über Lymph- und Blutgefäße zu entfernten Körperstellen. Um die Entwicklung des MM genau zu studieren, ist daher eine funktionelles Gefäßsystem unabdingbar. Bislang gibt es keine vaskularisierten Hautmodelle, um die Melanommetastasierung in vitro zu untersuchen, weshalb solche Studien immer noch auf Tierversuche angewiesen sind. In der vorliegenden Arbeit werden zwei unterschiedliche Ansätze zur Vaskularisierung von Hautmodellen mit dem Ziel verfolgt, ein vaskularisiertes 3D in vitro Vollhautmodell (full-thickness skin equivalent, FTSE) zu etablieren, das als Testsystem zur Untersuchung der Entwicklung des MM dienen kann. Einerseits wurden Endothelzellen in den dermalen Teil von FTSEs integriert. Die optimale Aussaatdichte, eine sphäroidale Konformation der Zellen und das Zellkulturmedium wurden getestet. Eine hohe Zelldichte führte zur Bildung von lumenbildenden Formen, die im dermalen Teil des Modells verteilt waren. Diese kapillarähnlichen Strukturen wurden durch Färbung für den Endothelzellmarker CD31 als endothelialen Ursprungs nachgewiesen. Das etablierte vaskularisierte FTSE (vFTSE) wurde nach 4 Wochen Kultur histologisch charakterisiert und zeigte eine der menschlichen Haut in vivo ähnliche Architektur mit einer geschichteten Epidermis, die vom dermalen Äquivalent durch eine Basalmembran, gezeigt durch Kollagen Typ IV, getrennt ist. Dieses zufällige kapillarartige Netzwerk ist jedoch nicht funktional, da es nicht durchblutet werden kann. Daher konzentrierte sich der zweite Vaskularisierungsansatz auf die Erzeugung eines perfundierbaren Gewebekonstrukts. Ein Kanal wurde in einem Kollagenhydrogel geformt und mit Endothelzellen besiedelt, um ein zentrales, perfundierbares Gefäß zu imitieren. Die Erzeugung und die Perfusionskultur des Kollagenhydrogels wurde durch die Verwendung von zwei speziell angefertigten, 3D-gedruckten Bioreaktoren ermöglicht. Die histologische Beurteilung der Hydrogele zeigte die Auskleidung des Kanals mit einer Einzelschicht von Endothelzellen, die den zellspezifischen Marker CD31 exprimieren. Für die Untersuchung der MM-Progression in vitro wurde ein 3D-Melanom-Hautäquivalent hergestellt. Melanomzellen wurden in den epidermalen Teil von FTSEs integriert, was die native Mikroumgebung des Tumors darstellt. Die Melanomnester wuchsen an der dermo-epidermalen Grenzfläche innerhalb der gut stratifizierten Epidermis und wurden durch die Expression gängiger Melanommarker charakterisiert. Zusätzlich konnte die Kombination des Melanom-Modells mit dem vFTSE gezeigt werden, was zu Hautmodellen mit Tumoren an der dermo-epidermalen Grenzfläche und lumenartigen Strukturen in der Dermis führte. Alles in allem bieten die in dieser Arbeit vorgestellten Modelle weitere Schritte hin zur Entwicklung eines vaskularisierten, perfundierbaren Melanommodell zur Erforschung der Melanomprogression und Metastasierung. KW - Tissue Engineering KW - In-vitro-Kultur KW - Melanom KW - skin model KW - vascularization KW - in vitro-Testsystem KW - perfused hydrogel Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-272956 ER - TY - THES A1 - Mildenberger, Michael T1 - Untersuchung von im Tissue-Engineering-Verfahren hergestellten Oral-Mukosa-Äquivalenten mittels RT-qPCR (reverse transcription quantitative real-time polymerase chain reaction) T1 - Examination of tissue engineered oral mucosa equivalents by RT-qPCR (reverse transcription quantitative real-time polymerase chain reaction) N2 - Im Rahmen dieser Arbeit wurden Fibroblasten und Keratinozyten, welche in vitro auf unterschiedlichen Scaffolds sowohl gemeinsam als auch in Monokulturen gezüchtet wurden, mittels Real-time PCR auf ihre Genausschüttung untersucht, um festzustellen wie sich die Unterlage auf die Genausschüttung auswirkt. Hierzu wurden die Proben sowohl auf die Genexpressionsmarker für die Basallamina Kollagen IV, Laminin 1 und 5 als auch auf die Genexpressionsmarker für die frühe Differenzierung Keratin K13 und K14 untersucht. Als Referenzgen wurde β-Actin ausgewählt, da dieses Gen in den Vorversuchen mit zwei weiteren Referenzgenen die stabilste Expression gezeigt hatte. Die Genexpressionsanalyse zeigte, dass nur in den Kokulturen von Keratinozyten und Fibroblasten eine ausgewogene Genexpression stattfindet, da sich die Zellen darin beeinflussen und regulieren. N2 - Fibroblasts and keratinocytes were cultured in vitro on different scaffolds in monocultures and cocultures and examined by RT-qPCR for gene expression. Gene expression analysis was made for genes coding for basement Membrane collagen IV, laminin 1 and 5 and for early differentiation keratin K13 and K14. β-Actin was used as reference gene, because it showed in preliminary tests with two other reference genes most stable expression. Gene expression analysis showed only in cocultures of fibroblasts and keratinocytes balanced gene expression, because the two cell types affect and regulate each other. KW - Real time quantitative PCR KW - Tissue Engineering KW - Mundschleimhaut KW - Referenzgen Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-155286 ER - TY - THES A1 - Kremer, Antje T1 - Tissue Engineering of a Vascularized Meniscus Implant T1 - Tissue Engineering eines vaskularisierten Meniskus-Implantates N2 - The knee joint is a complex composite joint containing the C-shaped wedge-like menisci composed of fibrocartilage. Due to their complex composition and structure, they provide mechanical resilience to the knee joint protecting the articular cartilage. Because of the limited repair potential, meniscal injuries do not only affect the meniscus itself but also lead to altered joint homeostasis and inevitably to secondary osteoarthritis. The meniscus was characterized focusing on its anatomy, structure and meniscal markers such as aggrecan, collagen type I (Col I) and Col II. The components relevant for meniscus tissue engineering, namely cells, Col I scaffolds, biochemical and biomechanical stimuli were studied. Meniscal cells (MCs) were isolated from meniscus, mesenchymal stem cells (MSCs) from bone marrow and dermal microvascular endothelial cells (d-mvECs) from foreskin biopsies. For the human (h) meniscus model, wedge-shape compression of a hMSC-laden Col I gel was successfully established. During three weeks of static culture, the biochemical stimulus transforming growth factor beta-3 (TGF beta-3) led to a compact collagen structure. On day 21, this meniscus model showed high metabolic activity and matrix remodeling as confirmed by matrix metalloproteinases detection. The fibrochondrogenic properties were illustrated by immunohistochemical detection of meniscal markers, significant GAG/DNA increase and increased compressive properties. For further improvement, biomechanical stimulation systems by compression and hydrostatic pressure were designed. As one vascularization approach, direct stimulation with ciclopirox olamine (CPX) significantly increased sprouting of hd-mvEC spheroids even in absence of auxiliary cells such as MSCs. Second, a cell sheet composed of hMSCs and hd-mvECs was fabricated by temperature triggered cell sheet engineering and transferred onto the wedge-shaped meniscus model. Third, a biological vascularized scaffold (BioVaSc-TERM) was re-endothelialized with hd-mvECs providing a viable vascularized network. The vascularized BioVaSc-TERM was suggested as wrapping scaffold of the meniscus model by using two suture techniques, the all-inside-repair (AIR) for the posterior horn, and the outside-in-refixation (OIR) for the anterior horn and the middle part. This meniscus model for replacing torn menisci is a promising approach to be further optimized regarding vascularization, biochemical and biomechanical stimuli. N2 - Das Knie ist ein komplex zusammengesetztes Gelenk mit zwei C-förmigen Keilen aus Bindegewebsknorpel, die Menisken. Sie sorgen für die mechanische Belastbarkeit des Knies, wodurch der Gelenksknorpel geschützt wird. Aufgrund des limitierten Heilungspotentials beeinträchtigen Meniskusverletzungen nicht nur den Meniskus selbst, sondern schädigen auch das Gelenksgleichgewicht und führen zu sekundärer Osteoarthritis. Der Meniskus wurde in seiner Anatomie, Struktur und Meniskusmarkern wie Aggrekan, Kollagen I und Kollagen II charakterisiert. Die Komponenten von Meniskus Tissue Engineering, Zellen, Kollagen I Materialien, biochemische und biomechanische Stimuli wurden untersucht. Meniskuszellen (MCs) wurden aus Meniskus isoliert, mesenchymale Stammzellen (MSCs) aus Knochenmark und dermale mikrovaskuläre Endothelzellen (d-mvECs) aus Vorhautbiopsien. Für das humane (h) Meniskus-Modell wurde die keilförmige Kompression eines hMSC-beladenen Kollagen I Gels erfolgreich etabliert. Während drei Wochen statischer Kultur führte der biochemische Stimulus transformierender Wachs-tumsfaktor beta-3 (TGF beta-3) zu einer kompakten Kollagenstruktur. An Tag 21 zeigte dieses Meniskus-Modell eine hohe metabolische Aktivität und Matrixumbau durch die Detektion von Matrix-Metalloproteasen. Der Bindegewebsknorpel wurde durch immunhistochemische Detektion der Meniskusmarker, einem signifikanten GAG/DNA Anstieg und erhöhter Kompressionseigenschaften bestätigt. Für weitere Verbesserungen wurden biomechanische Stimulierungssysteme mittels Kompression und hydrostatischen Druck aufgebaut. Als Vaskularisierungsansatz führte die direkte Stimulierung mit Ciclopirox Olamine (CPX) sogar in Abwesenheit von Helferzellen wie MSCs zu einem erhöhten Sprouting der hd-mvEC Spheroide. Zweitens wurde ein hMSC/hd-mvEC Sheet mithilfe eines Temperatur-abhängigen Verfahrens produziert und auf das keilförmige Meniskus-Modell transferiert. Drittens wurde ein vaskularisiertes Biomaterial (BioVaSc-TERM) mit hd-mvECs besiedelt, wodurch ein vitales Gefäßystem bereitgestellt wurde. Die vaskularisierte BioVaSc-TERM wurde als Hülle des Meniskus-Modells unter der Verwendung von zwei Nahttechniken vorgeschlagen: die All-Inside-Repair (AIR) für das Hinterhorn und die Outside-In-Refixation (OIR) für das Vorderhorn und den mittleren Teil. Dieses Meniskus-Modell ist ein vielversprechender Ansatz für den Meniskusersatz, um in Vaskularisierung, biochemischer und biomechanischer Stimuli weiter optimiert zu werden. KW - Meniskus KW - Tissue Engineering KW - Regenerative Medizin KW - Meniskusimplantat KW - meniscus implant KW - Tissue Engineering KW - tissue engineering KW - vascularization KW - Vaskularisierung Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-184326 ER - TY - THES A1 - Weyhmüller Reboredo, Jenny T1 - Tissue Engineering eines Meniskus - Vom Biomaterial zum Implantat T1 - Tissue Engineering of a meniscus - from a biomaterial to the implant N2 - Der Meniskus, ein scheibenförmiger Faserknorpel, spielt im Kniegelenk eine bedeutende Rolle, weil er Kräfte und Druck im Kniegelenk gleichmäßig verteilt, Stöße dämpft sowie der Kraftübertragung und Stabilisierung dient. Durch die Entfernung des Gewebes, der sogenannten Totalmeniskektomie, nach einer Meniskusverletzung oder einem Riss, verändern sich die mechanischen Eigenschaften des Gelenks stark und verursachen durch die erhöhte Belastung der Gelenkflächen Arthrose. Arthrose ist weltweit die Häufigste aller Gelenkerkrankungen. Der Erhalt der körperlichen Leistungsfähigkeit und Mobilität bis ins hohe Alter sowie die Bewahrung der Gesundheit von Herz-Kreislauf- und Stoffwechselorganen zählen aufgrund des demografischen Wandels zu den großen medizinischen Herausforderungen. Die Erkrankung des muskuloskelettalen Systems stellte 2010 im Bundesgebiet die am häufigsten vorkommende Krankheitsart dar. Während Risse in den äußeren Teilen des Meniskus aufgrund des Anschlusses an das Blutgefäßsystem spontan heilen können, können sie dies in tieferen Zonen nicht. Durch die begrenzte Heilungsfähigkeit des Knorpels bleibt langfristig der Einsatz eines Ersatzgewebes die einzige therapeutische Alternative. In der vorliegenden Arbeit wurde als therapeutische Alternative erfolgreich ein vaskularisiertes Meniskusersatzgewebe mit Methoden des Tissue Engineering entwickelt. Es soll in Zukunft als Implantat Verwendung finden. Tissue Engineering ist ein interdisziplinäres Forschungsfeld, in dem Gewebe außerhalb des Körpers generiert werden. Schlüsselkomponenten sind Zellen, die aus einem Organismus isoliert werden, und Trägerstrukturen, die mit Zellen besiedelt werden. Die Biomaterialien geben den Zellen eine geeignete Umgebung, die die Extrazelluläre Matrix (EZM) ersetzen soll, um die Funktion der Zellen beizubehalten, eigene Matrix zu bilden. Zum Erhalt eines funktionelles Gewebes werden oftmals dynamische Kultursysteme, sogenannte Bioreaktoren, verwendet, die natürliche Stimuli wie beispielsweise den Blutfluss oder mechanische Kompressionskräfte während der in vitro Reifungsphase des Gewebes, zur Verfügung stellen. Das Gewebekonstrukt wurde auf Basis natürlicher Biomaterialien aufgebaut, unter Verwendung ausschließlich primärer Zellen, die später direkt vom Patienten gewonnen werden können und damit Abstoßungsreaktionen auszuschließen sind. Da der Meniskus teilvaskularisiert ist und die in vivo Situation des Gewebes bestmöglich nachgebaut werden sollte, wurden Konstrukte mit mehreren Zelltypen, sogenannte Ko-Kulturen aufgebaut. Neben mikrovaskulären Endothelzellen (mvEZ) und Meniskuszellen (MZ) erfolgten Versuche mit mesenchymalen Stammzellen (MSZ). Zur Bereitstellung einer zelltypspezifischen Matrixumgebung, diente den mvEZ ein Stück Schweinedarm mit azellularisierten Gefäßstrukturen (BioVaSc®) und den MZ diente eine geeig- nete Kollagenmatrix (Kollagen Typ I Hydrogel). Die Validierung und Charakterisierung des aufgebauten 3D Meniskuskonstrukts, welches in einem dynamischen Perfusions-Bioreaktorsystem kultiviert wurde, erfolgte mit knorpeltypischen Matrixmarkern wie Aggrekan, Kollagen Typ I, II und X sowie mit den Transkriptionsfaktoren RunX2 und Sox9, die in der Knorpelentstehung von großer Bedeutung sind. Zusätzlich erfolgten Auswertungen mit endothelzellspezifischen Markern wie vWF, CD31 und VEGF, um die Vaskularisierung im Konstrukt nachzuweisen. Analysiert wurden auch die Zellvitalitäten in den Konstrukten. Aufgrund einer nur geringen Verfügbarkeit von MZ wurden Kulturansätze mit alternativen Zellquellen, den MSZ, durchgeführt. Dafür erfolgte zunächst deren Isolation und Charakterisierung und die Auswahl einer geeigneten 3D Kollagenmatrix. Die beste Zellintegration der MSZ konnte auf einer eigens hergestellten elektrogesponnenen Matrix beobachtet werden. Die Matrix besteht aus zwei unterschiedlichen Kollagentypen, die auf insgesamt fünf Schichten verteilt sind. Die Fasern besitzen weiter unterschiedliche Ausrichtungen. Während die Kollagen Typ I Fasern in den äußeren Schichten keiner Ausrichtung zugehören, liegen die Kollagen Typ II Fasern in der mittleren Schicht parallel zueinander. Der native Meniskus war für den Aufbau einer solchen Kollagen-Trägerstruktur das natürliche Vorbild, das imitiert werden sollte. Nach der Besiedelung der Matrix mit MSZ, konnte eine Integration der Zellen bereits nach vier Tagen bis in die Mittelschicht sowie eine spontane chondrogene Differenzierung nach einer insgesamt dreiwöchigen Kultivierung gezeigt werden. Das Biomaterial stellt in Hinblick auf die Differenzierung der Zellen ohne die Zugabe von Wachstumsfaktoren eine relevante Bedeutung für klinische Studien dar. Zur Kultivierung des 3D Meniskuskonstrukts wurde ein Bioreaktor entwickelt. Mit diesem können neben Perfusion der Gefäßsysteme zusätzlich Kompressionskräfte sowie Scherspannungen auf das Ersatzgewebe appliziert und die Differenzierung von MZ bzw. MSZ während der in vitro Kultur über mechanische Reize stimuliert werden. Ein anderes Anwendungsfeld für den neuartigen Bioreaktor ist seine Verwendung als Prüftestsystem für die Optimierung und Qualitätssicherung von Gewebekonstrukten. N2 - The meniscus, a disk-shaped fibrous cartilage, plays an important role in the equal distribution of pressure, shock absorption, power transmission and stability within the knee joint. After a meniscus injury or a meniscus tear, a total meniscectomy is done where the complete tissue is removed. This leads to a change of mechanical properties in the joint and causes arthrosis by an increased strain on the joint surfaces. Wordwide arthrosis is the most frequent of all joint diseases. Due to the demographic change, maintaining physical fitness and mobility up to an old age are the main challenges besides ensuring health of the heart and circulatory system and of the metabolic organs. Musculoskeletal disorders represented the most frequent type of disease in Germany in 2010. While tears in the outer zone of the meniscus heal spontaneously because of its connection to the blood vessel system, tears in the deeper zones do not heal. Due to the limited healing capacity of cartilage the use of a replacement tissue is the only therapeutic alternative in the long run. In the present work a vascularized meniscus construct as therapeutic alternatives has been developed with the Tissue Engineering method for the further use as an implant. Tissue En- gineering is an interdisciplinary research field to generate tissues outside the body. The key components are isolated cells from an organism, and scaffolds, which are seeded with cells. Biomaterials provide a suitable environment that replaces the extracellular matrix (ECM) to maintain cell functionality to let cells build up their own matrix. To maintain a functional tissue during in vitro dynamic culture, bioreactor systems are used to provide natural stimuli such as blood flow or mechanical compression forces. The tissue construct is based on natural biomaterials and solely on primary cells, which later can be isolated directly from the patient and thereby exclude repulsion reactions. Due to its limited vascularity of the meniscus and the aim to build up at its best the in vivo situation more than one cell type is used to generate constructs, so called co-culture systems. Mesen- chymal stem cells (MSZ) besides microvascular endothelial cells (mvEZ) and meniscus cells (MZ) were used in the experiments. To supply a cell type specific matrix environment, a segment of a porcine jejunum with decellularized vascular structures (BioVaSc®) for the mvEZ and a collagen based matrix (collagen type I hydrogel) for the MZ were employed. The validation and characterization of the de- veloped 3D meniscus construct, that was cultured in a dynamic perfusion bioreactor system, was performed by using cartilage matrix specific markers, such as aggrecan, collagen type I, II and X, as well as the transcription factors RunX2 and Sox9 that are of major importance for cartilage development. Further analysis with endothelial cell specific markers, such as vWF, CD31 and VEGF were performed to evaluate the vascularization of the construct. Furthermore, cell vitality tests of the construct were made. Because of the limited availability of primary MZ, culture approaches with MSZ as an alter- native cell source were investigated. Cell isolation and characterization were performed and a suitable 3D collagen matrix was selected. The best cell integration of the MSZ could be observed on a specifically engineered electrospun matrix. The matrix consists of two different collagen types that are arranged in a total of five layers. The fibers are further orientated in different directions. While outer layers consist of randomly-aligned collagen type I fibers, the collagen type II fibers in the middle layer are aligned parallel to each other. The native meniscus tissue serves as natural example and its structure is replicated in such a collagen scaffold. After seeding the scaffold with MSZ, cell integration into the middle layer could be observed after four days, as well as a spontanous chondrogenic differentation after three weeks of culture. The biomaterial developed in this work has to be considered as relevant for clinical studies with regard to cell differentiation without adding growth factors to the culture. For the culture of 3D meniscus construct a bioreactor was successfully developed, that can apply compressive strength and shear stress to the tissue model in addition to perfusing the vascular system. With these measures the differentiation of MZ or MSZ could be induced with mechanical strains during the in vitro culture. Another field of application for the new bioreactor is its use as a test system for the optimization and quality control of the tissue models. KW - Tissue Engineering KW - Meniskustransplantation KW - Bioreaktor KW - Gewebekultur KW - Biomaterial KW - Elektrospinning KW - Implantatentwicklung Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-108477 ER - TY - THES A1 - Schliermann [geb. Stratmann], Anna Theresa T1 - The Role of FGF Receptor 2 in GDF5 mediated Signal Transduction T1 - Die Rolle des FGF Rezeptors 2 in GDF5-vermittelter Signaltransduktion N2 - Bone morphogenetic proteins (BMPs) are involved in various aspects of cell-cell communication in complex life forms. They act as morphogens, help differentiate different cell types from different progenitor cells in development, and are involved in many instances of intercellular communication, from forming a body axis to healing bone fractures, from sugar metabolism to angiogenesis. If the same protein or protein family carries out many functions, there is a demand to regulate and fine-tune their biological activities, and BMPs are highly regulated to generate cell- and context-dependent outcomes. Not all such instances can be explained yet. Growth/differentiation factor (GDF)5 (or BMP14) synergizes with BMP2 on chondrogenic ATDC5 cells, but antagonizes BMP2 on myoblastic C2C12 cells. Known regulators of BMP2/GDF5 signal transduction failed to explain this context-dependent difference, so a microarray was performed to identify new, cell-specific regulatory components. One identified candidate, the fibroblast growth factor receptor (FGFR)2, was analyzed as a potential new co-receptor to BMP ligands such as GDF5: It was shown that FGFR2 directly binds BMP2, GDF5, and other