TY - THES A1 - Leikeim, Anna T1 - Vascularization Strategies for Full-Thickness Skin Equivalents to Model Melanoma Progression T1 - Vaskularisierungsstrategien für Vollhautäquivalente zur Modellierung der Melanom-Progression N2 - Malignant melanoma (MM) is the most dangerous type of skin cancer with rising incidences worldwide. Melanoma skin models can help to elucidate its causes and formation or to develop new treatment strategies. However, most of the current skin models lack a vasculature, limiting their functionality and applicability. MM relies on the vascular system for its own supply and for its dissemination to distant body sites via lymphatic and blood vessels. Thus, to accurately study MM progression, a functional vasculature is indispensable. To date, there are no vascularized skin models to study melanoma metastasis in vitro, which is why such studies still rely on animal experimentation. In the present thesis, two different approaches for the vascularization of skin models are employed with the aim to establish a vascularized 3D in vitro full-thickness skin equivalent (FTSE) that can serve as a test system for the investigation of the progression of MM. Initially, endothelial cells were incorporated in the dermal part of FTSEs. The optimal seeding density, a spheroid conformation of the cells and the cell culture medium were tested. A high cell density resulted in the formation of lumen-forming shapes distributed in the dermal part of the model. These capillary-like structures were proven to be of endothelial origin by staining for the endothelial cell marker CD31. The established vascularized FTSE (vFTSE) was characterized histologically after 4 weeks of culture, revealing an architecture similar to human skin in vivo with a stratified epidermis, separated from the dermal equivalent by a basement membrane indicated by collagen type IV. However, this random capillary-like network is not functional as it cannot be perfused. Therefore, the second vascularization approach focused on the generation of a perfusable tissue construct. A channel was molded within a collagen hydrogel and seeded with endothelial cells to mimic a central, perfusable vessel. The generation and the perfusion culture of the collagen hydrogel was enabled by the use of two custom-made, 3D printed bioreactors. Histological assessment of the hydrogels revealed the lining of the channel with a monolayer of endothelial cells, expressing the cell specific marker CD31. For the investigation of MM progression in vitro, a 3D melanoma skin equivalent was established. Melanoma cells were incorporated in the epidermal part of FTSEs, representing the native microenvironment of the tumor. Melanoma nests grew at the dermo-epidermal junction within the well stratified epidermis and were characterized by the expression of common melanoma markers. First experiments were conducted showing the feasibility of combining the melanoma model with the vFTSE, resulting in skin models with tumors at the dermo-epidermal junction and lumen-like structures in the dermis. Taken together, the models presented in this thesis provide further steps towards the establishment of a vascularized, perfusable melanoma model to study melanoma progression and metastasis. N2 - Das maligne Melanom (MM) ist die gefährlichste Form von Hautkrebs mit weltweit steigender Inzidenz. Melanom-Hautmodelle können helfen, seine Ursachen und Entstehung aufzuklären oder neue Behandlungsstrategien zu entwickeln. Den meisten bisherigen Hautmodellen fehlt jedoch ein Gefäßsystem, was ihre Funktionalität und Anwendbarkeit einschränkt. Das MM ist auf das Gefäßsystem angewiesen, sowohl für die eigene Versorgung als auch für die Ausbreitung über Lymph- und Blutgefäße zu entfernten Körperstellen. Um die Entwicklung des MM genau zu studieren, ist daher eine funktionelles Gefäßsystem unabdingbar. Bislang gibt es keine vaskularisierten Hautmodelle, um die Melanommetastasierung in vitro zu untersuchen, weshalb solche Studien immer noch auf Tierversuche angewiesen sind. In der vorliegenden Arbeit werden zwei unterschiedliche Ansätze zur Vaskularisierung von Hautmodellen mit dem Ziel verfolgt, ein vaskularisiertes 3D in vitro Vollhautmodell (full-thickness skin equivalent, FTSE) zu etablieren, das als Testsystem zur Untersuchung der Entwicklung des MM dienen kann. Einerseits wurden Endothelzellen in