BMP ligands in vitro, and FGFR2 was able to positively influence BMP2/GDF5-mediated signaling outcome in cell-based assays. This effect was independent of FGFR2s kinase activity, and independent of the downstream mediators SMAD1/5/8, p42/p44, Akt, and p38. The elevated colocalization of BMP receptor type IA and FGFR2 in the presence of BMP2 or GDF5 suggests a signaling complex containing both receptors, akin to other known co-receptors of BMP ligands such as repulsive guidance molecules. This unexpected direct interaction between FGF receptor and BMP ligands potentially opens a new category of BMP signal transduction regulation, as FGFR2 is the second receptor tyrosine kinase to be identified as BMP co-receptor, and more may follow. The integration of cell surface interactions between members of the FGF and BMP family especially may widen the knowledge of such cellular communication mechanisms which involve both growth factor families, including morphogen gradients and osteogenesis, and may in consequence help to improve treatment options in osteochodnral diseases. N2 - Bone morphogenetic proteins (BMPs) sind oft an interzellulärer Kommunikation beteiligt. Sie sind Morphogene, spielen eine Rolle in der Differenzierung von zahlreichen Zelltypen aus verschiedenen Vorgängerzellen während der Entwicklung, und sind an vielen weiteren Beispielen der Zell-Zell-Kommunikation beteiligt: von der Formation einer Körperachse bis hin zur Heilung von Knochenbrüchen, vom Zuckermetabolismus bis zur Angiogenese. Wann immer dasselbe Protein oder dieselbe Proteinfamilie so viele Funktionen erfüllt, bedarf es der Regulation und Feinabstimmung ihrer diversen biologischen Aktivitäten, und BMPs sind zu dem Erzielen zell- und kontextspezifischer Effekte in ihrer Wirkung entsprechend stark reguliert. Nicht in allen Fällen sind die Mechanismen solcher Regulation bisher bekannt. Growth/differentiation factor (GDF)5 (oder BMP14) agiert mit BMP2 auf den chondrogenen ATDC5 Zellen synergistisch, aber antagonisiert BMP2 auf den myoblastischen C2C12 Zellen. Diese kontextabhängige Diskrepanz konnte mithilfe der bekannten Regulatoren von BMP2/GDF5-mediierten Signalen nicht erklärt werden. Daher wurde ein Microarray durchgeführt, um neue, zellspezifische regulatorische Proteine zu identifizieren. Einer der identifizierten Kandidaten, fibroblast growth factor receptor (FGFR)2, wurde auf eine potentielle Funktion als neuer Korezeptor für BMP Liganden wie GDF5 analysiert: Es konnte gezeigt werden, dass FGFR2 BMP2, GDF5 und andere BMP Liganden in vitro direkt binden und die biologische Aktivität von BMP2 und GDF5 in Zellkultursystemen positiv beeinflussen konnte. Diese Beobachtungen waren unabhängig von der Kinaseaktivität des FGFR2, und unabhängig von den intrazellulären Mediatoren SMAD1/5/8, p42/p44, Akt und p38. Die erhöhte Kolokalisation von FGFR2 mit dem BMP Rezeptor IA in der Präsenz von BMP2 oder GDF5 weist darauf hin, dass der entsprechende Signalkomplex möglicherweise beide Rezeptoren gleichzeitig enthält; ähnlich, wie das für andere bekannte Korezeptoren von BMP Liganden wie etwa den repulsive guidance molecules der Fall ist. Die unerwartete direkte Interaktion von einem FGF Rezeptor mit BMP-Liganden ist möglicherweise nur ein Beispiel für einen generelleren Mechanismus. Tatsächlich ist FGFR2 bereits die zweite Rezeptortyrosinkinase, die als BMP-Korezeptor identifiziert wurde, und es ist möglich, dass es noch mehr gibt. Speziell im Bezug auf die FGF-BMP Interaktion bergen die hier dargestellten Ergebnisse Potential zu neuen Erkenntnissen. Die Proteinfamilien dieser beiden Wachstumsfaktoren sind häufiger an demselben zellulären Mechanismen beteiligt; etwa an der Entstehung von Morphogengradienten in der Entwicklung oder an der Osteogenese. Die Interaktion der FGF und BMP Proteinfamilien auf der Zelloberfläche könnte eine wertvolle Ergänzung zu der Untersuchung ihres Zusammenspiels im Zellinneren sein, und könnte in diesem Zusammenhang sogar langfristig die Behandlungsmöglichkeiten von osteochondralen Erkrankungen erweitern. KW - Molekularbiologie KW - FGF signaling KW - BMP signaling Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-192889 ER - TY - THES A1 - Rosenbaum, Corinna T1 - The role of enteric glial cells under inflammatory conditions of the intestine T1 - Die Rolle von enterischen Gliazellen unter entzündlichen Bedingungen im Darm N2 - The enteric nervous system (ENS) innervates the gastrointestinal (GI) tract and controls central aspects of GI physiology including contractility of the intestinal musculature, glandular secretion and intestinal blood flow. The ENS is composed of neurons that conduct electrical signals and of enteric glial cells (EGCs). EGCs resemble central nervous system (CNS) astrocytes in their morphology and in the expression of shared markers such as the intermediate filament protein glial fibrillary acidic protein (GFAP). They are strategically located at the interface of ENS neurons and their effector cells to modulate intestinal motility, epithelial barrier stability and inflammatory processes. The specific contributions of EGCs to the maintenance of intestinal homeostasis are subject of current research. From a clinical point of view EGC involvement in pathophysiological processes such as intestinal inflammation is highly relevant. Like CNS astrocytes ECGs can acquire a reactive, tissue-protective phenotype in response to intestinal injury. In patients with chronic inflammatory bowel diseases (IBD) such as Crohn's disease and ulcerative colitis, alterations in the EGC network are well known, particularly a differential expression of GFAP, which is a hallmark of reactive gliosis in the CNS. With increasing recognition of the role of EGCs in intestinal health and disease comes the need to study the glial population in its complexity. The overall aim of this thesis was to comprehensively study EGCs with focus on the reactive GFAP-expressing subpopulation under inflammatory conditions in vivo and in vitro. In a first step, a novel in vivo rat model of acute systemic inflammation mimicking sepsis was employed to investigate rapidly occuring responses of EGCs to inflammation. This study revealed that within a short time frame of a few hours, EGCs responded to the inflammation with an upregulation of Gfap gene expression. This inflammation-induced upregulation was confined to the myenteric plexus and varied in intensity along the intestinal rostro-caudal axis. This highly responsive myenteric GFAP-expressing EGC population was further characterized in vivo andin vitro using a transgenic mouse model (hGFAP-eGFP mice). Primary purified murine GFAP-EGC cultures in vitro were established and it was assessed how the transcriptomic and proteomic profiles of these cells change upon inflammatory stimulation. Here, myenteric GFAP-EGCs were found to undergo a shift in gene expression profile that predominantly affects expression of genes associated with inflammatory responses. Further, a secretion of inflammatory mediators was validated on protein level. The GFAP+ subpopulation is hence an active participant in inflammatory pathophysiology. In an acute murine IBD model in vivo, GFAP-EGCs were found to express components of the major histocompatibility complex (MHC) class II in inflamed tissue, which also indicates a crosstalk of EGCs with the innate and the adaptive lamina propria immune system in acute inflammation. Taken together, this work advances our knowledge on EGC (patho-)physiology by identifying and characterizing an EGC subpopulation rapidly responsive to inflammation. This study further provides the transcriptomic profile of this population in vivo and in vitro, which can be used to identify targets for therapeutic intervention. Due to the modulating influence of EGCs on the intestinal microenvironment, the study further underlines the importance of integrating EGCs into in vitro test systems that aim to model intestinal tissues in vitro and presents an outlook on a potential strategy. N2 - Das enterische Nervensystem (ENS) innerviert den gastrointestinalen Trakt und kontrolliert zentrale Aspekte der gastrointetinalen Physiologie, wie die Kontraktilität der intestinalen Muskulatur, Sekretion und den intestinalen Blutfluss. Das ENS setzt sich aus elektrisch leitenden Neuronen und enterischen Gliazellen (EGZ) zusammen. EGZ ähneln Astrozyten des zentralen Nervensystems (ZNS) hinsichtlich ihrer Morphologie und der Expression gemeinsamer Marker wie dem Intermediärfilament Saures Gliafaserprotein (GFAP von engl. glial fibrillary acidic protein). EGZ sind strategisch an der Kontaktstelle zwischen ENS-Neuronen und deren Effektorzellen positioniert, um die intestinale Motilität, die epitheliale Barrierestabilität sowie inflammatorischen Prozesse zu modulieren. Die spezifische Beteiligung der EGZ an der Aufrechterhaltung der Darmhomöostase wird gegenwärtig erforscht. Aus klinischer Sicht ist die Beteiligung von EGZ an pathophysiologischen Prozessen wie der intestinalen Entzündung besonders relevant. Wie ZNS-Astrozyten können EGZ bei intestinalen Schädigungen einen reaktiven, gewebe-protektiven Phänotyp annehmen. Bei Patienten mit chronisch-entzündlichen Darmerkrankungen (IBD, von engl. inflammatory bowel disease) wie Morbus Crohn und Colitis ulcerosa sind Veränderungen im EGZ-Netzwerk bekannt, besonders eine veränderte Expression von GFAP, welches ein prominentes Kennzeichen der reaktiven Gliose im ZNS ist. Nachdem sich die Bedeutung der EGZ im gesunden und kranken Darm zunehmend herausgestellt hat, muss ein stärkerer Fokus auf die Erforschung der glialen Population gelegt werden. Die Zielsetzung dieser Arbeit war die umfassende Untersuchung der EGZ mit Fokus auf die reaktive GFAP-exprimierende Population unter entzündlichen Bedingungen in vivo und in vitro}. In einem ersten Schritt wurde ein neuartiges in vivo-Rattenmodell einer akuten systemischen Entzündung verwendet, um die schnell stattfindenden Veränderungen der EGZ unter entzündlichen Bedingungen zu untersuchen. Diese Studie ergab, dass innerhalb von wenigen Stunden EGZ mit einer Hochregulation der Gfap-Genexpression auf die Entzündung reagieren. Diese entzündungsinduzierte Hochregulation war lokal auf den myenterischen Plexus begrenzt und entlang der rostro-kaudalen Achse des Darms unterschiedlich stark ausgeprägt. Die responsive, GFAP-exprimierende myenterische EGZ-Population wurde daraufhin in vivo und in vitro charakterisiert unter Zuhilfenahme eines transgenen Mausmodells (hGFAP-eGFP-exprimierende Mäuse). Primäre, aufgereinigte GFAP-EGZ-Zellkulturen wurden etabliert und dahingehend untersucht, wie sich das transkriptomische und proteomische Profil der Population unter entzündlichen Bedingungen verändert. Hierbei wurde reproduzierbar eine Verschiebung des transkriptomischen Profils myenterischer GFAP-exprimierender EGZ gefunden. Die davon betroffenen Gene sind vorwiegend mit Immunantworten assoziiert. Weiterhin wurde die Sekretion solcher Immunmediatoren auf Proteinebene validiert. Die GFAP+ Subpopulation ist somit ein aktiver Modulator entzündlicher pathophysiologischer Prozesse. In einem akuten IBD-Mausmodell konnte weiterhin gezeigt werden, dass GFAP-EGZ verstärkt Komponenten des Haupthistokompatibilitätskomplex (MHC) Klasse II im entzündeten Gewebe exprimieren. Dies weist auf eine direkt Interaktion der EGZ mit dem Immunsystem in der Lamina propria hin. Insgesamt konnte mit dieser Arbeit das Wissen über die (Patho-)Physiologie von EGZ erweitert werden, indem eine schnell responsive EGZ-Subpopulation identifizert und charakterisiert wurde. Weiterhin wurde im Rahmen dieser Arbeit das gesamte Transkriptomprofil der GFAP-Subpopulation in vivo und in vitro veröffentlicht, welches für weitere Studien zur Identifikation möglicher therapeutischer Anwendungen genutzt werden kann. Aufgrund des modulierenden Einflusses der EGZ auf die Darmphysiologie betont diese Studie die Notwendigkeit EGZs in in-vitro-Gewebemodelle des Darms zu integrieren und präsentiert einen Ausblick auf eine mögliche Strategie. KW - Darmwandnervensystem KW - Glia KW - in vitro KW - Sepsis KW - Enterische Glia Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-138946 ER - TY - THES A1 - Buss, Alexa T1 - Testung verschiedener Strategien für die Regeneration von Knorpeldefekten im Ex vivo-Testsystem T1 - Evaluation of cartilage regeneration strategies in an osteochondral ex vivo cartilage defect model N2 - Die Degeneration des Gelenkknorpels ist Hauptursache für chronische Schmerzen und eine dadurch bedingte Einschränkung der Lebensqualität. Für die Sozialversicherungssysteme ist dies mit steigenden Kosten verbunden. Gegenwärtige Behandlungsoptionen wie die Mikrofrakturierung oder die (matrix-assoziierte) Autologe Chondrozytentransplantation (M-) ACT führen zu einem minderwertigen Reparaturgewebe aus Faserknorpel mit unzureichenden mechanischen Eigenschaften an der Defektstelle. Es besteht ein Bedarf an der Entwicklung und Testung neuer Knorpeltherapien, die ein funktionelles Reparaturgewebe für nachhaltige Beschwerdefreiheit erzeugen. Das hier verwendete kürzlich etablierte osteochondrale Ex vivo-Testsystem (EVTS) eignet sich zur Evaluation unterschiedlicher zellbasierter Behandlungsansätze für die Knorpelregeneration. Aus der medialen Femurkondyle von Schweinen wurden zylindrische 8 mm große osteochondrale Explantate (OCE) isoliert. Es wurden Knorpel-Knochendefekte und reine Knorpeldefekte kreiert und mit autologen Schweine-Chondrozyten (CZ) bzw. einer Mischung aus CZ und mesenchymalen Stammzellen (MSC) gefüllt, die in Kollagen Typ I Hydrogel eingebettet waren. Nach vierwöchiger Kultivierung wurden die Proben histologisch und immunhistochemisch gefärbt (Safranin-O-Färbung, Kollagen Typ II, Aggrekan), die Zellvitalität (Lebend-Tot-Färbung) überprüft und die extrazelluläre Matrixproduktion analysiert. Nach vierwöchiger Kultur im EVTS in Normoxie und Hypoxie zeigten sich die in Kollagen-I-Hydrogel eingebetteten Zellen lebensfähig. Die Auswertung der verschiedenen Ansätze erfolgte über den standardisierten ICRS-II-Score der International Cartilage Repair Society (ICRS) mit drei unabhängigen Bewertern. Insgesamt resultierten bessere Ergebnisse im Hinblick auf die Matrixsynthese in den Monokulturen aus CZ im Vergleich zu den Co-Kulturen aus CZ und MSCs. Da dieser Unterschied nicht groß war, könnten MSCs zur Einsparung autologer CZ eine Alternative in der Behandlung von Knorpeldefekten darstellen. Hypoxie spielte eine Rolle bei reinen Knorpeldefekten, nicht bei Knorpel-Knochendefekten. Dies bestätigt die Bedeutung des physiologischen hypoxischen Milieus des Gelenkknorpels, das einen niedrigen Sauerstoffgehalt von 2-5 VII % aufweist. Die Ergebnisse zeigen, dass die unterschiedlichen Faktoren aus Zellkombination, Knorpeldefektgröße und Kultivierung in Hypoxie oder Normoxie Einfluss auf die Ausbildung der extrazellulären Matrix haben. Weiterhin fehlt jedoch das Verständnis für die genauen Mechanismen des Knorpelregenerationsverhaltens. Ex vivo-Testsysteme können dabei helfen ein weiteres Verständnis zu erlangen und entsprechende Behandlungsstrategien zu evaluieren. N2 - Degeneration of articular cartilage is a major cause of chronic pain - impairing the quality of life and rising health care costs. Current treatment options like microfracture, ACT or MACT result in fibrocartilaginous repair tissue with insufficient mechanical properties at the defect site. Hence, new cartilage therapies generating functional repair tissue need to be developed and tested. Here we used a recently established ex vivo osteochondral model to evaluate the therapeutic potential of several cell-based cartilage regeneration approaches. Reproducible cylindrical 8 mm osteochondral explants (OCE) were isolated from porcine medial condyles. Full-thickness and cartilage-only defects were created and filled with autologous porcine chondrocytes respectively a mixture of chondrocytes and mesenchymal stem cells, embedded in collagen type I hydrogel. After static culture for four weeks, samples were analyzed for cell viability (live/dead staining) and extracellular matrix production, using immunohistochemical staining (Safranin-O-staining, collagen type II, aggrecan). Embedded cells remain viable after four weeks culture in ex vivo osteochondral model. Outcome of different cartilage regeneration approaches were compared using the recommended guidelines proposed by the International Cartilage Repair Society (ICRS) and ICRS-II-score with three independent evaluators. Overall, the monocultures from CZ performed better than the co-cultures from CZ and MSCs. Since this difference was not large, MSCs could be an alternative in the treatment of cartilage defects to save autologous CZ. Hypoxia played a role in pure cartilage defects, but not in cartilage-bone defects. This confirms the importance of the physiological hypoxic milieu of the articular cartilage, which has a low oxygen content of 2-5 %. The results show that the different factors from cell combination, cartilage defect size and cultivation in hypoxia or normoxia influence the formation of the extracellular matrix. However, there is still no understanding of the exact mechanisms of cartilage regeneration behavior. Ex vivo test systems can help to gain further understanding and to evaluate appropriate treatment strategies. KW - cartilage KW - test system KW - Knorpel KW - in vitro Testsystem Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246714 ER - TY - THES A1 - Kunz, Meik T1 - Systembiologische Analysen von Interaktionen: Zytokinine (Pflanzenpathogene), 3D-Zellkulturen (Krebstherapie) und Drugtargets T1 - Systems biology analysis of interactions: Cytokinins (plant pathogens), 3D cell cultures (cancer therapy) and drug targets N2 - Der Einsatz von computergestützten Analysen hat sich zu einem festen Bestandteil der biowissenschaftlichen Forschung etabliert. Im Rahmen dieser vorliegenden Arbeit wurden systembiologische Untersuchungen auf verschiedene biologische Themengebiete und Organismen angewendet. In diesem Zusammenhang liefert die Arbeit einen innovativen und interdisziplinären methodischen Ansatz. Die grundlegende Frage lautet: Wie verstehe und beschreibe ich Signalwege und wie kann ich sie beeinflussen? Der Ansatz verknüpft verschiedene biologische Datensätze und Datenebenen miteinander, beginnend vom Genom und Interaktionskontext über semiquantitative Simulationen hin zu neuen Interventionen und Experimenten, welche therapeutisch und biotechnologisch genutzt werden können. Die Analysen können auf diese Weise - zu einem besseren Verständnis experimenteller Daten und biologischer Fragestellungen beitragen und ermöglichen ein systematisches Verständnis der zugrunde liegenden Signalwege und Netzwerkeffekte (z.B. in Pflanzen). - Darüber hinaus ermöglichen sie die Identifizierung wichtiger funktioneller Hubproteine und die Entwicklung neuer therapeutischer Strategien für weitere experimentelle Testungen (z.B. Tumormodelle), - stellen zudem einen hilfreichen Schritt auf dem Weg zur personalisierten Medizin (z.B. lncRNAs und Tumormodelle) und Medikamentenentwicklung (z.B. Datenbank DrumPID) dar. (i) Als Grundlage wurde hierzu eine integrierte systembiologische Methode entwickelt, welche experimentelle Daten (z.B. Transkriptomdaten) hinsichtlich ihrer biologischen Funktionen untersucht und die Identifizierung relevanter funktioneller Cluster und Hubproteine ermöglicht. In einem ersten Teil wurden Analysen zum pflanzlichen Immunsystem durchgeführt. Mithilfe der entwickelten Methode wurden Genexpressionsdatensätze von A. thaliana, die mit dem Pathogen Pst DC3000 infiziert wurden, untersucht, um den Einfluss verschiedener Virulenzfaktoren auf das Interaktom der Wirtspflanze zu untersuchen und neue Modulatoren einer CK-vermittelten Immunabwehr zu finden. In diesem Zusammenhang konnte gezeigt werden, dass die von Pst DC3000 sekretierten Abwehrstoffe wichtige pflanzliche Hormonsignalwege für die Immunabwehr in A. thaliana beeinflussen. Die Ergebnisse zeigen zudem, dass sich der Einfluss auf das Netzwerkverhalten der Effektorproteine und COR-Phytotoxine von dem der PAMPs unterscheidet, sich jedoch auch eine Regulierung gemeinsamer Signalwege und eine Überlappung der beiden Phasen der Immunantwort (PTI und ETI) in A. thaliana finden lassen. Die komplexe Immunantwort auf eine Infektion spiegelt sich zudem in einer höheren Anzahl an funktionellen Clustern und Hubproteinen in Pst DC3000 gegenüber den beiden untersuchten Mutanten wider, wobei sich für Pst DC3000 insbesondere ein stark vernetztes immunrelevantes Cluster um den JA-Signalweg zeigt. Weiterhin wurden anhand der entwickelten Methode wichtige Hubproteine für die Immunabwehr identifiziert. Als bedeutende Vertreter sind AHK2 und AAR14 zu nennen, welche Teil des Zweikomponentensystems der Signalübertragung von CK sind und hierbei wichtige Modulatoren für eine CK-vermittelte Immunabwehr darstellen. (ii) Im zweiten Teil der Arbeit schließen sich Untersuchungen an einem in vitro-Experiment einer 2D- und 3D-Zellkultur einer HSP90-Behandlung in einem Lungentumormodell an. In diesem Zusammenhang wurden mithilfe der entwickelten Methode Unterschiede zwischen den beiden Zellkultursystemen gefunden, die das unterschiedliche Behandlungsansprechen erklären, und für die beiden KRAS-mutierten Zelllinien A549 und H441 des 3D-Testsystems neue prognostische und therapeutische Kandidaten identifiziert. Hierbei haben die durchgeführten Analysen zwei funktionelle Cluster von Protein-Interaktionen um p53 und die STAT-Familie gefunden, welche eine Verbindung zu HSP90 haben und die entsprechenden Behandlungsunterschiede nach einer HSP90-Inhibierung zwischen den beiden Zellkultursystemen erklären können. Unter Berücksichtigung des zelllinien-spezifischen Mutationshintergrunds wurde eine prognostische Markersignatur und daraus abgeleitet HIF1A für die H441-Zelllinie und AMPK für die A549-Zelllinie als neue therapeutische Targets gefunden, wobei die anschließend durchgeführten in silico-Simulationen einen