den dermalen Teil von FTSEs integriert. Die optimale Aussaatdichte, eine sphäroidale Konformation der Zellen und das Zellkulturmedium wurden getestet. Eine hohe Zelldichte führte zur Bildung von lumenbildenden Formen, die im dermalen Teil des Modells verteilt waren. Diese kapillarähnlichen Strukturen wurden durch Färbung für den Endothelzellmarker CD31 als endothelialen Ursprungs nachgewiesen. Das etablierte vaskularisierte FTSE (vFTSE) wurde nach 4 Wochen Kultur histologisch charakterisiert und zeigte eine der menschlichen Haut in vivo ähnliche Architektur mit einer geschichteten Epidermis, die vom dermalen Äquivalent durch eine Basalmembran, gezeigt durch Kollagen Typ IV, getrennt ist. Dieses zufällige kapillarartige Netzwerk ist jedoch nicht funktional, da es nicht durchblutet werden kann. Daher konzentrierte sich der zweite Vaskularisierungsansatz auf die Erzeugung eines perfundierbaren Gewebekonstrukts. Ein Kanal wurde in einem Kollagenhydrogel geformt und mit Endothelzellen besiedelt, um ein zentrales, perfundierbares Gefäß zu imitieren. Die Erzeugung und die Perfusionskultur des Kollagenhydrogels wurde durch die Verwendung von zwei speziell angefertigten, 3D-gedruckten Bioreaktoren ermöglicht. Die histologische Beurteilung der Hydrogele zeigte die Auskleidung des Kanals mit einer Einzelschicht von Endothelzellen, die den zellspezifischen Marker CD31 exprimieren. Für die Untersuchung der MM-Progression in vitro wurde ein 3D-Melanom-Hautäquivalent hergestellt. Melanomzellen wurden in den epidermalen Teil von FTSEs integriert, was die native Mikroumgebung des Tumors darstellt. Die Melanomnester wuchsen an der dermo-epidermalen Grenzfläche innerhalb der gut stratifizierten Epidermis und wurden durch die Expression gängiger Melanommarker charakterisiert. Zusätzlich konnte die Kombination des Melanom-Modells mit dem vFTSE gezeigt werden, was zu Hautmodellen mit Tumoren an der dermo-epidermalen Grenzfläche und lumenartigen Strukturen in der Dermis führte. Alles in allem bieten die in dieser Arbeit vorgestellten Modelle weitere Schritte hin zur Entwicklung eines vaskularisierten, perfundierbaren Melanommodell zur Erforschung der Melanomprogression und Metastasierung. KW - Tissue Engineering KW - In-vitro-Kultur KW - Melanom KW - skin model KW - vascularization KW - in vitro-Testsystem KW - perfused hydrogel Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-272956 ER - TY - THES A1 - Mildenberger, Michael T1 - Untersuchung von im Tissue-Engineering-Verfahren hergestellten Oral-Mukosa-Äquivalenten mittels RT-qPCR (reverse transcription quantitative real-time polymerase chain reaction) T1 - Examination of tissue engineered oral mucosa equivalents by RT-qPCR (reverse transcription quantitative real-time polymerase chain reaction) N2 - Im Rahmen dieser Arbeit wurden Fibroblasten und Keratinozyten, welche in vitro auf unterschiedlichen Scaffolds sowohl gemeinsam als auch in Monokulturen gezüchtet wurden, mittels Real-time PCR auf ihre Genausschüttung untersucht, um festzustellen wie sich die Unterlage auf die Genausschüttung auswirkt. Hierzu wurden die Proben sowohl auf die Genexpressionsmarker für die Basallamina Kollagen IV, Laminin 1 und 5 als auch auf die Genexpressionsmarker für die frühe Differenzierung Keratin K13 und K14 untersucht. Als Referenzgen wurde β-Actin ausgewählt, da dieses Gen in den Vorversuchen mit zwei weiteren Referenzgenen die stabilste Expression gezeigt hatte. Die Genexpressionsanalyse zeigte, dass nur in den Kokulturen von Keratinozyten und Fibroblasten eine ausgewogene Genexpression stattfindet, da sich die Zellen darin beeinflussen und regulieren. N2 - Fibroblasts and keratinocytes were cultured in vitro on different scaffolds in monocultures and cocultures and examined by RT-qPCR for gene expression. Gene expression analysis was made for genes coding for basement Membrane collagen IV, laminin 1 and 5 and for early differentiation keratin K13 and K14. β-Actin was used as reference gene, because it showed in preliminary tests with two other reference genes most stable expression. Gene expression analysis showed only in cocultures of fibroblasts and keratinocytes balanced gene expression, because the two cell types affect and regulate each other. KW - Real time quantitative PCR KW - Tissue Engineering KW - Mundschleimhaut KW - Referenzgen Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-155286 ER - TY - THES A1 - Kremer, Antje T1 - Tissue Engineering of a Vascularized Meniscus Implant T1 - Tissue Engineering eines vaskularisierten Meniskus-Implantates N2 - The knee joint is a complex composite joint containing the C-shaped wedge-like menisci composed of fibrocartilage. Due to their complex composition and structure, they provide mechanical resilience to the knee joint protecting the articular cartilage. Because of the limited repair potential, meniscal injuries do not only affect the meniscus itself but also lead to altered joint homeostasis and inevitably to secondary osteoarthritis. The meniscus was characterized focusing on its anatomy, structure and meniscal markers such as aggrecan, collagen type I (Col I) and Col II. The components relevant for meniscus tissue engineering, namely cells, Col I scaffolds, biochemical and biomechanical stimuli were studied. Meniscal cells (MCs) were isolated from meniscus, mesenchymal stem cells (MSCs) from bone marrow and dermal microvascular endothelial cells (d-mvECs) from foreskin biopsies. For the human (h) meniscus model, wedge-shape compression of a hMSC-laden Col I gel was successfully established. During three weeks of static culture, the biochemical stimulus transforming growth factor beta-3 (TGF beta-3) led to a compact collagen structure. On day 21, this meniscus model showed high metabolic activity and matrix remodeling as confirmed by matrix metalloproteinases detection. The fibrochondrogenic properties were illustrated by immunohistochemical detection of meniscal markers, significant GAG/DNA increase and increased compressive properties. For further improvement, biomechanical stimulation systems by compression and hydrostatic pressure were designed. As one vascularization approach, direct stimulation with ciclopirox olamine (CPX) significantly increased sprouting of hd-mvEC spheroids even in absence of auxiliary cells such as MSCs. Second, a cell sheet composed of hMSCs and hd-mvECs was fabricated by temperature triggered cell sheet engineering and transferred onto the wedge-shaped meniscus model. Third, a biological vascularized scaffold (BioVaSc-TERM) was re-endothelialized with hd-mvECs providing a viable vascularized network. The vascularized BioVaSc-TERM was suggested as wrapping scaffold of the meniscus model by using two suture techniques, the all-inside-repair (AIR) for the posterior horn, and the outside-in-refixation (OIR) for the anterior horn and the middle part. This meniscus model for replacing torn menisci is a promising approach to be further optimized regarding vascularization, biochemical and biomechanical stimuli. N2 - Das Knie ist ein komplex zusammengesetztes Gelenk mit zwei C-förmigen Keilen aus Bindegewebsknorpel, die Menisken. Sie sorgen für die mechanische Belastbarkeit des Knies, wodurch der Gelenksknorpel geschützt wird. Aufgrund des limitierten Heilungspotentials beeinträchtigen Meniskusverletzungen nicht nur den Meniskus selbst, sondern schädigen auch das Gelenksgleichgewicht und führen zu sekundärer Osteoarthritis. Der Meniskus wurde in seiner Anatomie, Struktur und Meniskusmarkern wie Aggrekan, Kollagen I und Kollagen II charakterisiert. Die Komponenten von Meniskus Tissue Engineering, Zellen, Kollagen I Materialien, biochemische und biomechanische Stimuli wurden untersucht. Meniskuszellen (MCs) wurden aus Meniskus isoliert, mesenchymale Stammzellen (MSCs) aus Knochenmark und dermale mikrovaskuläre Endothelzellen (d-mvECs) aus Vorhautbiopsien. Für das humane (h) Meniskus-Modell wurde die keilförmige Kompression eines hMSC-beladenen Kollagen I Gels erfolgreich etabliert. Während drei Wochen statischer Kultur führte der biochemische Stimulus transformierender Wachs-tumsfaktor beta-3 (TGF beta-3) zu einer kompakten Kollagenstruktur. An Tag 21 zeigte dieses Meniskus-Modell eine hohe metabolische Aktivität und Matrixumbau durch die Detektion von Matrix-Metalloproteasen. Der Bindegewebsknorpel wurde durch immunhistochemische Detektion der Meniskusmarker, einem signifikanten GAG/DNA Anstieg und erhöhter Kompressionseigenschaften bestätigt. Für weitere Verbesserungen wurden biomechanische Stimulierungssysteme mittels Kompression und hydrostatischen Druck aufgebaut. Als Vaskularisierungsansatz führte die direkte Stimulierung mit Ciclopirox Olamine (CPX) sogar in Abwesenheit von Helferzellen wie MSCs zu einem erhöhten