potentiellen therapeutischen Effekt aufzeigen konnten. Weiterhin wurden wichtige experimentelle Readout-Parameter in ein in silico-Lungentumormodell integriert, wobei unter Einbeziehung des Mutationshintergrunds für die verwendeten Zelllinien die HSP90-Behandlung des 3D-Testsystems computergestützt abgebildet werden konnte. Im weiteren Verlauf wurden im in silico-Lungentumormodell Resistenzmechanismen nach einer Gefitinib-Behandlung mit bekanntem Mutationsstatus für die Zelllinien HCC827 und A549 untersucht und daraus folgend neue Therapieansätze abgeleitet, die von potentieller klinischer Bedeutung sein können. Die durchgeführten in silico-Simulationen für HCC827 konnten hierbei zeigen, dass eine EGFR- und c-MET-Koaktivierung zu einer Gefitinib-Resistenz führen kann, wohingegen bei den A549 eine Komutation von KRAS und IGF-1R zu einem geringen Behandlungsansprechen beiträgt. Die Simulationen lassen zudem erkennen, dass eine direkte Inhibierung der an der Resistenzentwicklung beteiligten Rezeptoren c-MET und IGF-1R in beiden Fällen nicht die bestmögliche Therapiestrategie darstellt. In beiden Zelllinien konnte gezeigt werden, dass eine kombinierte Inhibierung von PI3K und MEK den bestmöglichen therapeutischen Effekt liefert, was demnach einen vielversprechenden Therapieansatz bei Gefitinib-resistenten Lungentumorpatienten darstellt. In einem weiteren Schritt wurde das therapeutische Potential der miRNA-21 im in silico-Modell für die HCC827-Zelllinie untersucht. Die durchgeführten Simulationen zeigen, dass eine miRNA-21-Überexpression zu einer Resistenzentwickung nach Gefitinib-Behandlung beitragen kann, wobei eine Inhibierung der miRNA-21 diesen Effekt umkehren kann. Die Ergebnisse lassen zudem erkennen, dass eine PTEN-Aktivierung als potentieller Marker einer erfolgreichen therapeutischen Inhibierung der miRNA-21 fungieren kann, wohingegen eine reduzierte miRNA-21-Expression als möglicher Marker für eine erfolgreiche Gefitinib-Behandlung dienen kann. (iii) Im dritten Teil der Arbeit wurden systematisch RNA- und Protein-Interaktionen untersucht. Hierzu wurden integrierte systembiologische Analysen an neu identifizierten und funktionell bislang unbekannten lncRNAs durchgeführt. Die Analysen für die infolge einer Herzhypertrophie hochregulierte lncRNA Chast haben umfassend gezeigt, dass diese Proteine und Transkriptionsfaktoren regulieren und binden kann, welche die Signalübertragung und Genexpression regulieren, aber auch eine Verbindung zum kardiovaskulären System und stressinduzierter Herzhypertrophie besitzt. Anhand der Ergebnisse lässt sich schlussfolgern, dass Chast direkt und indirekt (a) Proteine binden und die Translation beeinflussen kann, zudem eine Chromatin-modifizierende Funktion besitzt und so die Transkription, z.B. für herz- und stress-assoziierte Gene, reguliert, und/oder (b) in einem negativen Feedbackloop seine eigene Transkription reguliert. Obwohl lncRNAs meist eine geringe Konservierung aufweisen, konnten die durchgeführten Analysen für Chast eine Sequenz-Struktur-Konservierung in Säugetieren aufzeigen. Weiterhin haben die Untersuchungen an zwei hypoxie-induzierten lncRNAs in Endothelzellen gezeigt, dass die lncRNA MIR503HG eine hohe Sequenz-Struktur-Konservierung in Säugetieren besitzt, wohingegen die LINC00323-003 eine geringe Konservierung aufzeigt. Dies untermauert die Tatsache, dass lncRNAs häufig eine geringe Konservierung aufweisen, was Untersuchungen in Modellorganismen hinsichtlich einer therapeutischen Nutzung schwierig machen. Da sich zahlreiche Untersuchungen auf Interaktionen und Signalwege konzentriert haben, wurde abschließend eine Datenbank entwickelt, welche Analysen von Protein-Interaktionen und Signalwegen nachhaltig voranbringt. Die entwickelte DrumPID-Datenbank stellt insbesondere die Interaktion zwischen einem Medikament und seinem Target in den Fokus und ermöglicht Analysen einzelner Interaktionen und beteiligter Signalwege, bietet zusätzlich aber auch verschiedene Links zu anderen Datenbanken für individuelle weiterführende Analysen. DrumPID ermöglicht ein geeignetes Medikament u. a. für ein vorgegebenes Zielprotein zu finden und dessen Wirkmechanismus und Interaktionskontext zu untersuchen, was zu einem besseren experimentellen Verständnis beitragen kann. Zudem erlaubt DrumPID eine potentielle chemische Leitstruktur für ein Zielprotein zu entwickeln, was z.B. spezifisch ein parasitisches Protein inhibiert, ohne dabei einen toxischen Effekt im Menschen zu haben. Zahlreiche weitere Pharmakabeispiele belegen, dass DrumPID für den täglichen wissenschaftlichen Gebrauch auf dem Gebiet der Analyse von Protein-Pharmaka-Interaktionen und der Medikamentenentwicklung geeignet ist. Die beschriebenen Ergebnisse der Promotionsarbeit wurden in fünf Originalarbeiten, zwei Übersichtsartikeln und einem Buchteil, u. a. in Science Translational Medicine, veröffentlicht, sechs dieser Publikationen erfolgten im Rahmen von Erstautorschaften. N2 - The use of computer-based analysis has become an integral part of life science research. Within this thesis, systems biology investigations have been applied to various biological topics and organisms which provides an innovative and interdisciplinary methodological approach. The basic question was: How do I understand and describe signaling pathways and how can I influence them? The approach combines various biological data sets and data levels starting from the genome and interaction context over semiquantitative simulations towards new interventions and experiments which can be used therapeutically and biotechnologically. The analysis can contribute to - a better understanding of experimental data and biological questions and enables a systematic understanding of the signaling pathways and network effects (e.g. in plants). - They enable the identification of important functional hub nodes as well as the development of new therapeutic strategies for further experimental testing (e.g. tumor models), - also representing a helpful step on the path to personalized medicine (e.g. lncRNAs and tumor models) and drug development (e.g. database DrumPID). (i) As a basis, an integrated systems biology methodology was developed which examines experimental data sets (e.g. transcriptome data) with respect to their biological functions and enables the identification of relevant functional clusters and hub nodes. In the first part of the thesis, analyzes regarding the plant immune system were accomplished. Using the developed methodology, gene expression datasets of A. thaliana infected with the pathogen Pst DC3000 were analyzed in order to investigate the influence of different virulence factors on the host interactome, and to find new modulators of CK-mediated immune defense. In this context, the analysis could show that the secreted defense compounds of Pst DC3000 influence important plant hormone signaling pathways for the immune defense in A. thaliana. Moreover, the results show that the impact on the network behavior of the effector proteins and COR phytotoxins differ from the PAMPs, but there also exists an overlap in common regulated signal pathways as well as an overlap between the two phases of immune response (PTI and ETI) in A. thaliana. In addition, the complex immune response to an infection is also reflected by a higher number of functional clusters and hub nodes in Pst DC3000 compared to the two studied mutants, whereby for Pst DC3000 a highly connected immune-relevant cluster around the JA pathway has been found. Furthermore, using the developed methodology several important hub nodes for the immune defense have been identified. As most important candidates, AHK2 and AAR14 have to be highlighted which are part of the two-component-system of signal transduction of CK and represent in this context important modulators for a CK mediated immune defense. (ii) In the second part of the thesis, analyzes of a HSP90 treatment in lung cancer in an in vitro experiment in 2D and 3D cell cultures were accomplished. In this context using the developed methodology, differences between the two cell cultures explaining the differences in treatment responses were found, and for the two KRAS mutated cell lines A549 and H441 of the 3D test system new prognostic marker and therapeutic drug candidates were identified. However, the analyzes found two functional clusters of protein interactions around p53 and the STAT family which have a connection to HSP90 and might explain the observed treatment differences for the HSP90 inhibition between the two cell culture systems. Considering the mutational background of the cell lines, a prognostic marker signature were found and derived from it HIF1A for the H441 cell line and AMPK for the A549 cell line as new therapeutic drug targets. Moreover, the subsequently performed in silico simulations could show a potential therapeutic effect of the identified drug targets. Furthermore, important experimental read-out parameters were integrated into the in silico lung tumor model, and by considering the mutation background of the used cell lines the HSP90 treatment of the 3D test system could be in silico simulated. In the further course of the thesis, resistance mechanisms after gefitinib treatment with known mutation status for the HCC827 and A549 cell lines were investigated in the in silico lung tumor model and consequently new therapeutic approaches were derived which may be of potential clinical relevance. Here, the in silico simulations for HCC827 cells show that a co-activation of EGFR and c-MET can lead to a gefitinib resistance, whereas in the A549 a co-mutation of KRAS and IGF-1R can contribute to the reduced treatment response. In addition, the simulations reveal that a direct inhibition of the resistance contributing receptors c-MET and IGF-1R reflect not the best treatment strategy in both cases. However, in both cell lines a combined inhibition of PI3K and MEK provides the best therapeutic effect, thus representing a promising new therapeutic approach in gefitinib resistant lung cancer patients. In a further step, the therapeutic potential of the miRNA-21 was examined in the in silico model for the HCC827 cells. The simulations show that an overexpression of the miRNA-21 can contribute to a resistance development after gefitinib treatment, in which an inhibition of the miRNA-21 reverses this effect. Moreover, the results show that a PTEN activation can function as a potential marker of therapeutic success of miRNA-21 inhibition whereas a reduced miRNA-21 expression may serve as a potential marker for a successful gefitinib treatment. (iii) In the third part of the thesis, systematic RNA and protein interactions were investigated. For this, integrated systems biology analyzes were carried out on new identified and previously functional unknown lncRNAs. The analyzes of the cardiac hypertrophy caused upregulated lncRNA Chast have extensive demonstrated that Chast can regulate and bind proteins and transcription factors which regulate signal transduction and gene expression, but it has also a connection to the cardiovascular system and stress-induced cardiac hypertrophy. Based on the results, it can be concluded that Chast can directly and indirectly (a) bind proteins and influence the translation but also possess a chromatin-modifying function and regulate transcription e.g. for cardiac and stress-associated genes, and/or (b) regulate its own transcription in a negative feedback loop. Although lncRNAs often have a low conservation the analysis could show a sequence-structure-conservation for Chast in mammalians. Furthermore, the investigations for two hypoxia induced endothelial lncRNAs have shown that the lncRNA MIR503HG represents a high sequence-structure-conservation in mammalians, whereas the LINC00323-003 shows a low conservation. This underscores the fact that lncRNAs often have a low conservation thereby making studies regarding the therapeutic potential in model organisms difficult. Finally, as numerous analyzes in this thesis have focused on interactions and signaling pathways, a database was developed which brings a sustainable progress in analysis of protein interactions and signaling pathways. The developed DrumPID database puts especially the interaction between a drug and its target into its focus and allows analysis of individual interactions and involved signaling pathways but, additionally, provides various crosslinks to other databases for individual further analysis. DrumPID enables to find a suitable drug, e.g. for a given target protein, and to analyze its mechanism of action as well as interaction context which can contribute to a better understanding of experimental data. Moreover, DrumPID allows to develop a potential chemical lead structure for a target protein which e.g. specifically inhibits a parasitic protein but has no toxic effect in humans. Numerous additional pharmaceutical examples verify that DrumPID is suitable for the daily scientific usage in the field of analysis of protein-drug-interactions and drug development. The described results of the doctoral thesis were published in five research papers, two review articles and a book chapter, e.g. in Science Translational Medicine, including six first authorships. KW - Systembiologie KW - Interaktionen KW - Zytokinine (Pflanzenpathogene) KW - 3D-Zellkulturen (Krebstherapie) KW - Drugtargets KW - Systembiologische Analysen Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-134911 ER - TY - THES A1 - Christ, Bastian T1 - Synthese, Fabrikation und Charakterisierung eines faserförmigen Zellträgermaterials auf Basis von Titan-oxo-carboxo-Clustern T1 - Synthesis, fabrication and characterization of a fibrous scaffold based on titanium-oxo-carboxo-clusters N2 - In dieser Arbeit konnten ethanolische Sole aus TEOT und der metabolisierbaren α-Hydroxycarbonsäure Milchsäure (LA) in spinnfähige viskose Spinnmassen überführt werden und erstmalig über die Methode des Druckspinnens zu Mikrofasern prozessiert werden. Die hybriden Fasern sind intrinsisch stabil. Über FTIR- und 13C-MAS-NMR-Untersuchungen konnte gezeigt werden, dass in der Faser der Koordinationsmodus von LA an Ti sowohl im mono- als auch im bidentaten Modus (Nomenklatur bezogen auf die Säureeinheit) vorliegt. Die nähere Untersuchung des Degradationsverhaltens einer LA-Faser zeigte hauptsächlich die Freisetzung von Lactat und Ethanol innerhalb weniger Stunden. Danach kann kaum noch ein Massenverlust der Fasern nachgewiesen werden. Vermutlich ist die Degradationsgeschwindigkeit abhängig von der Sättigungskonzentration der wasserlöslichen Titanoxid-Spezies Ti(OH)4 und Ti(O)(OH)2. Die Löslichkeit dieser Verbindungen beträgt ca. 1 µmol/L. Die Freisetzung von Titanverbindungen an das Degradationsmedium konnte über ICP-Messungen und indirekt auch über NMR-Messungen der Degradationsprodukte in Lösung nachgewiesen werden. Nach ca. einer Woche in Lösung bildet sich der wasserlösliche metallorganische Komplex TiBALDH. Dieser Komplex zeigt keinen negativen Einfluss auf die Umwelt, so dass Zellkulturmedien, die in Kontakt mit den Fasermaterialien getreten sind, in Zukunft nach dem Autoklavieren gefahrlos entsorgt werden können. Zudem sollte keines der detektierten Abbauprodukte in den abgegebenen Mengen toxisch auf den humanen Organismus bei in vivo-Anwendungen wirken. Lactat und Ethanol können im menschlichen Organismus verstoffwechselt werden. TIBALDH ist dem im menschlichen Serum nachweisbaren Titan(IV)citrat-Komplex strukturell sehr ähnlich. Aufgrund der Tatsache, dass die Bildung von TiBALDH ca. 1 Woche dauert, ist die vorherige Bildung des Titan(IV)citrat-Komplexes im humanen Organismus wahrscheinlich. Weiterhin konnte das hybride Fasermaterial durch den Zusatz von basischen Stoffen neutralisiert werden und nach Vorkonditionierung der Fasern als nicht zytotoxisch eingestuft werden. Als Gegenionen wurde Ammonium, das biogene Amin Phenethylamin, die Aminosäure Phenylalanin und das Biopolymer CHI getestet. Für zukünftige Weiterentwicklungen können auch basische Wirkstoffe als Gegenionen herangezogen werden. Somit könnte das hybride Zellträgermaterial zusätzlich eine Drug-Delivery-Funktion erhalten. Die LA-Fasern verhalten sich nach dem Verspinnen sehr flexibel. Bei einer Lagerung bei RT jedoch verspröden diese sehr schnell innerhalb von 3 d. Diese Materialeigenschaft wurde im zweiten Teil der Arbeit näher untersucht und optimiert. Tempern des Fasermaterials bei 170 °C bewirkte eine Umlagerung der LA-Liganden zu AA-Liganden, aber keine Verbesserung der mechanischen Eigenschaften. Versuche einer getemperten LA-Faser mit CHI als Gegenion zeigte durchwegs positive Eigenschaften in den Zytotoxizitätstests und auf deren Oberfläche konnten Zellen der Zelllinien L929, 16HBE, HTB94 und MG63 erfolgreich kultiviert werden. Durch die Verwendung anderer metabolisierbarer α Hydroxycarbonsäuren konnten Rückschlüsse auf die chemische Zusammensetzung der Fasern gezogen werden. Die Fasern scheinen aus wenig untereinander vernetzen Titan-oxo-carboxo-Clustern der Summenformel [Ti6O6(OR)6(Carboxylat)6] (mit R = H2+, H, Et oder „Ti6O6(OR)5(Carboxylat)6“) zu bestehen. Durch Variation der verwendeten Säuren konnten die Wechselwirkungen der Cluster untereinander verstärkt werden, so dass beispielsweise eine Faser mit MA bedeutend flexiblere Eigenschaften – auch bei einer Lagerung für 3d bei RT aufweist. Des Weiteren konnte durch Lagerung dieser Faser bei 4 °C der Versprödungsprozess für mind. 1 Monat gestoppt werden. Eine Lagerung von Medizinprodukten bei 4 °C stellt in Ländern mit ausreichender Infrastruktur kein Problem dar. Aufbauend auf diesen Tatsachen und TGA-MS-Messungen konnte die These aufgestellt werden, dass sich zwischen den wenig untereinander vernetzten Titan-oxo-carboxo-Cluster direkt nach dem Verspinnen noch Wassermoleküle befinden. Diese Reste an Wasser verleihen – vermutlich aufgrund der Ausbildung von Wasserstoffbrückenbindungen – der Faser flexible Eigenschaften. Bei einer Lagerung bei RT entweichen diese Wasserreste und die Faser versprödet; bei einer Lagerung bei 4°C wird das Verdampfen des restlichen Wassers bedeutend verlangsamt. Die Faser mit den flexibelsten Eigenschaften konnte letztendlich durch die Verwendung des zweizähnigen Carboxylat-Liganden MalA erhalten werden. Zusammenfassend konnte in dieser Arbeit ein neuartiges faserförmiges Material auf Basis von Titan-oxo-carboxo-Clustern produziert werden, welches großes Potential besitzt als Zellträgermaterial Anwendung zu finden. Aufbauend auf den hier gewonnenen Ergebnissen können die mechanischen Eigenschaften weiter optimiert und die Anforderungen des gewünschten Zielgewebes feinjustiert werden. Zudem besteht die Möglichkeit dem Material Drug-Delivery-Eigenschaften zu verleihen. Somit könnte das Scaffold aus Mikrofasern neben den bereits integrierten chemischen und physikalischen Stimuli (die Oberflächenfunktionalitäten und die Oberflächentopographie der Fasern) auch durch freigesetzte Wirkstoffe Zellen zur gewünschten Differenzierung anregen. N2 - In this thesis ethanolic sols out of the liquid sol gel precursor TEOT and metabolizable α-hydroxy carboxylic acids (e. g. LA) were transformed into spinnable viscous fluids and were processed for the first time to microfibers. These hybrid microfibers are intrinsic stable. FTIR- and 13C-MAS-NMR-measurements of the fibers show a monodentate as well as a bidentate coordination mode (with regard to the carboxylic unit) of LA to Ti. Degradation experiments show the release of lactate and ethanol within less hours. Afterwards no mass lost is detected anymore. The kinetics of fiber degradation might depend on the saturation concentration of the titanium oxide species Ti(OH)4 and Ti(O)(OH)2 in water. Their solubility in water is 1 µmol/L. The release of titanium containing compounds is detected indirectly by ICP- and NMR-measurements. This compound was identified as TIBALDH, which was shown having no negative impact on environment.[99, 160] Additionally the pH value of the hybrid fibers can be neutralized by adding basic compounds (ammonium, phenetylamine, phenylalanine or chitosan) to be classified as a non-cytotoxic material. LA fibers are very flexible after spinning. After storage at RT the fibers turn into a brittle material within 3 days. This property was investigated in the second part of the thesis. Fiber annealing at a temperature of 170 °C doesn’t result in an improvement of the mechanically properties. Nonetheless cytotoxicity assays of the annealed fibers show promising results and cell proliferation experiments show the proliferation of L929, 16HBE and HTB94 on the fibrous surface. Conclusion of the fiber composition can be drawn by using different metabolizable α-hydroxy carboxylic acids in fiber synthesis. Fibers seem to consist out of less crosslinked titanium-oxo-carboxo-clusters of the molecular formula [Ti6O6(OR)6(carboxylate)6] (with R = H2+, H, Et or „Ti6O6(OR)5(carboxylate)6“). By varying the carboxylates the interaction of the clusters can be enhanced. For instance a fibers with the acid MA shows better flexibility – even after storage at RT for 3 days. Additionally the brittling of fibers can be stopped for at least one months by a storage temperature of 4 °C. Referring to these results and TGA-measurements following hypothesis was put forward: Directly after fiber spinning water molecules are present in the small pores betwenn different titanium-oxo-carboxo-clusters. These water residuals reinforce fiber flexibility due to hydrogen bonds. After storing the fibers at RT residual water molecules will evaporate out of the fibers. Consequently the fibers are brittling. At a storage temperature of 4 °C the evaporation of water molecules is slowed down. Fibers containing MalA – an α-hydroxy carboxylic acid with two coordinating carboxylic groups – were determined as the most flexible fiber. KW - Scaffold KW - Mikrofaser KW - Zellträgermaterial KW - Mikrofasern Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-162015 ER - TY - THES A1 - Wiesner, Miriam T1 - Stem Cell-based Adipose Tissue Engineering - Engineering of Prevascularized Adipose Tissue Constructs In Vitro & Investigation on Gap Junctional Intercellular Communication in Adipose-derived Stem Cells T1 - Stammzellbasiertes Tissue Engineering von Fettgewebe - Entwicklung eines prävaskularisierten Fettgewebekonstrukts in vitro & Untersuchung der interzellulären Kommunikation über Gap Junctions in Stammzellen aus dem Fettgewebe N2 - In reconstructive and plastic surgery, there exists a growing demand of adequate tissue implants, since currently available strategies for autologous transplantation are limited by complications including transplant failure and donor site morbidity. By developing in vitro and in vivo autologous substitutes for defective tissue sites, adipose tissue engineering can address these challenges, although there are several obstacles to overcome. One of the major limitations is the sufficient vascularization of in vitro engineered large constructs that remains crucial and demanding for functional tissues. Decellularized jejunal segments may represent a suitable scaffolding system with preexisting capillary structures that can be repopulated with human microvascular endothelial cells (hMVECs), and a luminal matrix applicable for the adipogenic differentiation of human adipose-derived stem cells (hASCs). Hence, co-culture of these cells in jejunal segments, utilizing a custom-made bioreactor system, was characterized in terms of vascularization and adipose tissue development. Substantial adipogenesis of hASCs was demonstrated within the jejunal lumen in contrast to non-induced controls, and the increase of key adipogenic markers was verified over time upon induction. The development of major extracellular matrix components of mature adipose tissue, such as laminin and collagen IV, was shown within the scaffold in induced samples. Successful reseeding of the vascular network with hMVECs was demonstrated in long-term culture and co-localization of vascular structures and adipogenically differentiated hASCs was observed. Therefore, these results represent a novel approach for in vitro engineering of vascularized adipose tissue constructs that warrants further investigations in preclinical studies. Another still existing obstacle in adipose tissue engineering is the insufficient knowledge about the applied cells, for instance the understanding of how cells can be optimally expanded and differentiated for successful engineering of tissue transplants. Even though hASCs can be easily isolated from liposuction of abdominal fat depots, yielding low donor site morbidity, huge numbers of cells are required to entirely seed complex and large 3D matrices or scaffolds. Thus, cells need to be large-scale expanded in vitro on the premise of not losing their differentiation capacity caused by replicative aging. Accordingly, an improved differentiation of hASCs in adipose tissue engineering approaches remains still desirable since most engineered constructs exhibit an inhomogeneous differentiation pattern. For mesenchymal stem cells (MSCs), it has been shown that growth factor application can lead to a significant improvement of both proliferation and differentiation capacity. Especially basic fibroblast growth factor (bFGF) represents a potent mitogen for MSCs, while maintaining or even promoting their osteogenic, chondrogenic and adipogenic differentiation potential. As there are currently different contradictory information present in literature about the applied bFGF concentration and the explicit effect of bFGF on ASC differentiation, here, the effect of bFGF on hASC proliferation and differentiation capacity was investigated at different concentrations and time points in 2D culture. Preculture of hASCs with bFGF prior to adipogenic induction showed a remarkable effect, whereas administration of bFGF during culture did not improve adipogenic differentiation capacity. Furthermore, the observations indicated as mode of action an impact of this preculture on cell proliferation capacity, resulting in increased cellular density at the time of adipogenic induction. The difference in cell density at this time point appeared to be pivotal for increased adipogenic capacity of the cells, which was confirmed in a further experiment employing different seeding densities. Interestingly, furthermore, the obtained results suggested a cell-cell contact-mediated mechanism positively influencing adipogenic differentiation. As a consequence, subsequently, studies were conducted focusing on intercellular communication of these cells, which has hardly been investigated to date. Despite the multitude of literature on the differentiation capacity of ASCs, little is reported about the physiological properties contributing to and controlling the process of lineage differentiation. Direct intercellular communication between adjacent cells via gap junctions has been shown to modulate differentiation processes in other cell types, with connexin 43 (Cx43) being the most abundant isoform of the gap junction-forming connexins. Thus, in the present study we focused on the expression of Cx43 and gap junctional intercellular communication (GJIC) in hASCs, and its significance for adipogenic differentiation of these cells. Cx43 expression in hASCs was demonstrated histologically and on the gene and protein expression level and was shown to be greatly positively influenced by cell seeding density. Functionality of gap junctions was proven by dye transfer analysis in growth medium. Adipogenic differentiation of hASCs was shown to be also distinctly elevated at higher cell seeding densities. Inhibition of GJIC by 18α-glycyrrhetinic acid significantly compromised adipogenic differentiation, as demonstrated by histology, triglyceride quantification, and adipogenic marker gene expression. Flow cytometry analysis showed a lower proportion of cells undergoing adipogenesis when GJIC was inhibited, further indicating the importance of GJIC in the differentiation process. Altogether, these results demonstrate the impact of direct cell-cell communication via gap junctions on the adipogenic differentiation process of hASCs and may contribute to further integrate direct intercellular crosstalk in rationales for tissue engineering approaches. N2 - In der rekonstruktiven und plastischen Chirurgie besteht ein wachsender Bedarf an adäquaten Gewebetransplantaten, da die derzeit verfügbaren Strategien für autologe Transplantationen von Geweben durch Komplikationen wie beispielsweise Transplantatversagen sowie Morbiditäten an der Entnahmestelle beeinträchtigt werden. Das Tissue Engineering kann dieser Problematik jedoch durch die Entwicklung von in vitro und in vivo gezüchtetem, autologen Gewebeersatz für defekte Gewebestellen begegnen, wobei es dabei noch mehrere Hindernisse zu überwinden gilt. Eine der größten Limitationen ist die ausreichende Vaskularisierung der in vitro hergestellten, großen Konstrukte, welche für die Funktion des Gewebes entscheidend ist. Hierfür können dezellularisierte, jejunale Segmente ein geeignetes Gerüstsystem darstellen, deren bereits vorhandene Kapillarstrukturen mit humanen, mikrovaskulären Endothelzellen (hMVECs) und deren luminale Matrix mit humanen Stammzellen aus dem Fettgewebe (hASCs), mit anschließender adipogen Differenzierung, besiedelt werden können. Im Rahmen der vorliegenden Arbeit wurden diese Konstrukte mit Hilfe eines maßgeschneiderten Bioreaktorsystems kultiviert und die Kokultur der Zellen in der jejunalen Matrix hinsichtlich der Fettgewebeentwicklung untersucht. Im Gegensatz zu nicht-induzierten Kontrollen wurde nach adipogener Induktion innerhalb des jejunalen Lumens eine substanzielle Fettgewebebildung der hASCs, sowie ein Anstieg wichtiger adipogener Marker im zeitlichen Verlauf nachgewiesen. Die Bildung wesentlicher extrazellulärer Matrixkomponenten des reifen Fettgewebes, wie beispielsweise Laminin und Kollagen IV, wurde innerhalb der Matrix bei induzierten Proben ebenso beobachtet. Die erfolgreiche Neubesiedlung des Gefäßnetzes mit hMVECs konnte in der Langzeitkultur gezeigt und eine Kolokalisation von Gefäßstrukturen und differenzierten hASCs beobachtet werden. Somit stellen diese Ergebnisse einen vielversprechenden, neuen Ansatz für die in vitro Entwicklung von vaskularisierten Fettgewebekonstrukten dar, welcher jedoch noch weitere Untersuchungen in präklinischen Studien erfordert. Eine weitere Limitation in der Entwicklung von Fettgewebe ist das unzureichende Wissen über die verwendeten Zellen – so zum Beispiel wie Zellen optimal expandiert und differenziert werden können, um einen Gewebeersatz erfolgreich herzustellen. Auch wenn hASCs leicht aus abdominalen Liposuktionen, welche zu einer relativ geringen Morbidität an der Entnahmestelle führen, isoliert werden können, ist eine sehr große Anzahl an Zellen erforderlich, um komplexe und große 3D-Matrizes vollständig mit Zellen zu besiedeln. So müssen Zellen in vitro im großen Maßstab expandiert werden, wobei auf die Erhaltung ihrer Differenzierungskapazität und die Vermeidung des replikativen Alterns geachtet werden muss. Da viele der entwickelten Konstrukte des Weiteren ein inhomogenes Differenzierungsmuster aufweisen, ist eine Verbesserung der adipogenen Differenzierung von ASCs im Rahmen von Tissue Engineering Ansätzen wünschenswert. Für mesenchymale Stammzellen (MSCs) wurde bereits gezeigt, dass die Anwendung von Wachstumsfaktoren zu einer deutlichen Verbesserung der Proliferations- und Differenzierungskapazität führen kann. Insbesondere der Wachstumsfaktor bFGF (basic fibroblast growth factor) stellt ein starkes Mitogen für MSCs dar, wobei er das osteogene, chondrogene und adipogene Differenzierungspotenzial der Zellen aufrechterhält und sogar fördert. Da es in der Literatur derzeit unterschiedliche und teilweise widersprüchliche Informationen über die verwendeten bFGF Konzentrationen und den expliziten Effekt von bFGF auf die Differenzierung von ASCs gibt, wurde der Effekt von bFGF auf die Proliferations- und Differenzierungsfähigkeit mit unterschiedlichen Konzentrationen und zu unterschiedlichen Zeitpunkten in der 2D Kultur untersucht. Die Vorkultur der hASCs mit bFGF vor der adipogenen Induktion hatte einen beachtlichen Effekt auf die Differenzierung, während die Verabreichung von bFGF während der Kultur, die adipogene Differenzierungsfähigkeit der Zellen nicht verbesserte. Darüber hinaus zeigten die Ergebnisse einen Einfluss der Vorkultur auf die Zellproliferation, was zu einer erhöhten Zelldichte zum Zeitpunkt der adipogenen Induktion führte. Der Unterschied in der Zelldichte zu diesem Zeitpunkt schien entscheidend für die gesteigerte Differenzierungskapazität der Zellen zu sein, was sich in einem weiteren Experiment mit unterschiedlichen Aussaatdichten bestätigte. Interessanterweise deuteten die Ergebnisse außerdem darauf hin, dass ein Zell-Zell-Kontakt-vermittelter Mechanismus die adipogene Differenzierung positiv beeinflusst. Daher wurden anschließend Untersuchungen zur interzellulären Kommunikation dieser Zellen durchgeführt, welche bisher kaum erforscht wurde. Trotz der Vielzahl an Literatur über die Differenzierungsfähigkeit von ASCs ist wenig über die physiologischen Prozesse bekannt, die zur Differenzierung in verschiedene Zelltypen beitragen und diese kontrollieren. So wurde gezeigt, dass die direkte interzelluläre Kommunikation zwischen benachbarten Zellen über Gap Junctions Differenzierungsprozesse moduliert. Connexin 43 (Cx43) stellt dabei die häufigste Isoform der Gap Junction-bildenden Connexine dar. Im Rahmen dieser Arbeit wurde die Expression von Cx43 und die interzelluläre Kommunikation durch Gap Junctions (gap junctional intercellular communication; GJIC) in hASCs, sowie ihre Bedeutung für die adipogene Differenzierung untersucht. Die Cx43 Expression in hASCs wurde histologisch und auf Gen- und Proteinexpressionsebene nachgewiesen und wurde durch die Zellaussaatdichte nachweislich stark beeinflusst. Die Funktionalität der Gap Junctions konnte mit Hilfe eines Assays zur Übertragung von Farbstoffen untersucht werden. Es zeigte sich hierbei eine zelldichteabhängige, adipogene Differenzierungkapazität der hASCs. Die Hemmung der GJIC durch 18α-Glycyrrhetinsäure beeinträchtigte die adipogene Differenzierung deutlich, wie sich durch die Histologie, die Triglyceridquantifizierung und die adipogene Markergenexpression beobachten ließ. Bei Hemmung der GJIC zeigte sich mit Hilfe der Durchflusszytometrie, dass weniger Zellen adipogen differenzieren konnten, was die Bedeutung von GJIC im Differenzierungsprozess hervorhebt. Zusammenfassend veranschaulichen diese Ergebnisse den Einfluss direkter Zell-Zell-Kommunikation über Gap Junctions auf den adipogenen Differenzierungsprozess von hASCs und könnten somit in Zukunft dazu beitragen, direkte interzelluläre Kommunikation in Tissue Engineering Ansätze zu integrieren. KW - Tissue Engineering KW - Fettgewebe KW - Gap Junction KW - Adipose Tissue Engineering Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-185005 ER - TY - THES A1 - Tabisz, Barbara T1 - Site Directed Immobilization of BMP-2: Two Approaches for the Production of Osteoinductive Scaffolds T1 - Gerichtete Immobilisierung von BMP-2: Zwei Ansätze zur Herstellung osteogener Trägerstrukturen N2 - Bone fractures typically heal without surgical intervention. However, pathological situations exist which impede the healing process resulting in so-called non-union fractures. Such fractures are nowadays treated with scaffold material being introduced into the defect area. These scaffolds can be doped with osteogenic factors, such as bone morphogenetic protein (BMP)2. BMP2 belongs to the most osteogenic growth factors known to date. Its medical use, efficiency and safety have been approved by FDA for certain applications. Currently, BMP2 is distributed with a stabilizing scaffold, which is simply soaked with the growth factor. Due to fast release kinetics supraphysiological high doses of BMP2 are required which are causally associated with severe side effects observed in certain applications being most harmful in the area of the cervical spine. These side-effects include inflammation, swelling and breathing problems, leading to disastrous consequences or secondary surgical interventions. Since it could be shown that a retardation of BMP2 release from the scaffold resulted in superior bone forming properties in vivo, it seems obvious to further reduce this release to a minimum. This can be achieved by covalent coupling which in the past was already elaborated using mainly classical EDC/NHS chemistry. Using this technique coupling of the protein occurs non-site-directedly leading mainly to an unpredictable product outcome with variable osteogenic activities. In order to improve the reproducibility of scaffold functionalization by BMP2 we created variants one of which contains a unique unnatural amino acid substitution within the mature polypeptide sequence (BMP2-K3Plk) and another, BMP2-A2C, in which an N-terminal alanine has been substituted by cysteine. These modifications enable site-specific and covalent immobilization of BMP2 e.g. onto polymeric beads. Both proteins were expressed in E. coli, renatured and purified by cation-exchange chromatography. Both variants were extensively analyzed in terms of purity and biological activity which was tested by in vitro interaction analyses as well as in cell based assays. Both proteins could be successfully coupled to polymeric beads. The different BMP2 functionalized beads were shown to interact with the ectodomain of the type I receptor BMPR-IA in vitro indicating that the biological activity of both BMP2 variants retained upon coupling. Both functionalized beads induced osteogenic differentiation C2C12 cells but only of those cells which have been in close contact to the particular beads. This strongly indicates that the BMP2 variant are indeed covalently coupled and not just adsorbed. We claim that we have developed a system for a site-specific and covalent immobilization of BMP-2 onto solid scaffolds, potentially eliminating the necessity of high-dose scaffold loading. Since immobilized proteins are protected from removal by extracellular fluids, their activities now rely mainly on the half-life of the used scaffold and the rate of proteolytic degradation. Assuming that due to prolonged times much lower loading capacities might be required we propose that the immobilization strategy employed in this work may be further refined and optimized to replace the currently used BMP2-containing medical products. N2 - Knochenbrüche heilen typischerweise ohne die Notwendigkeit chirurgischer Eingriffe. Es gibt jedoch pathologische Situationen, in denen keine Heilung erfolgt was zur Ausbildung sogenannter non-union Frakturen führt. Solche Frakturen werden heutzutage mit Trägermaterialen versorgt, welche in die Defektzonen eingebracht werden. Diese Trägermaterialien können mit osteogen wirkenden Faktoren dotiert sein, z.B. mit bone morphogenetic protein (BMP)2. BMP2 gehört zu den am meisten osteogen wirkenden Faktoren, welche derzeit bekannt sind. Die Nutzung dieses Faktors als Medikament, wurde aufgrund seiner Effizienz und der Sicherheit in der Anwendung von der FDA für bestimmte Anwendungsgebiete zugelassen. Derzeit wird BMP2 mit einer stabilisierenden Trägerstruktur vertrieben, wobei diese einfach mit dem Wachstumsfaktor getränkt wird. Aufgrund schneller Freisetzungskinetiken werden unphysiologisch hohe Mengen von BMP2 gebraucht, welche in Beziehung zu extremen Nebeneffekten gebracht werden, die bei verschiedenen Anwendungen, speziell im Wirbelsäulenbereich, beobachtet werden konnten. Die Nebeneffekte umfassen Endzündungen, einhergehend mit Schwellungen und Atemprobleme, welche weitere Operationen nach sich ziehen können. Da bereits gezeigt werden konnte, dass eine Verzögerung der BMP2 Freisetzung aus der Trägerstruktur eine Verbesserung der osteogenen Wirkung mit sich bringt erscheint es offensichtlich, diese Freisetzung auf ein Minimum zu reduzieren. Dies kann durch kovalente Anbindung erreicht werden, was bereits in der Vergangenheit durch die Verwendung klassischer EDC/NHS Kopplungschemie versucht wurde. Bei dieser Art der Anbindung wird das Protein ungerichtet gekoppelt, was zu unvorhersagbaren Produktqualitäten mit variablen osteogenen Aktivitäten führt. Um eine Reproduktion solcher Funktionalisierungen mit BMP2 zu ermöglichen wurden zwei BMP-2 Varianten erzeigt, wobei bei einer der Varianten eine Aminosäure im N-terminalen Teil des reifen Proteinteils gegen eine unnatürliche Aminosäure BMP2-Plk), bei der anderen ein Alanin gegen ein Cystein ausgetauscht wurde BMP2-A2C. Durch diesen Austausch wird es möglich, diese Varianten gerichtet an polymere Strukturen anzubinden. Beide Proteine wurden in E. coli exprimiert, renaturiert und mittels Kationenaustausch-Chromatographie aufgereinigt. Die resultierenden Proteinprodukte wurden intensiv bzgl. ihres Reinheitsgrades sowie ihrer biologischen Aktivität überprüft. Letzteres erfolgte sowohl durch In-vitro Interaktions-Analysen als auch durch zellbasierte Untersuchungen. Beide Proteine konnten erfolgreich an polymere Strukturen ("beads") gekoppelt werden. Es konnte gezeigt werden, dass die verschiedenen BMP2 funktionalisierten beads mit isolierten Ektodomänen des BMP Typ I Rezeptors (BMPR-IA) interagieren. Dies belegt, dass die biologische Aktivität auch nach der Kopplung erhalten bleibt. Die funktionalisierten beads induzieren die osteogene Differenzierung von C2C12 Zellen. Die Differenzierung erfolgt aber nur in jenen Zellen die im direkten Kontakt zu den beads stehen. Dies legt nahe, dass beide BMP2 Varianten wirklich kovalent gekoppelt und nicht nur adsorbiert sind. Es kann behauptet werden, dass im Rahmen dieser Arbeit ein System entwickelt wurde, durch das eine gerichtete Immobilisierung von BMP2 an solide Oberflächen möglich ist. Dadurch können möglicherweise die notwendigen BMP2 Mengen reduziert werden, da bereits Subnanogram Mengen der gekoppelten BMP2 Varianten Osteogenese auslösen können. Da gekoppelte Proteine nicht durch interstitielle Flüssigkeiten entfernt werden können unterliegt die Fortdauer ihrer biologischen Aktivität der Halbwertszeit des verwendeten Trägermaterials, was durch die verlängerten Wirkzeiten eine Verringerung der verwendeten Wachstumsfaktormenge ermöglicht. Es wird beabsichtigt diese Kopplungsstrategie weiterzuentwickeln um die derzeit am Markt befindlichen BMP2 beinhaltenden Medizinprodukte ersetzen zu können. KW - Protein chemistry KW - BMP-2 KW - protein immobilization KW - site-specific immobilization Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-153766 ER - TY - THES A1 - Kwok, Chee Keong T1 - Scaling up production of reprogrammed cells for biomedical applications T1 - Skalierung der Produktion von reprogrammierten Zellen für biomedizinische Anwendungen N2 - Induced pluripotent stem cells (iPSCs) have been recognised as a virtually unlimited source of stem cells that can be generated in a patient-specific manner. Due to these cells’ potential to give rise to all differentiated cell types of the human body, they have been widely used to derive differentiated cells for drug screening and disease modelling purposes. iPSCs also garner much interest as they can potentially serve as a source for cell replacement therapy. Towards the realisation of these biomedical applications, this thesis aims to address challenges that are associated with scale-up, safety and biofabrication. Firstly, the manufacture of a high number of human iPSCs (hiPSCs) will require standardised procedures for scale-up and the development of a flexible bioprocessing method, since standard adherent hiPSC culture exhibits limited scalability and is labour-intensive. While the quantity of cells that are required for cell therapy depends largely on the tissue and defect that these replacing cells are meant to correct, an estimate of 1 × 10^9 has been suggested to be sufficient for