Sprouting der hd-mvEC Spheroide. Zweitens wurde ein hMSC/hd-mvEC Sheet mithilfe eines Temperatur-abhängigen Verfahrens produziert und auf das keilförmige Meniskus-Modell transferiert. Drittens wurde ein vaskularisiertes Biomaterial (BioVaSc-TERM) mit hd-mvECs besiedelt, wodurch ein vitales Gefäßystem bereitgestellt wurde. Die vaskularisierte BioVaSc-TERM wurde als Hülle des Meniskus-Modells unter der Verwendung von zwei Nahttechniken vorgeschlagen: die All-Inside-Repair (AIR) für das Hinterhorn und die Outside-In-Refixation (OIR) für das Vorderhorn und den mittleren Teil. Dieses Meniskus-Modell ist ein vielversprechender Ansatz für den Meniskusersatz, um in Vaskularisierung, biochemischer und biomechanischer Stimuli weiter optimiert zu werden. KW - Meniskus KW - Tissue Engineering KW - Regenerative Medizin KW - Meniskusimplantat KW - meniscus implant KW - Tissue Engineering KW - tissue engineering KW - vascularization KW - Vaskularisierung Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-184326 ER - TY - THES A1 - Weyhmüller Reboredo, Jenny T1 - Tissue Engineering eines Meniskus - Vom Biomaterial zum Implantat T1 - Tissue Engineering of a meniscus - from a biomaterial to the implant N2 - Der Meniskus, ein scheibenförmiger Faserknorpel, spielt im Kniegelenk eine bedeutende Rolle, weil er Kräfte und Druck im Kniegelenk gleichmäßig verteilt, Stöße dämpft sowie der Kraftübertragung und Stabilisierung dient. Durch die Entfernung des Gewebes, der sogenannten Totalmeniskektomie, nach einer Meniskusverletzung oder einem Riss, verändern sich die mechanischen Eigenschaften des Gelenks stark und verursachen durch die erhöhte Belastung der Gelenkflächen Arthrose. Arthrose ist weltweit die Häufigste aller Gelenkerkrankungen. Der Erhalt der körperlichen Leistungsfähigkeit und Mobilität bis ins hohe Alter sowie die Bewahrung der Gesundheit von Herz-Kreislauf- und Stoffwechselorganen zählen aufgrund des demografischen Wandels zu den großen medizinischen Herausforderungen. Die Erkrankung des muskuloskelettalen Systems stellte 2010 im Bundesgebiet die am häufigsten vorkommende Krankheitsart dar. Während Risse in den äußeren Teilen des Meniskus aufgrund des Anschlusses an das Blutgefäßsystem spontan heilen können, können sie dies in tieferen Zonen nicht. Durch die begrenzte Heilungsfähigkeit des Knorpels bleibt langfristig der Einsatz eines Ersatzgewebes die einzige therapeutische Alternative. In der vorliegenden Arbeit wurde als therapeutische Alternative erfolgreich ein vaskularisiertes Meniskusersatzgewebe mit Methoden des Tissue Engineering entwickelt. Es soll in Zukunft als Implantat Verwendung finden. Tissue Engineering ist ein interdisziplinäres Forschungsfeld, in dem Gewebe außerhalb des Körpers generiert werden. Schlüsselkomponenten sind Zellen, die aus einem Organismus isoliert werden, und Trägerstrukturen, die mit Zellen besiedelt werden. Die Biomaterialien geben den Zellen eine geeignete Umgebung, die die Extrazelluläre Matrix (EZM) ersetzen soll, um die Funktion der Zellen beizubehalten, eigene Matrix zu bilden. Zum Erhalt eines funktionelles Gewebes werden oftmals dynamische Kultursysteme, sogenannte Bioreaktoren, verwendet, die natürliche Stimuli wie beispielsweise den Blutfluss oder mechanische Kompressionskräfte während der in vitro Reifungsphase des Gewebes, zur Verfügung stellen. Das Gewebekonstrukt wurde auf Basis natürlicher Biomaterialien aufgebaut, unter Verwendung ausschließlich primärer Zellen, die später direkt vom Patienten gewonnen werden können und damit Abstoßungsreaktionen auszuschließen sind. Da der Meniskus teilvaskularisiert ist und die in vivo Situation des Gewebes bestmöglich nachgebaut werden sollte, wurden Konstrukte mit mehreren Zelltypen, sogenannte Ko-Kulturen aufgebaut. Neben mikrovaskulären Endothelzellen (mvEZ) und Meniskuszellen (MZ) erfolgten Versuche mit mesenchymalen Stammzellen (MSZ). Zur Bereitstellung einer zelltypspezifischen Matrixumgebung, diente den mvEZ ein Stück Schweinedarm mit azellularisierten Gefäßstrukturen (BioVaSc®) und den MZ diente eine geeig- nete Kollagenmatrix (Kollagen Typ I Hydrogel). Die Validierung und Charakterisierung des aufgebauten 3D Meniskuskonstrukts, welches in einem dynamischen Perfusions-Bioreaktorsystem kultiviert wurde, erfolgte mit knorpeltypischen Matrixmarkern wie Aggrekan, Kollagen Typ I, II und X sowie mit den Transkriptionsfaktoren