several indications, including myocardial infarction and islet replacement for diabetes. Here, the development of an integrated, microcarrier-free workflow to transition standard adherent hiPSC culture (6-well plates) to scalable stirred suspension culture in bioreactors (1 L working volume, 2.4 L maximum working volume) is presented. The two-phase bioprocess lasts 14 days and generates hiPSC aggregates measuring 198 ± 58 μm in diameter on the harvesting day, yielding close to 2 × 10^9 cells. hiPSCs can be maintained in stirred suspension for at least 7 weeks with weekly passaging, while exhibiting pluripotency-associated markers TRA-1-60, TRA-1-81, SSEA-4, OCT4, and SOX2. These cells retain their ability to differentiate into cells of all the three germ layers in vitro, exemplified by cells positive for AFP, SMA, or TUBB3. Additionally, they maintain a stable karyotype and continue to respond to specification cues, demonstrated by directed differentiation into beating cardiomyocyte-like cells. Therefore, the aim of manufacturing high hiPSC quantities was met using a state-of-the-art scalable suspension bioreactor platform. Secondly, multipotent stem cells such as induced neural stem cells (iNSCs) may represent a safer source of renewable cells compared to pluripotent stem cells. However, pre-conditioning of stem cells prior to transplantation is a delicate issue to ensure not only proper function in the host but also safety. Here, iNSCs which are normally maintained in the presence of factors such as hLIF, CHIR99021, and SB431542 were cultured in basal medium for distinct periods of time. This wash-out procedure results in lower proliferation while maintaining key neural stem cell marker PAX6, suggesting a transient pre-differentiated state. Such pre-treatment may aid transplantation studies to suppress tumourigenesis through transplanted cells, an approach that is being evaluated using a mouse model of experimental focal demyelination and autoimmune encephalomyelitis. Thirdly, biomedical applications of stem cells can benefit from recent advancements in biofabrication, where cells can be arranged in customisable topographical layouts. Employing a 3DDiscovery bioprinter, a bioink consisting of hiPSCs in gelatin-alginate was extruded into disc-shaped moulds or printed in a cross-hatch infill pattern and cross-linked with calcium ions. In both discs and printed patterns, hiPSCs recovered from these bioprints showed viability of around 70% even after 4 days of culture when loaded into gelatin-alginate solution in aggregate form. They maintained pluripotency-associated markers TRA-1-60 and SSEA-4 and continued to proliferate after re-plating. As further proof-of-principle, printed hiPSC 3D constructs were subjected to targeted neuronal differentiation, developing typical neurite outgrowth and resulting in a widespread network of cells throughout and within the topology of the printed matrix. Staining against TUBB3 confirmed neuronal identity of the differentiated cellular progeny. In conclusion, these data demonstrate that hiPSCs not only survive the 3D-printing process but were able to differentiate along the printed topology in cellular networks. N2 - Induzierte pluripotente Stammzellen (iPSZ) stellen eine praktisch unbegrenzte Stammzellquelle dar, welche patientenspezifisch erzeugt werden kann. Da diese Zellen das Potenzial haben, alle differenzierten Zelltypen des menschlichen Körpers hervorzubringen, werden sie für die Herstellung differenzierter Zellen für Arzneimitteltests und für die Krankheitsmodellierung verwendet. Sie erfahren auch großes Interesse, weil sie als Zellquelle in der Zellersatztherapie Anwendung finden könnten. Die vorliegende Dissertation beschäftigt sich mit drei zentralen Herausforderungen, die im Rahmen der biomedizinischen Anwendung von iPSZ auftreten. Die Herstellung einer großen Zahl von humanen iPSZ (hiPSZ) erfordert die Entwicklung standardisierter Verfahren für die Skalierung, welche durch die Entwicklung einer flexiblen Bioprozessmethode realisiert werden kann. Bisher wird die Skalierbarkeit durch eine standardmäßig adhärente Zellkultur und den damit verbundenen hohen Arbeitsaufwand begrenzt. Die Menge an Zellen, die für die Zelltherapie benötigt wird, hängt stark vom Gewebetyp ab, welcher von den ersetzenden Zellen korrigiert werden soll. Berechnungen legen nahe, dass eine Anzahl 1 × 10^9 Zellen für eine Vielzahl von Indikationen ausreicht – einschließlich Myokardinfarkt und Inselzelltransplantation für Diabetes. Im Rahmen dieser Arbeit wurde ein integrierter Arbeitsablauf zur skalierbaren Zellsuspensionskultur von hiPSZ ohne Verwendung von microcarrier entwickelt, um die standardmäßig adhärente Kultur (6-Well-Platten) in Bioreaktoren (1 L Arbeitsvolumen, 2,4 L maximales Arbeitsvolumen) zu überführen. Der zweiphasige Produktionsprozess dauert 14 Tage und erzeugt hiPSZ-Aggregate mit einem finalen Durchmesser von 198 ± 58 μm, der annähernd 2 × 10^9 Zellen beinhaltet. hiPSZ können mindestens 7 Wochen lang in einer gerührten Zellsuspension bei wöchentlichem Passagieren gehalten werden, wobei sie Pluripotenz-assoziierte Marker wie TRA-1-60, TRA-1-81, SSEA-4, OCT4 und SOX2 beibehalten. Die Zellen behalten weiterhin ihre Fähigkeit, sich in vitro in Zellen mit AFP-, SMA- oder TUBB3-Immunoreaktivität und damit in Zellen aller drei Keimblätter zu differenzieren. Darüber hinaus halten sie einen stabilen Karyotyp aufrecht und reagieren auf gezielt eingesetzte externe Differenzierungsstimuli, wie durch eine gezielte Differenzierung in schlagende Kardiomyozyten-ähnliche Zellen demonstriert werden konnte. Somit wurde das Ziel, eine großen Anzahl hiPSCs herzustellen, mit einer hochmodernen, skalierbaren Suspensionsbioreaktorplattform erreicht. Multipotente Stammzellen wie induzierte neurale Stammzellen (iNSZ) gelten verglichen mit iPSZ als sicherere Zellquelle für Ersatztherapien. Die Vorkonditionierung von Stammzellen vor der Transplantation ist jedoch ein heikles Thema, da sowohl die einwandfreie Funktion im Wirtsgewebe als auch Sicherheit gewährleistet werden müssen. Im Rahmen dieser Arbeit wurden iNSZ, die normalerweise im Kulturmedium mit Faktoren wie hLIF, CHIR99021 und SB431542 gehalten werden, für eine definierte Zeitspanne in basalem Medium kultiviert. Die Vorbehandlung führt zu einer geringeren Proliferation, jedoch unter Erhalt der Expression des wichtigen neuralen Stammzellmarkers PAX6, was auf einen transienten vordifferenzierten Zustand hindeutet. Eine solche Vorbehandlung könnte bei zukünftigen Transplantationsstudien angewandt werden, um die Tumorentstehung durch transplantierte Zellen zu unterdrücken. Dieser Ansatz wird in Zukunft mit einem Mausmodell der experimentellen fokalen Demyelinisierung und der autoimmunen Enzephalomyelitis untersucht. Schließlich kann die Zellersatztherapie von den jüngsten Fortschritten in der Biofabrikation profitieren, bei der die Zellen durch das Drucken in anpassbare topographische Profile angeordnet werden können. Mit einem 3DDiscovery Biodrucker wurde eine Biotinte bestehend aus Gelatine-Alginat und hiPSZ in scheibenförmig extrudiert oder in einem Kreuzschraffurmuster gedruckt und mittels Kalziumionen-Zugabe vernetzt. Gedruckte hiPSZ zeigten auch nach 4 Tagen Kultivierung eine Lebensfähigkeit von etwa 70 % und weiterhin das Auftreten der Pluripotenz-assoziierten Marker TRA-1-60 und SSEA-4. Zudem konnten sie sich anschließend mit standardmäßig adhärenter Zellkultur weiter vermehren. Zudem konnte gezeigt werden, dass die gedruckten Konstrukte einer gezielten neuronalen Differenzierung unterzogen werden können, die zu einem typischen Neuritenauswuchs und zu einer weitreichenden interzellulären Vernetzung durch und innerhalb der Topologie der gedruckten Matrix führte. Die Färbung gegen TUBB3 bestätigte die neuronale Identität der differenzierten Zellen. Zusammenfassend zeigen diese Daten, dass bei Verwendung des in dieser Studie erarbeiteten Protokolls hiPSZ nicht nur den 3D-Druckprozess überleben, sondern auch entlang der gedruckten 3D Topologie in Netzwerke Neurone differenzieren können. KW - scale-up KW - suspension culture KW - biomedical applications KW - bioprocessing KW - human induced pluripotent stem cells KW - Bioprozessmethode KW - humanen induzierte pluripotente Stammzellen Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-191865 ER - TY - THES A1 - Kruse, Daniel T1 - Quantitative Analyse histologischer Aufnahmen der Haut T1 - Quantitative analysis of histological images of the skin N2 - Diese Arbeit hatte zum Ziel quantitative Analysen histologischer Aufnahmen der Haut nach unterschiedlichen Gesichtspunkten zu etablieren. Im ersten Abschnitt wurde die bildgestützte Quantifizierung der epidermalen Histomorphologie untersucht. Nach Sichtung und Beurteilung von 2145 hochauflösenden Fotografien HE-gefärbter Epidermis- und Vollhautmodellen jeglichen Zustands, wurde der BSGC-Score als Facettenklassifikation mit seinen insgesamt 40 Beurteilungskriterien aufgestellt. Die unterschiedlichen epidermalen Strata wurden mit Wichtungsfaktoren belegt. Die Bewertungskategorien sind mit einem Ampelsystem unterlegt. Eine Befundungsformel wurde aufgestellt. Weitere Bestandteile des BSGC-Scores sind eine Anleitung mit Bildbeilage sowie Dokumentationselemente. Die Anwendung erfolgte erfolgreich im Rahmen der Qualitätssicherung an Chargentests und zur Verlaufsbeurteilung eines In-vitro-Verbrennungsmodells aus humaner Epidermis durch Schneider et al. (2021) Der BSGC-Score dient als zügig durchführbares Evaluationstool zur Befundung von In-vitro-Epidermismodellen und nicht als diagnostisches Mittel. Der zweite Abschnitt beschäftigt sich mit der Vaskularisierung als Parameter der kutanen Wundheilung. Es wurden aSMA-IF-gefärbte Abbildungen porciner Verwundungsmodelle betrachtet und nach der Entfernung drüsiger Strukturen Gefäßanschnitte zu Beginn manuell ausgezählt. Hieraus wurden die nötigen Einstellungen für die Bildbearbeitungssoftware ImageJ ermittelt und die Abbildungen dieser anschließend zugeführt. Es erfolgte die automatisierte Quantifizierung elliptischer Formationen mit einer Größe ≥ 30 Pixel. Im nächsten Schritt wurden die Abbildungen in die Bereiche Wundrand, Wundgrund und Wundheilung unterteilt. In dem Bereich Wundheilung zeigte sich eine signifikant größere Revaskularisierung als in Wundgrund. Abschließend erfolgte der Vergleich sekundärer Wundauflagen. Der Vergleich der Quotienten Wundheilung/Wundgrund nicht-okklusiver und okklusiver Wundauflagen zeigte keinen signifikanten Unterschied in der Neovaskularisierung. Die isolierte Betrachtung der Revaskularisierung als einzelner Prozess der Wundheilung kann nicht als generelles Kriterium für die Gesamtbeurteilung dienen. Hier findet die gewählte Methodik ihre Limitation. Zukünftige Anwendungsbereiche des BSGC-Scores sind die Ausweitung auf Vollhautmodelle und andere Verwundungsmodalitäten. Eine automatisierte und durch eine KI-gestützte Befundung ist ebenfalls aufgrund des zugrundeliegenden umfangreichen Datensatzes denkbar. Auch kann eine automatisierte softwaregestützte Quantifizierung der Vaskularisierung als überblickende und zügige Beurteilung der Wundheilung sinnvoll erscheinen. N2 - This work aimed to establish quantitative analyses of histological images of the skin according to different aspects. In the first section, image-based quantification of epidermal histomorphology was investigated. After reviewing and assessing 2145 high-resolution photographs of HE-stained epidermis and full-thickness skin models of any condition, the BSGC score was established as a facet classification with its total of 40 assessment criteria. Weighting factors were assigned to the different epidermal strata. The assessment categories are underlaid with a color system. A scoring formula was established. Further components of the BSGC score are a manual with picture supplement as well as documentation elements. It was successfully applied in the context of quality assurance on batch tests and for progression assessment of an in vitro human epidermis burn model by Schneider et al. (2021). The BSGC score serves as a rapidly feasible evaluation tool for the reporting of in vitro epidermis models and not as a diagnostic tool. The second section focuses on vascularization as a parameter of cutaneous wound healing. ASMA-IF-stained images of porcine wounding models were considered, and after removal of glandular structures, vascular formations were manually counted at baseline. From this, the necessary settings for the image processing software ImageJ were determined and the images were subsequently fed to it. Automated quantification of elliptical formations with a size ≥ 30 pixels was performed. In the next step, the images were divided into the areas of wound margin, wound bed and wound healing. The wound healing area showed significantly greater revascularization than wound bed. Finally, secondary wound dressings were compared. The comparison of the wound healing/wound bed quotients of non-occlusive and occlusive wound dressings showed no significant difference in neovascularization. The isolated consideration of revascularization as a single process of wound healing cannot serve as a general criterion for the overall assessment. This is where the chosen methodology finds its limitation. Future areas of application of the BSGC score include extension to full-thickness skin models and other wound modalities. Automated and AI-assisted scoring is also conceivable due to the extensive underlying data set. Automated software-assisted quantification of vascularization may also appear useful as an overview and expeditious assessment of wound healing. KW - Wundheilung KW - Vaskularisation KW - Epidermis KW - Vaskularisierung KW - Epidermismodell KW - In-vitro-Testsystem KW - BSGC KW - invitro KW - Haut Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-352946 ER - TY - THES A1 - von der Assen [geb. Weiß], Katrin Barbara T1 - Markierung von humanen mesenchymalen Stammzellen mit für die Magnet-Partikel-Spektroskopie geeigneten Eisenoxidnanopartikeln, Untersuchung des Zellverhaltens in dreidimensionaler Umgebung und nicht-invasive Analyse mittels Raman-Spektroskopie T1 - Labeling of human mesenchymal stem cells using iron oxide nanoparticles which are traceable by magnetic particle spectroscopy, examination of cell behaviour in a 3D environment and non-invasive analysis using raman spectroscopy N2 - Stem cell research has already been challenged for years by the question how to design tissues or even whole organs in vitro. Human mesenchymal stem cells (hMSC) seem to be very promising for this task as they can be extracted in many cases directly from the recipient. Thus potential graft rejections are avoided. For further research on the behaviour of stem cells in vivo it is essential to be able to track them non-invasively. This is for example possible by Magnetic Particle Imaging (MPI). For this purpose stem cells have to be labelled with a suitable substance, for example with superparamagnetic iron oxide nanoparticles (SPION). Presently there are no SPION approved by FDA or EMA that are able to enter hMSC without transfection agent (TA). Therefore the aim of this dissertation was to identify at least one SPION that possesses an optimal interaction with hMSC and can be tracked by MPI as well as by Raman-Spectroscopy. Furthermore the identified SPION should be detectable for a longer period of time and should not have any influence on hMSC. This dissertation was performed within the framework of the EU-wide `IDEA-project´. hMSC have been labelled with the iron oxide nanoparticles M4E, M4F, M4F2 and M3A-PDL in varying concentrations. For M3A-PDL and M4E examinations were done with concentrations of 0.5 mg/ml in standard cell culture as well as in a three-dimensional environment on a matrix of small intestinal submucosae (SIS-ser). Furthermore chondrogenic differentiation of M4E labelled hMSC was examined. Additionally Magnetic Particle Spectroscopy (MPS) and Raman-Spectroscopy were used as non-invasive detection systems. Histologically SPION uptake was proven by Prussian blue staining. Cell viability and proliferation were examined by Trypan blue staining and Ki67 antibody staining. In order to prove that also labelled cells proliferate, a special staining protocol combining Prussian blue and immunohistochemical stainings was established. The success of chondrogenic differentiation was histologically verified by Alcian blue staining, Aggrecan and Collagen II antibody staining. It could be demonstrated, that M4E has a very good cell-particle interaction when used for labelling hMSC. In contrast to M3A, which is only taken up into hMSC when covered by a TA, M4E can be used without TA. Both particles do not influence cell viability or proliferation. M4F and M4F2 are not suitable to lable hMSC. SPION could be detected at least for four weeks after labelling in a three-dimensional environment which is significantly longer than the maximum detection time of two weeks in cell culture. Chondrogenic differentiation is influenced by cell labelling with 0.5 mg/ml M4E. M3A-PDL can be detected by MPS. Raman-Spectroscopy is suitable to differentiate between M3A-PDL labelled and unlabelled hMSC. This dissertation has been able to identify an iron oxide nanoparticle with an excellent cell-particle interaction that allows intense cell labelling without TA and can be detected by MPS. In further studies at the institute it could already be shown that Raman-Spectroscopy can differentiate also between M4E labelled and unlabelled cells. However, chondrogenic differentiation of hMSC was inhibited in this dissertation. In literature several authors came to the conclusion that there is a dose-dependent inhibition of differentiation. Therefore further experiments are necessary to find out whether inhibition of differentiation might be less immanent when using smaller SPION concentrations. Additionally it should be evaluated if smaller SPION concentrations remain detectable by MPS for several weeks. Finally further studies should be done in testing systems that are more similar to the situation in vivo. Such systems are for example the dynamic environment of a BioVaSc-TERM®. This is important to make better predictions of the behaviour of labelled hMSC in vivo. N2 - Die Stammzellforschung beschäftigt sich bereits seit Jahren mit der Frage, wie Gewebe oder sogar Organe im Labor hergestellt werden können. Als besonders vielversprechend erscheinen hierfür humane Mesenchymale Stammzellen (hMSC), da diese in vielen Fällen direkt vom Empfänger gewonnen werden können und so keine Organ- oder Gewebeabstoßung durch Abwehrreaktionen zu erwarten ist. Für die weitere Erforschung des Verhaltens von Stammzellen in vivo ist es notwendig, diese nicht-invasiv darstellen zu können. Dies ist zum Beispiel mittels Magnetischer Partikel Bildgebung (MPI) möglich. Hierfür müssen die Stammzellen mit einer geeigneten Substanz markiert werden. Eine solche sind beispielsweise superparamagnetische Eisenoxidnanopartikel (SPION). Derzeit gibt es keine von den medizinischen Zulassungsbehörden zugelassenen SPION die ohne TA in hMSC aufgenommen werden. In der hier vorliegenden Arbeit sollte also im Rahmen des EU-weiten „IDEA-Projekts“ ein geeigneter SPION identifiziert werden, der eine optimale Zell-Partikel-Interaktion aufweist und sowohl mittels MPI als auch mit Raman-Spektroskopie nachweisbar ist. Zudem sollte die Nachweisbarkeit des SPION über einen längeren Zeitraum gegeben und kein Einfluss auf die hMSC feststellbar sein. Es wurden hMSC mit den Eisenoxidnanopartikeln M4E, M4F, M4F2 und M3A-PDL in unterschiedlichen Konzentrationen markiert. Für M3A-PDL und M4E erfolgten bei einer Konzentration von 0,5 mg/ml Untersuchungen in Zellkultur sowie auf SIS-ser als Matrix im 3D-Modell. Desweiteren wurde das Differenzierungsverhalten der mit M4E markierten hMSC bei chondrogener Differenzierung untersucht. Außerdem kamen Magnetische Partikel Spektroskopie (MPS) und Raman-Spektroskopie als nicht-invasive Nachweisverfahren zum Einsatz. Der SPION-Nachweis erfolgte histologisch mittels Berliner Blau Färbung. Untersuchungen zu Zellviabilität und Proliferation erfolgten durch Trypanblau sowie Ki67-Antikörper-Färbung. Um Nachzuweisen ob auch markierte Zellen proliferieren wurde eigens ein kombiniertes Färbeprotokoll zur Kombination von Berliner Blau und immunhistochemischer Färbung etabliert. Der Erfolg der chrondrogenen Differenzierung wurde mittels Alcianblau, Aggrecan- und Kollagen-II-Antikörper Färbung überprüft. Es konnte gezeigt werden, dass M4E bei der Markierung von hMSC eine sehr gute Zell-Partikel-Interaktion aufweist und im Gegensatz zu M3A auch ohne TA in die Zellen aufgenommen wird. Durch beide Partikel werden Zellviabilität und Proliferation nicht beeinflusst. M4F sowie M4F2 ist zur Markierung nicht geeignet. Die Markierung ließ sich im 3D-Modell mit vier Wochen deutlich länger nachweisen als in 2D Zellkultur mit maximal zwei Wochen. Die chondrogene Differenzierung wird durch die Markierung mit 0,5 mg/ml M4E beeinflusst. M3A-PDL sind durch MPS nachweisbar. Die Raman-Spektroskopie eignet sich zur Differenzierung zwischen mit M3A-PDL markierten und unmarkierten hMSC. Es ist im Rahmen dieser Arbeit gelungen, einen Eisenoxidnanopartikel mit hervorragender Zell-Partikel-Interaktion zu identifizieren, der ohne zusätzliches TA eine intensive Markierung der hMSC ermöglicht und mit MPS nachweisbar ist. Für M4E konnte in weiteren Arbeiten am Institut bereits gezeigt werden, dass auch eine Differenzierung zwischen markierten und unmarkierten Zellen mittels Raman-Spektroskopie möglich ist. Die chondrogene Differenzierung der hMSC wurde in der vorliegenden Arbeit allerdings beeinträchtigt. In der Literatur finden sich Hinweise auf eine dosisabhängige Inhibition der Differenzierung. Es sind daher weitere Versuche notwendig, um herauszufinden, ob die Inhibition der Differenzierung möglicherweise bei geringerer SPION-Konzentration weniger ausgeprägt ist. Zudem