RunX2 und Sox9, die in der Knorpelentstehung von großer Bedeutung sind. Zusätzlich erfolgten Auswertungen mit endothelzellspezifischen Markern wie vWF, CD31 und VEGF, um die Vaskularisierung im Konstrukt nachzuweisen. Analysiert wurden auch die Zellvitalitäten in den Konstrukten. Aufgrund einer nur geringen Verfügbarkeit von MZ wurden Kulturansätze mit alternativen Zellquellen, den MSZ, durchgeführt. Dafür erfolgte zunächst deren Isolation und Charakterisierung und die Auswahl einer geeigneten 3D Kollagenmatrix. Die beste Zellintegration der MSZ konnte auf einer eigens hergestellten elektrogesponnenen Matrix beobachtet werden. Die Matrix besteht aus zwei unterschiedlichen Kollagentypen, die auf insgesamt fünf Schichten verteilt sind. Die Fasern besitzen weiter unterschiedliche Ausrichtungen. Während die Kollagen Typ I Fasern in den äußeren Schichten keiner Ausrichtung zugehören, liegen die Kollagen Typ II Fasern in der mittleren Schicht parallel zueinander. Der native Meniskus war für den Aufbau einer solchen Kollagen-Trägerstruktur das natürliche Vorbild, das imitiert werden sollte. Nach der Besiedelung der Matrix mit MSZ, konnte eine Integration der Zellen bereits nach vier Tagen bis in die Mittelschicht sowie eine spontane chondrogene Differenzierung nach einer insgesamt dreiwöchigen Kultivierung gezeigt werden. Das Biomaterial stellt in Hinblick auf die Differenzierung der Zellen ohne die Zugabe von Wachstumsfaktoren eine relevante Bedeutung für klinische Studien dar. Zur Kultivierung des 3D Meniskuskonstrukts wurde ein Bioreaktor entwickelt. Mit diesem können neben Perfusion der Gefäßsysteme zusätzlich Kompressionskräfte sowie Scherspannungen auf das Ersatzgewebe appliziert und die Differenzierung von MZ bzw. MSZ während der in vitro Kultur über mechanische Reize stimuliert werden. Ein anderes Anwendungsfeld für den neuartigen Bioreaktor ist seine Verwendung als Prüftestsystem für die Optimierung und Qualitätssicherung von Gewebekonstrukten. N2 - The meniscus, a disk-shaped fibrous cartilage, plays an important role in the equal distribution of pressure, shock absorption, power transmission and stability within the knee joint. After a meniscus injury or a meniscus tear, a total meniscectomy is done where the complete tissue is removed. This leads to a change of mechanical properties in the joint and causes arthrosis by an increased strain on the joint surfaces. Wordwide arthrosis is the most frequent of all joint diseases. Due to the demographic change, maintaining physical fitness and mobility up to an old age are the main challenges besides ensuring health of the heart and circulatory system and of the metabolic organs. Musculoskeletal disorders represented the most frequent type of disease in Germany in 2010. While tears in the outer zone of the meniscus heal spontaneously because of its connection to the blood vessel system, tears in the deeper zones do not heal. Due to the limited healing capacity of cartilage the use of a replacement tissue is the only therapeutic alternative in the long run. In the present work a vascularized meniscus construct as therapeutic alternatives has been developed with the Tissue Engineering method for the further use as an implant. Tissue En- gineering is an interdisciplinary research field to generate tissues outside the body. The key components are isolated cells from an organism, and scaffolds, which are seeded with cells. Biomaterials provide a suitable environment that replaces the extracellular matrix (ECM) to maintain cell functionality to let cells build up their own matrix. To maintain a functional tissue during in vitro dynamic culture, bioreactor systems are used to provide natural stimuli such as blood flow or mechanical compression forces. The tissue construct is based on natural biomaterials and solely on primary cells, which later can be isolated directly from the patient and thereby exclude repulsion reactions. Due to its limited vascularity of the meniscus and the aim to build up at its best the in vivo situation more than one cell type is used to generate constructs, so called co-culture systems. Mesen- chymal stem cells (MSZ) besides microvascular endothelial cells (mvEZ) and meniscus cells (MZ) were used in the experiments. To supply a cell type specific matrix environment, a segment of a porcine jejunum with decellularized vascular structures (BioVaSc®) for the mvEZ and a collagen based matrix (collagen type I hydrogel) for the MZ were employed. The validation and characterization of the de- veloped 3D meniscus construct, that was cultured in a dynamic perfusion bioreactor system, was performed by using cartilage matrix specific markers, such as aggrecan, collagen type I, II and X, as well as the transcription factors RunX2 and Sox9 that are of major importance for cartilage development. Further analysis with endothelial cell specific markers, such as vWF, CD31 and VEGF were performed to evaluate the vascularization of the construct. Furthermore, cell vitality tests of the construct were made. Because of the limited availability of primary MZ, culture approaches with MSZ as an alter- native cell source were investigated. Cell isolation and characterization were performed and a suitable 3D collagen matrix was selected. The best cell integration of the MSZ could be observed on a specifically engineered electrospun matrix. The matrix consists of two different collagen types that are arranged in a total of five layers. The fibers are further orientated in different directions. While outer layers consist of randomly-aligned collagen type I fibers, the collagen type II fibers in the middle layer are aligned parallel to each other. The native meniscus tissue serves as natural example and its structure is replicated in such a collagen scaffold. After seeding the scaffold with MSZ, cell integration into the middle layer could be observed after four days, as well as a spontanous chondrogenic differentation after three weeks of culture. The biomaterial developed in this work has to be considered as relevant for clinical studies with regard to cell differentiation without adding growth factors to the culture. For the culture of 3D meniscus construct a bioreactor was successfully developed, that can apply compressive strength and shear stress to the tissue model in addition to perfusing the vascular system. With these measures the differentiation of MZ or MSZ could be induced with mechanical strains during the in vitro culture. Another field of application for the new bioreactor is its use as a test system for the optimization and quality control of the tissue models. KW - Tissue Engineering KW - Meniskustransplantation KW - Bioreaktor KW - Gewebekultur KW - Biomaterial KW - Elektrospinning KW - Implantatentwicklung Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-108477 ER - TY - THES A1 - Wiesner, Miriam T1 - Stem Cell-based Adipose Tissue Engineering - Engineering of Prevascularized Adipose Tissue Constructs In Vitro & Investigation on Gap Junctional Intercellular Communication in Adipose-derived Stem Cells T1 - Stammzellbasiertes Tissue Engineering von Fettgewebe - Entwicklung eines prävaskularisierten Fettgewebekonstrukts in vitro & Untersuchung der interzellulären Kommunikation über Gap Junctions in Stammzellen aus dem Fettgewebe N2 - In reconstructive and plastic surgery, there exists a growing demand of adequate tissue implants, since currently available strategies for autologous transplantation are limited by complications including transplant failure and donor site morbidity. By developing in vitro and in vivo autologous substitutes for defective tissue sites, adipose tissue engineering can address these challenges, although there are several obstacles to overcome. One of the major limitations is the sufficient vascularization of in vitro engineered large constructs that remains crucial and demanding for functional tissues. Decellularized jejunal segments may represent a suitable scaffolding system with preexisting capillary structures that can be repopulated with human microvascular endothelial cells (hMVECs), and a luminal matrix applicable for the adipogenic differentiation of human adipose-derived stem cells (hASCs). Hence, co-culture of these cells in jejunal segments, utilizing a custom-made bioreactor system, was characterized in terms of vascularization and adipose tissue development. Substantial adipogenesis of hASCs was demonstrated within the jejunal lumen in contrast to non-induced controls, and the increase of key adipogenic markers was verified over time upon induction. The development of major extracellular matrix components of mature adipose tissue, such as laminin and collagen IV, was shown within the scaffold in induced samples. Successful