sollte untersucht werden, ob auch geringere Konzentrationen in den Zellen über mehrere Wochen mittels MPS nachweisbar bleiben. Desweiteren sollten Untersuchungen in, der in vivo Situation ähnlicheren, Systemen, wie dem dynamischen Umfeld einer BioVaSc-TERM® durchgeführt werden um bessere Vorhersagen zum Verhalten markierter hMSC in vivo treffen zu können. KW - Stammzellforschung KW - Eisenoxid-Nanopartikel KW - Magnet-Partikel-Spektroskopie KW - Raman-Spektroskopie KW - 3D-Kultur KW - humane mesenchymale Stammzellen Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-219095 ER - TY - THES A1 - Mühlemann, Markus T1 - Intestinal stem cells and the Na\(^+\)-D-Glucose Transporter SGLT1: potential targets regarding future therapeutic strategies for diabetes T1 - Intestinale Stammzellen und der Na\(^+\)-D-Glukose Transporter SGLT1: potentielle Ansatzpunkte neuartiger Therapien für Diabetes Patienten N2 - The pancreas and the small intestine are pivotal organs acting in close synergism to regulate glucose metabolism. After absorption and processing of dietary glucose within the small intestine, insulin and glucagon are released from pancreatic islet cells to maintain blood glucose homeostasis. Malfunctions affecting either individual, organ-specific functions or the sophisticated interplay of both organs can result in massive complications and pathologic conditions. One of the most serious metabolic diseases of our society is diabetes mellitus (DM) that is hallmarked by a disturbance of blood glucose homeostasis. Type 1 (T1DM) and type 2 (T2DM) are the main forms of the disease and both are characterized by chronic hyperglycemia, a condition that evokes severe comorbidities in the long-term. In the past, several standard treatment options allowed a more or less adequate therapy for diabetic patients. Albeit there is much effort to develop new therapeutic interventions to treat diabetic patients in a more efficient way, no cure is available so far. In view of the urgent need for alternative treatment options, a more systemic look on whole organ systems, their biological relation and complex interplay is needed when developing new therapeutic strategies for DM. T1DM is hallmarked by an autoimmune-mediated destruction of the pancreatic β-cell mass resulting in a complete lack of insulin that is in most patients restored by applying a life-long recombinant insulin therapy. Therefore, novel regenerative medicine-based concepts focus on the derivation of bioartificial β-like cells from diverse stem cell sources in vitro that survive and sustain to secrete insulin after implantation in vivo. In this context, the first part of this thesis analyzed multipotent intestinal stem cells (ISCs) as alternative cell source to derive bioartificial, pancreatic β-like cells in vitro. From a translational perspective, intestinal stem cells pose a particularly attractive cell source since intestinal donor tissues could be obtained via minimal invasive endoscopy in an autologous way. Furthermore, intestinal and pancreatic cells both derive from the same developmental origin, the endodermal gut tube, favoring the differentiation process towards functional β-like cells. In this study, pancreas-specific differentiation of ISCs was induced by the ectopic expression of the pancreatic transcription factor 1 alpha (Ptf1a), a pioneer transcriptional regulator of pancreatic fate. Furthermore, pancreatic lineage-specific culture media were applied to support the differentiation process. In general, ISCs grow in vitro in a 3D Matrigel®-based environment. Therefore, a 2D culture platform for ISCs was established to allow delivery and ectopic expression of Ptf1a with high efficiency. Next, several molecular tools were applied and compared with each other to identify the most suitable technology for Ptf1a delivery and expression within ISCs as well as their survival under the new established 2D conditions. Success of differentiation was investigated by monitoring changes in cellular morphology and induction of pancreatic differentiation-specific gene expression profiles. In summary, the data of this project part suggest that Ptf1a harbors the potential to induce pancreatic differentiation of ISCs when applying an adequate differentiation media. However, gene expression analysis indicated rather an acinar lineage-determination than a pancreatic β-cell-like specification. Nevertheless, this study proved ISCs not only as interesting stem cell source for the generation of pancreatic cell types with a potential use in the treatment of T1DM but alsoPtf1a as pioneer factor for pancreatic differentiation of ISCs in general. Compared to T1DM, T2DM patients suffer from hyperglycemia due to insulin resistance. In T2DM management, the maintenance of blood glucose homeostasis has highest priority and can be achieved by drugs affecting the stabilization of blood glucose levels. Recent therapeutic concepts are aiming at the inhibition of the intestinal glucose transporter Na+-D-Glucose cotransporter 1 (SGLT1). Pharmacological inhibition of SGLT1 results in reduced postprandial blood glucose levels combined with a sustained and increased Glucagon-like peptide 1 (GLP-1) secretion. So far, systemic side effects of this medication have not been addressed in detail. Of note, besides intestinal localization, SGLT1 is also expressed in various other tissues including the pancreas. In context of having a closer look also on the interplay of organs when developing new therapeutic approaches for DM, the second part of this thesis addressed the effects on pancreatic islet integrity after loss of SGLT1. The analyses comprised the investigation of pancreatic islet size, cytomorphology and function by the use of a global SGLT1 knockout (SGLT1-/-) mouse model. As SGLT1-/- mice develop the glucose-galactose malabsorption syndrome when fed a standard laboratory chow, these animals derived a glucose-deficient, fat-enriched (GDFE) diet. Wildtype mice on either standard chow (WTSC) or GDFE (WTDC) allowed the discrimination between diet- and knockout-dependent effects. Notably, GDFE fed mice showed decreased expression and function of intestinal SGLT1, while pancreatic SGLT1 mRNA levels were unaffected. Further, the findings revealed increased isled sizes, reduced proliferation- and apoptosis rates as well as an increased α-cell and reduced β-cell proportion accompanied by a disturbed cytomorphology in islets when SGLT1 function is lost or impaired. In addition, pancreatic islets were dysfunctional in terms of insulin- and glucagon-secretion. Moreover, the release of intestinal GLP-1, an incretin hormone that stimulates insulin-secretion in the islet, was abnormal after glucose stimulatory conditions. In summary, these data show that intestinal SGLT1 expression and function is nutrient dependent. The data obtained from the islet studies revealed an additional and new role of SGLT1 for maintaining pancreatic islet integrity in the context of structural, cytomorphological and functional aspects. With special emphasis on SGLT1 inhibition in diabetic patients, the data of this project indicate an urgent need for analyzing systemic side effects in other relevant organs to prove pharmacological SGLT1 inhibition as beneficial and safe. Altogether, the findings of both project parts of this thesis demonstrate that focusing on the molecular and cellular relationship and interplay of the small intestine and the pancreas could be of high importance in context of developing new therapeutic strategies for future applications in DM patients. N2 - Das komplexe Zusammenspiel zwischen Pankreas und Dünndarm ist von großer Bedeutung für den Zucker Stoffwechsel. Während der Dünndarm Glukose aus der Nahrung absorbiert, sezerniert der Pankreas Insulin und Glukagon für die Regulation des Blutzuckerspiegels. Bereits kleinste Fehlfunktionen in einem der beiden Organe können das fein abgestimmte Zusammenspiel aus der Balance bringen und zu schwerwiegenden Begleiterscheinungen führen. Die bekannteste Krankheit bezüglich eines gestörten Blutzuckerhaushaltes ist Diabetes mellitus (DM). Die wichtigsten Formen sind Typ1 und Typ 2 Diabetes, welche beide durch chronische Hyperglykämie gekennzeichnet sind, einem Zustand der langfristig zu schweren Komplikationen führt. Derzeit ist keine Heilung möglich, jedoch vermindert eine Vielzahl von Medikamenten und Therapien die auftretenden Symptome, was die Lebensqualität der Patienten erheblich verbessert. Für die Entwicklung von neuen Medikamenten und Therapien für DM Patienten, muss der Fokus vermehrt auf die Gesamtheit der Organ-Organ Interaktionen, sowie den entwicklungsbiologischen Ursprung der einzelnen Organe gerichtet werden. Bei Typ 1 Diabetes werden die insulinsekretierende β-Zellen vom Immunsystem zerstört, was zu einem Mangel an Insulin führt. Deshalb ist eine regelmäßige Insulingabe unabdingbar, um eine Hyperglykämie vorzubeugen. Ein vielversprechender Ansatz um fehlendes Insulin zu kompensieren besteht darin aus Stammzellen bioartifizielle, insulinsekretierende Zellen zu generieren. In diesem Zusammenhang ist der biologische Ursprung der zu differenzierenden Zellen von großer Bedeutung. In dieser Arbeit werden daher intestinale Stammzellen (ISZ) als mögliche alternative Zellquelle beschrieben, um insulinsekretierende Zellen zu generieren. Aus medizinischer Sicht eigenen sich ISZ besonders gut für regenerative Therapien, da sie patientenspezifisch durch eine minimal-invasive Endoskopie entnommen werden können. Des Weiteren haben die beiden Organe einen gemeinsamen embryologischen Ursprung, die endodermalen Darmröhre, was die pankreatische Differenzierung begünstigen könnte. Mithilfe der ektopischen Expression des pankreatischen Masterregulators pankreatischer Transkriptionsfaktors 1 alpha (Ptf1a), sollen ISZ in insulinsekretierende β-Zell-ähnliche Zelltypen differenziert werden. Zudem soll ein pankreas-spezifisches Differenzierungsmedium die Effizienz der Differenzierung erhöhen. Da ISZ normalerweise in einer 3D Umgebung kultiviert werden, wurde für diese Arbeit eine 2D Zellkultur etabliert, um eine hocheffiziente genetische Manipulation zur ektopischen Expression von Ptf1a zu garantieren. Im nächsten Schritt wurde die bestmögliche Methode evaluiert um Ptf1a in ISZ zu integrieren, welche gleichzeitig aber das Wachstum und Überleben der Zellen nicht beeinträchtigt. Der Erfolg der angewandten Methode wurde basierend auf der Zellmorphologie, sowie der Transkription von pankreasspezifischen Genen überprüft. Die Ergebnisse dieser Studie haben gezeigt, dass die Ptf1a-induzierte Differenzierung in Verbindung mit der Applikation eines spezifischen Differenzierungsmediums das Genexpressionsprofil von Azinär Zellen induziert und nicht wie erwartet, das von endokrinen β-Zellen. Dies bedeutet, dass Ptf1a die Kapazität aufweist, ISZ in pankreatische Zellen zu konvertieren, jedoch bei der Entwicklung in Richtung insulinsekretierende β-Zellen keine Rolle spielt. Letztendlich zeigen die Ergebnisse dieser Arbeit, dass ISZ eine interessante Alternative zu pluripotenten Stammzellen darstellen. Im Gegensatz zu Typ 1 leiden Typ 2 Diabetes Patienten an Hyperglykämie infolge von Insulinresistenz, welche oft mit blutzuckerregulierenden Medikamenten behandelt werden können. Eine gute Therapiemöglichkeit ist die Inhibition des intestinalen Glukosetransporters SGLT1, was zu einer drastisch reduzierten postprandialen Glukoseaufnahme führt und gleichzeitig die intestinale Sekretion des Inkretins Glukose-like Peptide 1 (GLP-1) erhöht. Beides wirkt sich positiv auf die Blutzuckerregulation unter diabetischen Verhältnissen aus. Obwohl SGLT1 primär im Dünndarm exprimiert ist, wurde dessen Expression auch in anderen Organen, wie dem Gehirn, dem Herz, der Lunge und in pankreatischen α-Zellen nachgewiesen. Im zweiten Teil dieser Arbeit wurde daher der Einfluss des Funktionsverlustes von SGLT1 auf die Integrität pankreatischer Inselzellcluster analysiert. Im diesem Rahmen wurde die Morphologie der pankreatischen Inseln, deren Architektur und Funktion mithilfe eines etablierten murinen SGLT1 Knockout (SGLT1-/-) Modelles untersucht. Da SGLT1-/- Mäuse unter einer Standard Labordiät (SD) ein schweres Glukose-Galaktose Malabsorptions Syndrom entwickeln, erhalten die Tiere eine glukose-freie, fett-angereicherte Diät (GDFE). Um diät- und knockoutspezifische Effekte unterscheiden zu können, wurden als Kontrollen SD- und GDFE-gefütterte Wildtyp Tiere mit den SGLT1-/- Mäusen verglichen. Wildtyptiere unter GDFE Diät zeigten eine verminderte Expression und Funktionalität des intestinalen SGLT1 Transporters, während im Pankreas die SGLT1 mRNA Expression nicht von der Diät beeinflusst wurde. Die Ergebnisse dieser Arbeit haben gezeigt, dass in SGLT1-/- Pankreata, die Inseln größer sind, aber auch die Proliferations- und Apoptoserate in den Inselzellen reduziert ist. Zudem befinden sich in SGLT1-/- Inseln mehr α-Zellen und weniger β-Zellen. Des Weiteren ist die typische Anordnung der endokrinen Zellen gestört. Diese Beobachtungen deuten darauf hin, dass SGLT1 in pankreatischen Inseln eine wichtige Rolle für die strukturelle Organisation der verschiedenen Zelltypen innerhalb der Inseln spielt. Ergänzend wurde gezeigt, dass isolierte SGLT1-/- Inseln in der Gegenwart von Glukose unfähig sind Insulin oder Glukagon zu sezernieren. Weitere Untersuchungen im Tier haben ergeben, dass auch das insulinsekretionsfördernde Hormon GLP-1 in atypischer Art und Weise sekretiert wird. In dieser Arbeit wurde gezeigt, dass die intestinale SGLT1 Expression und Funktion durch Nährstoffe beeinflusst werden kann. Des Weiteren wurde erstmals eine neue Funktion für SGLT1 bezüglich der strukturellen und zellulären Organisation pankreatischer Inselzellcluster beschrieben. Daten zu neuen klinischen SGLT1 Inhibitoren beschreiben lediglich eine intestinale SGLT1 Blockierung, während die Wirkung in weitern Organen nicht berücksichtigt wurde. Die Daten dieser Arbeit liefern klare Indizien dafür, dass starke Nebenwirkungen und Effekte auch in anderen SGLT1-exprimierenden Geweben und Organen auftreten könnten, wenn die SGLT1 Funktion verloren geht. Zusammenfassend konnte in dieser Arbeit gezeigt werden, dass die Regulation des Blutzuckerspiegels auf einem komplexen Zusammenspiel zwischen Dünndarm und Pankreas basiert. Daher sollten bei zukünftigen SGLT1 Inhibitions-Studien im Menschen die Interaktionen zwischen den beiden Organen unbedingt berücksichtigt werden, um die Wirksamkeit und die Sicherheit solcher Medikamente für Diabetes Patienten besser darzulegen. KW - Stammzelle KW - Diabetes mellitus KW - Sglt1 KW - GLP-1 KW - blood glucose regulation KW - Intestinal stem cell KW - Lgr5 KW - islets of Langerhans KW - pancreas KW - glucose KW - insulin Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-169266 ER - TY - THES A1 - Siverino, Claudia T1 - Induction of ectopic bone formation by site directed immobilized BMP2 variants \(in\) \(vivo\) T1 - Induktion ektoper Knochenbildung durch gerichtet immobilisierte BMP2-Varianten \(in\) \(vivo\) N2 - In contrast to common bone fractures, critical size bone defects are unable to self-regenerate and therefore external sources for bone replacement are needed. Currently, the gold standard to treat critical size bone fractures, resulting from diseases, trauma or surgical interventions, is the use of autologous bone transplantation that is associated with several drawbacks such as postoperative pain, increased loss of blood during surgery and extended operative time. The field of bone tissue engineering focuses on the combination of biomaterials and growth factors to circumvent these adverse events and thereby to improve critical size bone defects treatment. To this aim, a promising approach is represented by using a collagen sponge soaked with one of the most powerful osteoinductive proteins, the bone morphogenetic protein 2 (BMP2). After the approval by the Food and Drug Administration (FDA), BMP2 was used to successfully treat several severe bone defects. However, the use of BMP2 delivery systems is associated with severe side effects such as inflammation, swelling, ectopic bone formation outside of the site of implantation and breathing problems if implanted in the area of the cervical spine. The occurrence of severe side effects is related to the supraphysiological amounts of the applied protein at the implantation site. The BMP2 is typically adsorbed into the scaffold and diffuses rapidly after implantation. Therefore, intensive research has been conducted to improve the protein’s retention ability, since a prolonged entrapment of the BMP2 at the implantation site would induce superior bone formation in vivo due to a minimized protein release. By controlling the release from newly designed materials or changing the protein immobilization methods, it seems possible to improve the osteoinductive properties of the resulting BMP2-functionalized scaffolds. The combination of biocompatible and biodegradable scaffolds functionalized with a covalently immobilized protein such as BMP2 would constitute a new alternative in bone tissue engineering by eliminating the aforementioned severe side effects. One of the most common immobilization techniques is represented by the so-called EDC/NHS chemistry. This coupling technique allows covalent biding of the growth factor but in a non-site direct manner, thus producing an implant with uncontrollable and unpredictable osteogenic activities. Therefore, the generation of BMP2 variants harboring functional groups that allow a site-directed immobilization to the scaffold, would enable the production of implants with reproducible osteogenic activity. The new BMP2 variants harbor an artificial amino acid at a specific position of the mature polypeptide sequence. The presence of the unnatural amino acid allows to use particular covalent immobilization techniques in a highly specific and site directed manner. The two selected BMP2 variants, BMP2 E83Plk and BMP2 E83Azide, were expressed in E. coli, renatured and purified by cation exchange chromatography. The final products were intensively analyzed in terms of purity and biological activity in vitro. The two BMP2 variants enabled the application of different coupling techniques and verify the possible options for site directed immobilization to the scaffold. Intensive analyses on the possible side effects caused by the coupling reactions and on the quantification of the coupled protein were performed. Both click chemistry reactions showed high reaction efficacies when the BMP2 variants were coupled to functionalized fluorophores. Quantification by ELISA and scintillation counting of radioactively labeled protein revealed different outcomes. Moreover, the amounts of protein detected for the BMP2 variants coupled to microspheres were similar to that of the wild type protein. Therefore, it was not possible to conclude whether the BMP2 variants were covalently coupled or just adsorbed. BMP2 variants being immobilized to various microspheres induced osteogenic differentiation of C2C12 cells in vitro, but only in those cells that were located in close proximity to the functionalized beads. This selectivity strongly indicates that the protein is for a great portion covalently coupled and not just adsorbed. Moreover, the difference between the covalently coupled BMP2 variants and the adsorbed BMP2 WT was confirmed in vivo. Injection of the BMP2-functionalized microspheres in a rat model induced subcutaneous bone formation. The main aim of the animal experiment was to prove whether covalently coupled BMP2 induces bone formation at significant lower doses if compared to the amount being required if the protein is simply adsorbed. To this aim, several BMP2 concentrations were tested in this animal experiment. The BMP2 variants, being covalently immobilized, were hypothesized to be retained and therefore bio-available at the site of implantation for a prolonged time. However, in the animal experiments, lower doses of either coupled or adsorbed protein were unable to induce any bone formation within the 12 weeks. In contrast, the highest doses induced bone formation that was first detected at week 4. During the 12 weeks of the experiment, an increase in bone density and a steady state bone volume was observed. These results were obtained only for the covalently coupled BMP2 E83Azide but not for BMP2 E83Plk that did not induce bone formation in any condition. The negative outcome after application of BMP2 E83Plk suggested that the coupling reaction might have provoked changes in the protein structure that extremely influenced its osteogenic capabilities in vivo. However, the histological examination of the different ossicles induced either by BMP2 WT or BMP2 E83Azide, revealed clear morphological differences. BMP2 WT induced a bone shell-like structure, while the covalently coupled protein induced uniform bone formation also throughout the inner part. The differences between the two newly formed bones can be clearly associated with the different protein delivery mechanisms. Thus, the developed functionalized microspheres constitute a new interesting strategy that needs further investigations in order to be able to be used as replacement of the currently used BMP2 WT loaded medical devices. N2 - Knochendefekte kritischer Größe sind im Vergleich zu normalen Knochenfrakturen nicht in der Lage selbst zu heilen. Daher werden zusätzlich Knochenersatzmaterialien zu deren Heilung benötigt. Der derzeitige Goldstandard in der Behandlung dieser Defekte, die durch Krankheiten, Traumata oder durch chirurgische Eingriffe hervorgerufen werden können, ist Transplantation autologen Knochens, was jedoch mit einigen Nachteilen verbunden ist. Als Alternative können neuartige biokompatible Materialien mit intrinsischem osteogenen Potential verwendet werden. Solche Materialien können Wachstumsfaktoren beinhalten welche aktiv die Heilung des beschädigten Knochens fördern. Ein vielversprechender Ansatz um dieses Ziel