reseeding of the vascular network with hMVECs was demonstrated in long-term culture and co-localization of vascular structures and adipogenically differentiated hASCs was observed. Therefore, these results represent a novel approach for in vitro engineering of vascularized adipose tissue constructs that warrants further investigations in preclinical studies. Another still existing obstacle in adipose tissue engineering is the insufficient knowledge about the applied cells, for instance the understanding of how cells can be optimally expanded and differentiated for successful engineering of tissue transplants. Even though hASCs can be easily isolated from liposuction of abdominal fat depots, yielding low donor site morbidity, huge numbers of cells are required to entirely seed complex and large 3D matrices or scaffolds. Thus, cells need to be large-scale expanded in vitro on the premise of not losing their differentiation capacity caused by replicative aging. Accordingly, an improved differentiation of hASCs in adipose tissue engineering approaches remains still desirable since most engineered constructs exhibit an inhomogeneous differentiation pattern. For mesenchymal stem cells (MSCs), it has been shown that growth factor application can lead to a significant improvement of both proliferation and differentiation capacity. Especially basic fibroblast growth factor (bFGF) represents a potent mitogen for MSCs, while maintaining or even promoting their osteogenic, chondrogenic and adipogenic differentiation potential. As there are currently different contradictory information present in literature about the applied bFGF concentration and the explicit effect of bFGF on ASC differentiation, here, the effect of bFGF on hASC proliferation and differentiation capacity was investigated at different concentrations and time points in 2D culture. Preculture of hASCs with bFGF prior to adipogenic induction showed a remarkable effect, whereas administration of bFGF during culture did not improve adipogenic differentiation capacity. Furthermore, the observations indicated as mode of action an impact of this preculture on cell proliferation capacity, resulting in increased cellular density at the time of adipogenic induction. The difference in cell density at this time point appeared to be pivotal for increased adipogenic capacity of the cells, which was confirmed in a further experiment employing different seeding densities. Interestingly, furthermore, the obtained results suggested a cell-cell contact-mediated mechanism positively influencing adipogenic differentiation. As a consequence, subsequently, studies were conducted focusing on intercellular communication of these cells, which has hardly been investigated to date. Despite the multitude of literature on the differentiation capacity of ASCs, little is reported about the physiological properties contributing to and controlling the process of lineage differentiation. Direct intercellular communication between adjacent cells via gap junctions has been shown to modulate differentiation processes in other cell types, with connexin 43 (Cx43) being the most abundant isoform of the gap junction-forming connexins. Thus, in the present study we focused on the expression of Cx43 and gap junctional intercellular communication (GJIC) in hASCs, and its significance for adipogenic differentiation of these cells. Cx43 expression in hASCs was demonstrated histologically and on the gene and protein expression level and was shown to be greatly positively influenced by cell seeding density. Functionality of gap junctions was proven by dye transfer analysis in growth medium. Adipogenic differentiation of hASCs was shown to be also distinctly elevated at higher cell seeding densities. Inhibition of GJIC by 18α-glycyrrhetinic acid significantly compromised adipogenic differentiation, as demonstrated by histology, triglyceride quantification, and adipogenic marker gene expression. Flow cytometry analysis showed a lower proportion of cells undergoing adipogenesis when GJIC was inhibited, further indicating the importance of GJIC in the differentiation process. Altogether, these results demonstrate the impact of direct cell-cell communication via gap junctions on the adipogenic differentiation process of hASCs and may contribute to further integrate direct intercellular crosstalk in