zu erreichen, ist der Einsatz eines Kollagenträgers, welcher mit einem der stärksten osteoinduktiven Proteine, dem Bone Morphogenic Protein 2 (BMP2) dotiert ist. Nach der Genehmigung durch die Food and Drug Administration (FDA), wurde BMP2 erfolgreich bei der Behandlung von schwerwiegenden Knochendefekten eingesetzt. Daher wird es als bisher beste Alternative zu autologen Transplantaten sowie als beste Möglichkeit zur Anregung der Knochenneubildung angesehen. Nichtdestotrotz geht der Einsatz von mit BMP2 beladenen Trägersystemen mit Nebenwirkungen, wie Entzündungen Schwellungen, Knochenwucherungen abseits des behandelten Defektes sowie Atembeschwerden bei Behandlungen im Bereich der Halswirbelsäule einher. Die Nebenwirkungen werden durch die supraphysiologische Menge an Protein, mit der die Trägerstruktur beladen wird hervorgerufen. Jedoch ist solch eine Menge an Protein nötig, da die Abgabe des Proteins an der Transplantationsstelle sehr schnell abläuft. Deshalb konzentriert sich die Forschung auf die Verbesserung der Freisetzungskinetik, da ein längerer Verbleib des BMP2 an der Implantationsstelle sowie eine verringerte Freisetzung des Proteins eine bessere Knochenbildung in vivo herbeiführt. Die Freisetzungskinetik kann durch die Eigenschaften neu entwickelter Materialien selbst oder durch alternative Methoden der Kopplung des Proteins an die Trägerstruktur verändert werden. Die Kombination aus biokompatiblen sowie biodegradierbaren Trägerstrukturen, an die über kovalente Bindungen BMP2 gebunden wird, stellt eine vielversprechende Alternative dar, welche die vorgenannten Nebenwirkungen bei der Knochenregeneration eliminiert. Die am häufigsten eingesetzte Methode zur kovalenten Anbindung von Proteinen an Trägerstukturen erfolgt über die sogenannte EDC/NHS-Chemie. Diese Technik erlaubt die allerdings nur eine ungerichtete Anbindung wodurch die standardisierte Reproduktion eines möglichen Medizinproduktes erschwert wird. Als Resultat entstehen sehr wahrscheinlich Implantate mit unvorhersehbaren osteogenen Eigenschaften. Die Herstellung von BMP2-Varianten, welche gerichtet an Trägerstrukturen gekoppelt werden können, ermöglicht die Herstellung von Implantaten mit reproduzierbarer osteogener Aktivität. Alle hier vorgestellte Varianten beinhalten eine artifizielle Aminosäure an einer bestimmten Stelle in der Polypeptidsequenz. Die künstliche Aminosäure ermöglicht den Einsatz spezieller Kopplungschemien für kovalente Bindungen, welche dadurch per Definition spezifisch und gerichtet sind. Für weiterführende Experimente wurden die folgende BMP2-Varianten ausgewählt: BMP2 E83Plk und BMP2 E83Azide. Diese wurden durch Expression in E. coli gewonnen, renaturiert und mittels Ionenchromatographie aufgereinigt. Die gewonnenen Produkte wurden hinsichtlich ihrer Reinheit und biologischen Aktivität in vitro untersucht. Beide BMP2 Varianten ermöglichen den Einsatz verschiedener Kopplungstechniken an geeignete Trägerstrukturen. Analysen hinsichtlich möglicher Nebenwirkungen aufgrund der Kupplungsreaktion sowie die genaue Quantifizierung der gekoppelten Proteine auf den Mikrosphären wurden durchgeführt. Beide Kopplungsstrategien zeigten eine hohe Effizienz wobei für die Quantifizierung der Proteinmengen mittels ELISA und Szintillationszählung unterschiedliche Werte gemessen wurden. Des Weiteren war die gemessene Proteinmenge von an Mikrosphären gekoppelten BMP2 Varianten in einem ähnlichen Bereich, wie die bei der ungekoppelten BMP2 WT Kontrolle gemessen wurden. Daher war es nicht möglich zu bestimmen, inwieweit die verwendeten BMP2-Varianten kovalent gebunden oder lediglich adsorbiert waren. Die BMP2 Varianten, die anhand der verwendeten Kopplungschemie in kovalent gebundener Form vorliegenden sollten, induzierten unabhängig vom jeweils verwendeten Material der Sphären die osteogene Differenzierung von C2C12 Zellen die in unmittelbarem Kontakt zu diesen Sphären standen. Im Falle von BMP2 WT beinhaltenden Sphären wurde auch Zelldifferenzierung in Distanz zu den einzelnen Sphären beobachten, was auf Diffusionsprozesse hindeutet. Da dies im Falle der kovalent gekoppelten BMP-2 Varianten nicht beobachtet werden konnte zeigt, dass das Protein hier zum Großteil kovalent gebunden vorliegt und nicht nur adsorbiert wird. Unterschiede zwischen den kovalent gebundenen BMP2 Varianten und dem adsorbierten Wildtyp zeigten sich auch in den Tierexperimenten. Mikrosphären, welche mit BMP2 WT oder einem der beiden BMP2 Varianten beladenen waren, wurden einer Ratte subkutan injiziert, was zu einer ektopen Knochenbildung führte. Das Ziel des Tierversuches war, zu überprüfen, ob geringere Dosen an kovalent gebundenem BMP2, verglichen mit der hohen benötigten Menge an adsorbiertem Protein diese Knochenneubildung induzieren kann. Dabei wurden verschiedene BMP2 Konzentrationen getestet. Die Hypothese war, dass die kovalent gebundenen BMP2 Varianten zurückgehalten werden beziehungsweise langsamer freigesetzt werden und daher über einen längeren Zeitraum an der Implantationsstelle wirksam sind. Allerdings konnte im Tierversuch weder durch niedrig dosiertes (< 10 μg) kovalent gebundenes noch durch adsorbiertes Protein innerhalb von 12 Wochen ektope Knochenbildung induziert werden. Dagegen konnte mit der höchsten Dosis bereits nach 4 Wochen Knochenbildung nachgewiesen werden. Während des zwölfwöchigen Experiments konnte ein Anstieg der Knochendichte und ein Steady State des Knochenvolumens beobachtet werden. Dies traf jedoch nur für das kovalent gebundene BMP2 E83Azide zu, jedoch nicht für das BMP2 E83Plk, welches bei allen Dosen kein Knochenwachstum hervorrufen konnte. Das negative Ergebnis nach der Gabe von BMP2 E83Plk deutet darauf hin, dass die hier verwendete Kopplungschemie möglicherweise eine Veränderung der Proteinstruktur bewirkt und dadurch die biologische Aktivität des Proteins verloren geht. Allerdings zeigten histologische Untersuchungen der gebildeten Knochenstrukturen, welche durch BMP2 WT oder durch BMP2 E83Azide hervorgerufen wurden, deutliche morphologische Unterschiede. BMP2 WT erzeugt eine solide schalenförmige Strukturen während das kovalent gebundene Protein ein eher gleichförmiges Knochenwachstum induziert, auch im Inneren der gebildeten Knochenstruktur, welches hier Reste implantierten Mikrosphären umschließt. Dies konnte nicht in den durch BMP2 WT induzierten Knochenstrukturen nachgewiesen werden. Der Unterschied zwischen den zwei Formen neu gebildeten Knochens kann mit den verschiedenen Freisetzungsmechanismen in Verbindung gebracht werden. Daher stellt die Entwicklung funktionalisierter Mikrosphären eine neue interessante Strategie dar, welche weiterführende Untersuchungen benötigt, um die aktuell genutzten BMP2 WT beinhaltenden Medizinprodukte zu ersetzen. KW - Bone morphogenetic protein 2 KW - ectopic bone formation KW - site directed immobilization KW - bone regeneration KW - in vivo study Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-169359 ER - TY - THES A1 - Berninger, Ann-Kathrin T1 - In-vitro-Untersuchungen zur Biokompatibilität modifizierter Silikonoberflächen T1 - In-vitro characterization on compability testing of modified silicon surfaces N2 - Hintergrund Jede Implantation alloplastischer Materialien führt durch Aktivierung der körpereigenen Immunabwehr zu einer Fremdkörperreaktion. An der Synthese der Extrazellulärmatrix und der entstehenden Kollagenkapsel sind insbesondere Makrophagen und Fibroblasten beteiligt. Diese Reaktionen können die Material-Funktionsfähigkeit abschwächen, aufheben oder zu deren operativer Entfernung zwingen. Fragestellung und Ziele Spinnenseide ist ein Material mit hoher Biokompatibilität. Nachdem es gelungen ist, Spinnenseide rekombinant herzustellen, soll untersucht werden, wie sich die Verträglichkeit alloplastischer Materialien durch eine Beschichtung mit biotechnologisch hergestellter Spinnenseide beeinflussen lässt. Eine weitere Möglichkeit ist der TGF-β-Synthese-Inhibitor Halofuginon, der ebenfalls hinsichtlich seiner Potenz, die Ausbildung einer Fibrosekapsel zu vermindern, untersucht werden soll. Methodik Anhand von in-vitro-Untersuchungen wurden die bei der Fremdkörperreaktion beteiligten Zelltypen auf ihr Proliferationsverhalten und die Expression unterschiedlicher Genprodukte hinsichtlich bestehender Unterschiede zwischen den jeweiligen Oberflächenbeschichtungen untersucht. Es wurden immunhistochemische Färbungen zum Nachweis spezifischer Oberflächenantigene, Bestimmungen von ATP- und DNA-Gehalt als Maß für die Zellzahl, sowie molekulargenetische Untersuchungen hinsichtlich der Expression relevanter Markergene (rtPCR) durchgeführt. Ergebnisse Eine Beschichtung mit rekombinanter Spinnseide führt - im Vergleich zu reinen Silikonimplantaten - zu einer verzögerten und reduzierten Immunreaktion. Die EZM-Synthese und die damit verbundene fremdkörperassoziierte Fibrose werden vermindert und so die Biokompatibilität alloplastischer Materialien gesteigert. N2 - Introduction: Optimisation of the biocompatibility of silicone implants and reduction of capsule formaiton around the surface of such implants are in the focus of plastic surgical biomaterial research. In addition to its extraordinary physical and biochemical properties, spider silk shows high biocompatibility. Therefore, the coating of silicone implant surfaces with recombinant spider silk wwas analysed regarding foreign body reactions. Another possibility to modify the surface is a coating with chinazolinone derivative halofuginone which is a type I collagen synthesis inhibitor that interferes with the TGF-beta signaling pathway. Methods: We compared proliferation and expression of different gene products in-vitro by immunhistochemistry, content of ATP and DNA, and rtPCR. Conclusion: The results confirmed a decrease in foreign body responses to spider silk or halofuginone surface-modified silicone implants and mark their potential for obtaining a lessened capsular fibrosis by way of a local antifibrotic effect. KW - Fibrose KW - Silikon KW - rekombinante Spinnseide KW - Halofuginon KW - fremdkörper assoziierte Reaktion Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-113911 ER - TY - THES A1 - Jannasch, Maren Annika T1 - In vitro Fremdkörpermodellsysteme zur Vorhersage von biomaterialinduzierten Immunreaktionen T1 - In vitro foreign body model systems for prediction of immune reactions to biomaterials N2 - Die Implantation eines Medizinprodukts in den menschlichen Körper ruft eine Immunreaktion hervor, die zur fibrösen Einkapselung führen kann. Makrophagen in direktem Kontakt mit der Oberfläche des Implantats erfassen sensorisch den Fremdkörper und übersetzten das Signal in die Freisetzung zahlreicher löslicher Mediatoren. Das generierte Entzündungsmilieu moduliert die Heilungsreaktion und kann zur Anreicherung von Fibroblasten sowie zur Erhöhung der Matrixsyntheserate in der Wundumgebung führen. Eine dichte fibröse Kapsel um ein Medizinprodukt beeinträchtigt den Ersatz von Körperstrukturen, das Unterstützen physiologischer Körperfunktionen sowie die Effizienz einer medizinischen Therapie. Zur Identifizierung potenzieller Biomaterialkandidaten mit optimalen Eigenschaften ist jedoch eine evidenzbasierte Entscheidungsfindung notwendig und diese wiederum muss durch geeignete Testmethoden unterstützt werden. Zur Erfassung lokaler Effekte nach Implantation eines Biomaterials begründet die Komplexi-tät der ablaufenden Fremdkörperreaktion die Anwendung von Tiermodellen als Goldstandard. Die Eingliederung von in vitro Modellsystemen in standardisierte Testverfahren scheitert oft an der Verfügbarkeit validierter, verlässlicher und reproduzierbarer Methoden. Demnach ist kein standardisiertes in vitro Testverfahren beschrieben, das die komplexen dreidimensionalen Gewebsstrukturen während einer Fremdkörperreaktion abbildet und sich zur Testung über längere Kontaktphasen zwischen Blutkomponenten und Biomaterialien eignet. Jedoch können in vitro Testungen kosten- und zeiteffizienter sein und durch die Anwendung humaner Zellen eine höhere Übertragbarkeit auf den Menschen aufweisen. Zusätzlich adressiert die Präferenz zu in vitro Testmethoden den Aspekt „Reduzierung“ der 3R-Prinzipien „Replacement, Reduction, Refinement“ (Ersatz, Reduzierung, Verbesserung) von Russel und Burch (1959) zu einer bewussten und begründeten Anwendung von Tiermodellen in der Wissenschaft. Ziel von diesem Forschungsvorhaben war die Entwicklung von humanen in vitro Modellsystemen, die den Kontakt zu Blutkomponenten sowie die Reaktion des umliegenden Bindegewebes bei lokaler Implantation eines Biomaterials abbilden. Referenzmaterialien, deren Gewebsantwort nach Implantation in Tiere oder den Menschen bekannt ist, dienten als Validierungskriterium für die entwickelten Modellsysteme. Die Anreicherung von Zellen sowie die Bildung extrazellulärer Matrix in der Wundumgebung stellen wichtige Teilprozesse während einer Fremdkörperreaktion dar. Für beide Teilprozesse konnte in einem indirekten zellbasierten Modellsystem der Einfluss einer zellvermittelten Konditionierung wie die Freisetzung von löslichen Mediatoren durch materialadhärente Makrophagen auf die gerichtete Wanderung von Fibroblasten sowie den Umbau eines dreidimensionalen Bindegewebsmodells aufgezeigt werden. Des Weiteren ließ sich das Freisetzungsprofil von Zytokinen durch materialständige Makrophagen unter verschiedenen Testbedingungen wie der Kontamination mit LPS, der Oberflächenbehandlung mit humanem Blutplasma und der Gegenwart von IL-4 bestimmen. Die anschließende vergleichende statistische Modellierung der generierten komplexen multifaktoriellen Datenmatrix ermöglichte die Übersetzung in eine Biomaterialbewertung. Dieses entwickelte Testverfahren eignete sich einerseits zur Validierung von in vitro Testbedingungen sowie andererseits zur Bewertung von Biomaterialien. Darüber hinaus konnte in einem dreidimensionalen Fremdkörpermodell die komplexe dreidimensionale Struktur der extrazellulären Matrix in einer Wunde durch die Kombination unterschiedlicher Zell- und Matrixkomponenten biomimetisch nachgebaut werden. Diese neuartigen dreidimensionalen Fremdkörpermodelle ermöglichten die Testung von Biomaterialien über längere Testphasen und können in anschließenden Studien angewandt werden, um dynamische Prozesse zu untersuchen. Zusammenfassend konnten in dieser Arbeit drei unterschiedliche Teststrategien entwickelt werden, die (I) die Bewertung von Teilprozessen ermöglichen, (II) die Identifizierung verlässlicher Testbedingungen unterstützen und (III) biomimetisch ein Wundgewebe abbilden. Wesentlich ist, dass biomimetisch ein dreidimensionales Gewebemodell entwickelt werden konnte, das eine verlässliche Unterscheidungskapazität zwischen Biomaterialien aufweist. N2 - The implantation of a medical product into the human body induces an immune reaction, which may lead to its fibrous encapsulation. Macrophages in direct contact to the surface sense the foreign body and translate the signal in the secretion of multiple soluble mediators. This generated inflammatory milieu modulates the healing reaction, may induce the accumulation of fibroblasts and lead in the wound microenvironment to an increased matrix synthesis rate. A dense fibrous capsule surrounding a medical product is able to impair the replacement of body structures, the support of physiological body functions as well as the efficiency of a medical therapy. To identify potential biomaterial candidates with optimal characteristics an evidence-based decision making process is necessary and furthermore affords the support by appropriate test procedures. To study local effects after implantation of biomaterials, the complexity of the foreign body reaction justifies the application of animal models as gold standard. The integration of in vitro test procedures into standardized test strategies often fails by the availability of validated, reliable and reproducible methods. According to that there is no standardized test procedure, which resembles the three-dimensional tissue structures during a foreign body reaction and is suited for longer contact phases in between blood components and biomaterials. In vitro tests are often more cost and time efficient and show as well by applying human cells a high transferability on human beings. Additionally the preference to in vitro test procedures addresses the “reduction” aspect of the Russel and Burch’s (1959) 3R-principles “replace-ment, reduction and refinement” to a conscious and reasoned use of animal models in science. Aim of this research project was the development of human in vitro model systems, which resemble the contact to blood components and the reaction of the surrounding soft tissue following implantation of a biomaterial. Reference materials, whose tissue integration after implantation in animals or humans is described, were applied for the developed model systems as validation criterion. The accumulation of cells and the synthesis of extracellular matrix in the surrounding wound are relevant sub processes during a foreign body reaction. In an indirect cell-based model system the influence of the cell-mediated conditioning initiated by the material-induced and macrophage-mediated liberation of soluble mediators was shown on both sub processes the aligned migration of fibroblasts as well as the remodeling of a three-dimensional tissue model. Additionally, the cytokine secretion profile by material-adherent macrophages was characterized under different test conditions such as the contamination with LPS, the surface treatment with human plasma and the presence of IL-4. The following comparative statistical modelling allowed a transformation of the generated complex multi-factorial data matrix to a biomaterial ranking. The here developed test procedure was suitable for the validation of in vitro test conditions as well as the evaluation of the reference biomaterials. Last, by the combination of different cells and matrix structures the complex three-dimensional structure of the extracellular matrix in a wound was biomimetically reconstructed. Those novel three-dimensional foreign body models enabled the testing of biomaterials over longer test phases and might be applied in following studies to investigate dynamic processes. Summarizing in this research project three different test strategies were developed, which (I) enable the evaluation of sub processes, (II) support the identification of reliable test conditions and (III) biomimetically reconstruct a wound tissue. Most important is, that a three-dimensional tissue model was biomimetically developed, which showed a reliable discriminatory capacity in between biomaterials. KW - Biomaterial KW - Zellkultur KW - In vitro KW - Fremdkörpermodell KW - Gewebemodell Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-162893 ER - TY - THES A1 - Appelt-Menzel, Antje T1 - Etablierung und Qualifizierung eines humanen Blut-Hirn-Schranken-Modells unter Verwendung von induziert pluripotenten und multipotenten Stammzellen T1 - Establishment and qualification of a human blood-brain barrier model by use of human induced pluripotent stemm cells an multipotent stem cells N2 - Die Blut-Hirn-Schranke (BHS) stellt eine der dichtesten und wichtigsten Barrieren zwischen Blutzirkulation und Zentralnervensystem (ZNS) dar. Sie besteht aus spezialisierten Endothelzellen, welche die zerebralen Kapillaren auskleiden und durch sehr dichte Tight Junctions (TJs) miteinander verbunden sind. Weitere Komponenten der dynamischen Blut-Hirn-Schrankenbarriere stellen Perizyten, Astrozyten, Neurone und Mikrogliazellen dar, welche zusammen mit der extrazellulären Matrix der Basalmembran der Gehirnkapillaren und den zuvor genannten Endothelzellen ein komplexes regulatorisches System, die so genannte neurovaskuläre Einheit bilden (Hawkins und Davis 2005). Die Hauptfunktionen der BHS lassen sich in drei Untergruppen untergliedern, die physikalische, metabolische und Transport-Barriere (Neuhaus und Noe 2010). Hauptsächlich dient die BHS der Aufrechterhaltung der Homöostase des ZNS und dem Schutz vor neurotoxischen Substanzen sowie Pathogenen, wie Bakterien und Viren. Zudem ist sie auch für die Versorgung der Neuronen mit Nährstoffen und regulierenden Substanzen sowie den Efflux von Stoffwechselendprodukten des ZNS zurück ins Blut verantwortlich. Für die Entwicklung von Medikamenten zur Behandlung von neurodegenerativen Erkrankungen, wie Morbus Alzheimer, Morbus Parkinson und Multiple Sklerose oder Gehirntumoren, stellt die Dichtigkeit der BHS gegenüber Substanzen und die hohe metabolische Aktivität der Endothelzellen aber ein großes Problem dar. Viele Medikamente sind nicht in der Lage in ausreichender Konzentration die BHS zu überwinden, um an ihren Wirkort zu gelangen oder werden vor dem Transport metabolisiert und die Wirksamkeit dadurch eingeschränkt. Weiterhin spielen auch Defekte der BHS eine entscheidende Rolle in der Beeinflussung der Pathogenese vieler ZNS-Erkrankungen. Aufgrund des hohen Bedarfs an geeigneten Testsystemen in der Grundlagen- sowie präklinischen Forschung für Medikamentenentwicklung und Infektionsstudien wurden eine Vielzahl unterschiedlicher BHS-Modelle entwickelt. Neben in silico-, azellulären in vitro- und in vivo-Modellen sind auch zahlreiche zellbasierte Modelle der BHS entwickelt worden. Standardisierte Modelle auf Basis immortalisierter Zelllinien jedoch weisen nur eine inhomogene TJ-Expression auf und verfügen meist über eine geringe Barriereintegrität, erfasst über transendotheliale elektrische Widerstände (TEER) unter 150 · cm2 (Deli et al. 2005). Im Vergleich dazu wurden in Tierexperimenten TEER-Werte von mehr als 1500 · cm2 an der BHS gemessen (Butt et al. 1990; Crone und Olesen 1982). Die Verfügbarkeit humaner primärer BHS-Zellen ist sehr limitiert und ihr Einsatz nicht nur im Hinblick auf ethische Aspekte bedenklich. Humane Gehirnzellen können z. B. aus Biopsie- oder Autopsiematerial von Patienten mit Epilepsie oder Gehirntumoren isoliert werden. Allerdings besteht hier das Risiko, dass die isolierten Zellen krankheitsbedingt verändert sind, was die Eigenschaften der BHS-Modelle erheblich beeinflussen kann. Eine Alternative, die diese Probleme umgeht, ist die Verwendung von humanen induziert pluripotenten Stammzellen (hiPSCs), um standardisierte humane BHS-Modelle unter reproduzierbaren Bedingungen bereitzustellen. Im Rahmen dieser Arbeit ist es gelungen, hiPSCs in vitro nach etablierten und standardisierten Methoden in Endothelzellen der BHS, neurale Stammzellen (hiPS-NSCs) sowie Astrozyten (hiPS-A) zu differenzieren (Lippmann et al. 2012; Lippmann et al. 2014; Wilson et al. 2015; Yan et al. 2013;Reinhardt et al. 2013) und zum Aufbau der Modelle einzusetzen. Die Endothelzellen wurden mit Hilfe protein- und genbasierter Nachweismethoden auf das Vorhandensein von endothelzellspezifischen TJ-Markern sowie spezifischen Transportern untersucht und funktionell charakterisiert. Die Kryokonservierung der hiPS-EC-Progenitoren, die im Rahmen der vorliegenden Arbeit entwickelt wurde, ermöglicht eine größere räumliche und zeitliche Flexibilität beim Arbeiten mit den stammzellbasierten Modellen sowie das Anlegen standardisierter Zellbanken. Weiterhin wurden multipotente NSCs aus fetalen Gehirnbiopsien isoliert (fNSCs) und als Kontrollkulturen zu den hiPS-NSCs für den Aufbau von BHS-Modellen eingesetzt. Mit dem Ziel die in vivo-BHS bestmöglich zu imitieren und die Modelleigenschaften zu optimieren, wurde ein Set aus zehn unterschiedlichen BHS-Modellen basierend auf primären Zellen, hiPSCs und fNSCs analysiert. Der Aufbau der BHS-Modelle erfolgte unter Verwendung von Transwellsystemen. Durch die systematische Untersuchung des Einflusses der unterschiedlichen Zelltypen der neurovaskulären Einheit auf die Barriereintegrität und Genexpression des BHS-Endothels, konnten die Quadrupel-Kulturen mit Perizyten, Astrozyten und hiPS-NSCs als die Kultur mit den physiologischsten Eigenschaften identifiziert werden. Auf Grund der signifikant erhöhten TEER-Werte von bis zu 2500 · cm2 und einer um mindestens 1,5-fachen Steigerung der Genexpression BHSrelevanter Transporter und TJ-Moleküle gegenüber den Monokulturen, wurden diese Modelle für weiterführende Studien ausgewählt. Das Vorhandensein eines komplexen, in vivo-ähnlichen TJ-Netzwerkes, bestehend aus Occludin, Claudin 1, 3, 4 und 5, konnte mittels quantitativer Realtime-PCR, Western Blot sowie ultrastruktureller Analyse in der Gefrierbruch- und Raster-Elektronenmikroskopie nachgewiesen werden. Neben der Begrenzung der parazellulären Permeabilität, welche über die geringe Permeation von FITC-Dextran (4 kDa und 40 kDa), Fluoreszein und Lucifer Yellow nachgewiesen wurde, stellt die BHS ebenfalls eine Barriere für den transzellulären Transport von Substanzen dar. Eine Beurteilung der Modelle hinsichtlich der Qualifikation für die Nutzung im Wirkstoffscreening wurde mit Hilfe von Transportversuchen unter dem Einsatz von BHS-relevanten Referenzsubstanzen durchgeführt. Die Klassifikation der Testsubstanzen erfolgte analog ihrer Permeationsgeschwindigkeiten: Diazepam und Koffein gelten als schnell transportierte Wirkstoffe, Ibuprofen, Celecoxib und Diclofenac werden mit einer mittleren Geschwindigkeit über die BHS transportiert und Loratadin sowie Rhodamin 123 sind langsam permeierende Substanzen. Innerhalb der Versuche mit den Quadrupelkulturen wurde diese Reihenfolge bestätigt, lediglich für Koffein wurde ein signifikant niedrigerer Permeationskoeffizient verglichen mit der Monokultur erzielt. Der Einsatz der hiPSC-Technologie ermöglicht es zudem, aus einer Stammzelllinie große Mengen an humanen somatischen Zelltypen zu generieren und für gezielte Anwendungen bereitzustellen. Es konnte im Rahmen dieser Arbeit gezeigt werden, dass mit Hilfe eines eigens für diese Zwecke konstruierten Rührreaktorsystems eine reproduzierbare Expansion der hiPSCs unter definierten Bedingungen ermöglicht wurde. Basierend auf dieser Grundlage ist nun ein Hochdurchsatz-Screening von Medikamenten denkbar. Die in dieser Arbeit präsentierten Daten belegen die Etablierung eines stammzellbasierten in vitro- Quadrupelmodels der humanen BHS, welches über in vivo-ähnliche Eigenschaften verfügt. Die Anforderungen, die an humane BHS-Modelle gestellt werden, wie die Reproduzierbarkeit der Ergebnisse, eine angemessene Charakterisierung, welche die Untersuchung der Permeabilität von Referenzsubstanzen einschließt, die Analyse der Expression von BHS-relevanten Transportermolekülen sowie die solide und physiologische Morphologie der Zellen, wurden erfüllt. Das etablierte BHS-Modell kann in der Pharmaindustrie für die Entwicklung von Medikamenten eingesetzt werden. Ausreichend qualifizierte Modelle können hier in der präklinischen Forschung genutzt werden, um Toxizitäts- und Transportstudien an neu entwickelten Substanzen durchzuführen und eine bessere in vitro-in vivo-Korrelation der Ergebnisse zu ermöglichen oder Mechanismen zu entwickeln, um die BHS-Barriere gezielt zu überwinden. N2 - The blood-brain barrier (BBB) presents one of the tightest and most important barriers between the blood circulation and the central nervous system (CNS). The BBB consists of specialized endothelial cells, which line the cerebral capillaries and are connected through very dense tight junctions (TJs). Together with pericytes, astrocytes, neurons, microglial cells and the extracellular matrix of the basal membrane of the brain capillaries, they form a dynamic and complex regulatory system, the so-called neurovascular unit (Hawkins and Davis 2005). The main functions of the BBB can be divided into three subgroups, the physical-, metabolic- and transport-barrier (Neuhaus and Noe 2010). The BBB mainly serves to maintain the homeostasis of the CNS and for protection against neurotoxical substances and pathogens, such as bacteria and viruses. Moreover, the BBB ensures the supply of neurons with nutrients and regulatory substances. Furthermore, it is responsible for the efflux of CNS metabolism waste products. For the development of drugs applied for the treatment of neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease and Multiple Sclerosis or even brain tumors, the tightness of the BBB models towards substances and the high metabolic activity of the endothelial cells pose a problem. Numerous drugs cannot overcome the BBB in sufficient enough concentration to reach the target location or they are metabolized before transportation and thus become less effective. Moreover, defects of the BBB play a decisive role in the manipulation of the pathogenesis of numerous CNS diseases. Due to the high demand for test systems in basic and preclinical research of drug development and infection studies, a range of different BBB models have been developed. Besides the in silico, acellular in vitro and in vivo models, numerous cell-based BBB models have been developed. However, standardized models based on immortalized cell lines show only inhomogeneous TJ expression and possess low barrier integrity which is detected through transendothelial electrical resistance (TEER) below 150 · cm2 (Deli et al. 2005). In comparison, the TEER values in animal tests reached more than 1500 · cm2 at the BBB (Butt et al. 1990; Crone and Olesen 1982). The availability of human primary BBB cells is highly limited. Moreover, using human primary BBB cells is an extremely serious matter, not only in respect of ethical aspects. Human brain cells can, for instance, be isolated from biopsy or autopsy material obtained from patients suffering epilepsy or brain cancer. However, there is the risk that the isolated cells are altered due to disease, which may significantly change the features of the BBB models. An alternative to avoid such problems and to provide standardized human BBB models by the use of reproducible conditions, is the application of human induced pluripotent stem cells (hiPSCs). In this context, it has been successful to differentiate hiPSCs in vitro – under established and reproducible methods – into endothelial cells of the BBB (hiPS-ECs), neural stem cells (hiPS-NSCs) as well as astrocytes (hiPS-A) (Lippmann et al. 2012; Lippmann et al. 2014; Wilson et al. 2015; Yan et al. 2013; Reinhardt et al. 2013) and to use them for model establishment. The endothelial cells were examined for the existence and the functionality of endothelial-specific markers as well as specific transporters by protein- and gene-based methods. Within this work, the croypreservation of hiPS-EC progenitors was established. This will allow an increase of the spatial and temporal flexibility while working with the stem cell based models as well as the establishment of standardized cell banks. Furthermore, multipotent NSCs, isolated from fetal brain biopsies (fNSCs), were used as a control population for hiPSC-NSCs and for BBB modelling. In order to imitate the in vivo BBB in the best possible way and to optimize model characteristics, a set of ten different BBB models based on primary cells, hiPSCs and fNSCs was analyzed. Model establishment was done by the use of transwell systems. By the systematically analysis of the influence of the different neurovascular unit cell types on barrier integrity and on endothelial cell gene expression, the quadruple culture with pericytes, astrocytes and hiPS-NSCs was identified demonstrating the most physiological properties. Due to the significant increase of TEER results up to 2500 · cm2 as well as the at least 1.5-fold increase in gene expression of BBB relevant transporter and TJ markers compared to the mono-cultures, this model was selected for further studies. The presence of a complex in vivo-like TJ network, based on occludin, claudin 1, 3, 4 and 5 was detected by quantitative reale time PCR, Western blot analyses as well as on ultrastructural level by freeze fracture electron microscopy and transmission electron microscopy. Beside the limitation of the paracellular permeability, proven by the low permeation of FITC dextran (4 kDa and 40 kDa), fluorescein and Lucifer yellow, the BBB represents also a barrier for transcellular transported substances. A model evaluation, to assess the models qualification to be used for drug screenings, was proven by transport studies based on BBB relevant reference substances. The classification of the test substances was made analog their permeation rates: diazepam and caffeine are classified as fast, ibuprofen, celecoxib and diclofenac as medium, and loratadine and rhodamine 123 as slow permeating substances. Within our tests, this ranking based on literature data could be confirmed by using the quadruple-culture models, only caffeine was transported with a significantly decreased permeation coefficient compared to the mono-cultures. Furthermore, the implementation of the hiPSC technology allows the generation of a large quantity of human somatic cell types form only one single stem cell line and their provision for specific applications. Within this work it was shown, that by the use of an in-house constructed stirred tank bio-reactor, providing defined culture conditions, a reproducible expansion of hiPSCs was enabled. On this basis, a high throughput drug screening might be possible. The data presented within this work demonstrate the establishment of a stem cell based in vitro quadruple-model of the human BBB with in vivo-like characteristics. All minimal requirements for human BBB modeling, including the reproducibility of the results, adequate characterization with regard on the permeability of reference components, expression of BBB transporters as well as the robust and physiological morphology are fulfilled. The established BBB model can be used in pharmaceutical drug development. In preclinical research adequate qualified models are asked for toxicity and transport studies with new developed substances in order to allow a better in vitro-in vivo correlation of the results. Moreover, the model can be used to develop mechanisms to selectively overcome the barrier. KW - Blut-Hirn-Schranke KW - Stammzelle KW - Zelldifferenzierung KW - In vitro KW - Endothelzelle KW - induziert pluripotente Stammzelle KW - multipotente Stammzelle KW - in vitro Modell KW - Neurovaskuläre Einheit KW - Neurale Stammzellen Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-134646 ER - TY - THES A1 - Groeber, Florian T1 - Etablierung eines vaskularisierten Hautäquivalentes T1 - Establishment of a vascularized skin equivalent N2 - Durch Methoden des Tissue Engineerings hergestellte dreidimensionale Hautäquivalente bilden die native humane Haut hinsichtlich ihrer histologischen Architektur, zellulären Zusammensetzung und metabolischen Aktivität ab. Diese Gewebe eignen sich daher als zellbasierte Wundauflagen für großflächige Hautdefekte oder als In-vitro-Testsysteme für den Ersatz von Tierversuchen. Bei bisherigen Hautäquivalenten fehlt jedoch ein funktionelles Blutgefäßsystem. Wird solch ein Gewebe als Implantat eingesetzt, führt das Fehlen von Blutgefäßen zu einer unzureichenden Versorgung mit Nährstoffen und zur Nekrose. Neben dieser klinischen Limitation ist auch das Anwendungsspektrum als In-vitro-Testsystem begrenzt. Bei nicht vaskularisierten Hautmodellen kann eine transdermale Penetration von Substanzen nicht akkurat abgeschätzt werden, da die zusätzliche Barriere, welche die gefäßauskleidenden Endothelzellen bilden, nicht enthalten ist. In Studien zur Integration eines Gefäßsystems in Hautäquivalente konnte bislang lediglich gezeigt werden, dass sich Endothelzellen zu gefäßartigen Strukturen zusammenlagern. Die Bildung von funktionellen perfundierbaren Gefäßen in einem in vitro generierten Hautäquivalent ist bisher jedoch noch nicht belegt. Entsprechend ist eine direkte Anastomose mit dem Blutkreislauf eines Patienten bei einem klinischen Einsatz als Hautimplantat nicht möglich. Bei einer Anwendung in In-vitro-Studien ist zudem das Gefäßsystem experimentell nicht zugänglich. In der vorliegenden Arbeit kann durch die Kombination einer biologischen, vaskularisierten Trägerstruktur (BioVaSc) mit einem neu entwickelten Bioreaktorsystems, ein Hautäquivalent mit einem perfundierbaren Gefäßsystem hergestellt werden. Die Generierung dieser sogenannten SkinVaSc erfolgt über die Besiedlung der BioVaSc mit humanen Keratinozyten (hEK) und Fibroblasten. Parallel dazu werden die eingebetteten Gefäßstrukturen der BioVaSc mit humanen mikrovaskulären Endothelzellen (hDMEC) rebesiedelt. Durch eine Anastomose zwischen den Gefäßen der BioVaSc und dem Bioreaktorsystem ist eine Perfusion mit physiologisch, gepulsten Drücken zwischen 80 und 120 mmHG möglich. Optimale Kulturbedingungen für die Haut- zellen können ferner durch zwei Kulturmodi generiert werden. Zur optimalen Versorgung der hEK innerhalb einer Proliferationsphase, die sich an die Zellaussaat anschließt, erfolgt eine kontinuierliche Versorgung der Oberfläche der SkinVaSc mit Medium. Der zweite Modus stimuliert die Differenzierung der hEK durch eine Kultivierung des Modells an der Grenzfläche zwischen Luft und Medium. Nach einer vierzehntägigen Kultivierung der SkinVaSc an der Luft Medium Grenzfläche lässt sich die Bildung einer hautspezifischen histologischen Architektur durch Hämalaun/Eosin und immunhistologische Färbungen belegen. Eine natürlich differenzierte Epidermis wird durch eine Basalmembran, die Kollagen Typ IV und Laminin 5 enthält von einen dermalen Teil getrennt. Die Dermale-Epidermale-Verbindung erscheint durch die Mikrostrukturierung der BioVaSc wellenförmig. Damit bildet die SkinVaSc die papillare Struktur der nativen humanen Haut ab. Innerhalb des dermalen Anteils können zudem Gefäßstrukturen ausgemacht werden. Die Innenseite der Gefäße sind durch eine Schicht aus hDMEC ausgekleidet, die endothelzellspe- zifische Oberflächenmarker wie "platelet endothelial cell adhesion molecule 1“ und "von Willebrand Faktor“ aufweisen. Eine zerstörungsfreie Überwachung der SkinVaSc hinsichtlich der epidermalen Differenzierung ist durch eine integrierte Sensortechnologie auf Basis der Impedanz-spektroskopie möglich. Dabei erlaubt ein entwickeltes mathematisches Modell die Extraktion von biologisch relevanten Informationen aus Impedanzspektren in einem Frequenzbereich zwischen 1 Hz und 100 kHz. Innerhalb dieser Studien ließ sich zeigen, dass die epidermale Differenzierung zu einer signifikanten Steigerung des ohmschen Widerstandes von 245,3 Ohm*cm2 zu 1108,1 Ohm*cm2 führt. Gleichzeitig sinkt die zelluläre Kapazität von 131,5µF/cm2 auf 5,4µF/cm2 ab. Durch diese Parameter ist es möglich die epidermale Barriere zerstörungsfrei über die Kultivierungszeit zu überwachen. Das Gefäßsystem der SkinVaSc ermöglicht es mehr dermatologische Fragestellungen in vitro zu untersuchen und damit Tierversuche zu ersetzen. Zudem kann auf Basis der SkinVaSc ein vaskularisiertes Hautimplantat entwickelt werden, das es ermöglicht tiefe Hautverletzungen zu behandeln. N2 - Tissue engineered three-dimensional skin equivalents can mimic the key anatomical, metabolic and cellular aspects of the human skin and thus can be employed as wound coverage for large skin defects or as in vitro test systems as an alternative to animal models. However, current skin equivalents lack a functional vasculature. Hence, their possible applications are limited in both fields. In a clinical application, the absence of a vasculature can lead to an insufficient supply of nutrients, which is a major reason for the failure of skin grafts. Moreover, without a vascular system, skin equivalents are not suitable to assess the transdermal penetration of substances accurately as the additional barrier of the endothelial cells is not present. Although there are approaches where endothelial cells are seeded into the dermal part of full thickness skin equivalents, which yield alignment of endothelial cells to vessel like structures, no functional perfusable vasculature is formed in vitro. Thus, no direct anastomosis of a skin graft with a patient’s blood flow is possible and the vasculature is not experimentally accessible in in vitro tests. Using a biological vascularized scaffold (BioVaSc) in combination with a custom developed bioreactor system, this thesis documents the in vitro generation of a vas- cularized skin equivalent with a perfused vascular network. The BioVaSc is based on a decellularized segment of a porcine jejunum and consists mainly of a collagen type III and I scaffold, in which the structure of the former vascular network is still embedded. For the formation of a vascularized skin equivalent (termed ‘Skin- VaSc’ in this thesis), the BioVaSc is initially constructed with human fibroblasts and keratinocytes. Following this, the embedded vascular structures in the BioVaSc are seeded with human micro vascular endothelial cells (hDMEC). This hDMEC vasculature in the BioVaSc is then connected to an outer fluidic system, which is provided by a developed bioreactor system. The fluidic system generates a physio- logical medium flow into the BioVaSc with a pulsatile pressure profile between 80 and 120 mmHg and can culture the SkinVaSc both under submersed conditions and at the air-liquid-interface. After culturing the SkinVaSc at the air-liquid interface for 14 days, histological hemalaun-eosin and immunohistological staining revealed specific histological architecture representative of the human dermis in vivo. A naturally differentiated epidermal layer and a dermal equivalent are separated by a basement membrane with components such as collagen type IV and laminin 5. Due to the villi structure of the BioVaSc, the dermal-epidermal-junction exhibits a papillary like architecture as seen in human skin in vivo. Additionally, hDMEC are detectable inside the per- fused vasculature and exhibit endothelial cell specific surface markers such as von Willebrand Factor (vWF) and platelet endothelial cell adhesion molecule 1. To monitor the formation of skin tissue inside the bioreactor, a non-destructive sen- sor technology based on impedance spectroscopy was established. A derived algorithm allows one to extract biologically relevant information from impedance spectra between 1 Hz and 100 kHz. Employing this algorithm, a drop from 131.5µF/cm2 to 5.4To monitor the formation of skin tissue inside the bioreactor, a non-destructive sensor technology based on impedance spectroscopy was established. A derived algo rithm allows one to extract biologically relevant information from impedance spectra between 1 Hz and 100 kHz. Employing this algorithm, a drop from 131.5µF/cm2 to 5.4µF/cm2 of the capacity and an increase from 245.3 Ohm*cm2 to 1108.1 Ohm*cm2 of the resistance was detectable from day 1 to day 12 of the culture at the air-liquid-interface. These changes could be correlated to the differentiation of the keratinocytes and the formation of a corneous layer. Thus, this method can be used to assess the epidermal differentiation non-invasively. Due to the integrated vasculature the SkinVaSc enables one to investigate additional dermatological questions in vitro and thus to replace animal experiments. Moreover, the SkinVaSc has enormous potential to be used as a vascularized skin graft for the treatment of deep skin wounds. µF/cm2 of the capacity and an increase from 245.3 Ohm*cm2 to 1108.1 Ohm*cm2 of the resistance was detectable from day 1 to day 12 of the culture at the air-liquid- interface. These changes could be correlated to the differentiation of the keratinocy- tes and the formation of a corneous layer. Thus, this method can be used to assess the epidermal differentiation non-invasively. Due to the integrated vasculature the SkinVaSc enables one to investigate additional dermatological questions in vitro and thus to replace animal experiments. Moreover, the SkinVaSc has enormous potential to be used as a vascularized skin graft for the treatment of deep skin wounds. KW - skin KW - vascularization KW - Bioengineering KW - Alternative methods KW - Vaskularisierung KW - Alternativmethoden KW - Tisuue Engineering KW - Haut KW - Vaskularisation Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-107453 ER -