rationales for tissue engineering approaches. N2 - In der rekonstruktiven und plastischen Chirurgie besteht ein wachsender Bedarf an adäquaten Gewebetransplantaten, da die derzeit verfügbaren Strategien für autologe Transplantationen von Geweben durch Komplikationen wie beispielsweise Transplantatversagen sowie Morbiditäten an der Entnahmestelle beeinträchtigt werden. Das Tissue Engineering kann dieser Problematik jedoch durch die Entwicklung von in vitro und in vivo gezüchtetem, autologen Gewebeersatz für defekte Gewebestellen begegnen, wobei es dabei noch mehrere Hindernisse zu überwinden gilt. Eine der größten Limitationen ist die ausreichende Vaskularisierung der in vitro hergestellten, großen Konstrukte, welche für die Funktion des Gewebes entscheidend ist. Hierfür können dezellularisierte, jejunale Segmente ein geeignetes Gerüstsystem darstellen, deren bereits vorhandene Kapillarstrukturen mit humanen, mikrovaskulären Endothelzellen (hMVECs) und deren luminale Matrix mit humanen Stammzellen aus dem Fettgewebe (hASCs), mit anschließender adipogen Differenzierung, besiedelt werden können. Im Rahmen der vorliegenden Arbeit wurden diese Konstrukte mit Hilfe eines maßgeschneiderten Bioreaktorsystems kultiviert und die Kokultur der Zellen in der jejunalen Matrix hinsichtlich der Fettgewebeentwicklung untersucht. Im Gegensatz zu nicht-induzierten Kontrollen wurde nach adipogener Induktion innerhalb des jejunalen Lumens eine substanzielle Fettgewebebildung der hASCs, sowie ein Anstieg wichtiger adipogener Marker im zeitlichen Verlauf nachgewiesen. Die Bildung wesentlicher extrazellulärer Matrixkomponenten des reifen Fettgewebes, wie beispielsweise Laminin und Kollagen IV, wurde innerhalb der Matrix bei induzierten Proben ebenso beobachtet. Die erfolgreiche Neubesiedlung des Gefäßnetzes mit hMVECs konnte in der Langzeitkultur gezeigt und eine Kolokalisation von Gefäßstrukturen und differenzierten hASCs beobachtet werden. Somit stellen diese Ergebnisse einen vielversprechenden, neuen Ansatz für die in vitro Entwicklung von vaskularisierten Fettgewebekonstrukten dar, welcher jedoch noch weitere Untersuchungen in präklinischen Studien erfordert. Eine weitere Limitation in der Entwicklung von Fettgewebe ist das unzureichende Wissen über die verwendeten Zellen – so zum Beispiel wie Zellen optimal expandiert und differenziert werden können, um einen Gewebeersatz erfolgreich herzustellen. Auch wenn hASCs leicht aus abdominalen Liposuktionen, welche zu einer relativ geringen Morbidität an der Entnahmestelle führen, isoliert werden können, ist eine sehr große Anzahl an Zellen erforderlich, um komplexe und große 3D-Matrizes vollständig mit Zellen zu besiedeln. So müssen Zellen in vitro im großen Maßstab expandiert werden, wobei auf die Erhaltung ihrer Differenzierungskapazität und die Vermeidung des replikativen Alterns geachtet werden muss. Da viele der entwickelten Konstrukte des Weiteren ein inhomogenes Differenzierungsmuster aufweisen, ist eine Verbesserung der adipogenen Differenzierung von ASCs im Rahmen von Tissue Engineering Ansätzen wünschenswert. Für mesenchymale Stammzellen (MSCs) wurde bereits gezeigt, dass die Anwendung von Wachstumsfaktoren zu einer deutlichen Verbesserung der Proliferations- und Differenzierungskapazität führen kann. Insbesondere der Wachstumsfaktor bFGF (basic fibroblast growth factor) stellt ein starkes Mitogen für MSCs dar, wobei er das osteogene, chondrogene und adipogene Differenzierungspotenzial der Zellen aufrechterhält und sogar fördert. Da es in der Literatur derzeit unterschiedliche und teilweise widersprüchliche Informationen über die verwendeten bFGF Konzentrationen und den expliziten Effekt von bFGF auf die Differenzierung von ASCs gibt, wurde der Effekt von bFGF auf die Proliferations- und Differenzierungsfähigkeit mit unterschiedlichen Konzentrationen und zu unterschiedlichen Zeitpunkten in der 2D Kultur untersucht. Die Vorkultur der hASCs mit bFGF vor der adipogenen Induktion hatte einen beachtlichen Effekt auf die Differenzierung, während die Verabreichung von bFGF während der Kultur, die adipogene Differenzierungsfähigkeit der Zellen nicht verbesserte. Darüber hinaus zeigten die Ergebnisse einen Einfluss der Vorkultur auf die Zellproliferation, was zu einer erhöhten Zelldichte zum Zeitpunkt der adipogenen Induktion führte. Der Unterschied in der Zelldichte zu diesem Zeitpunkt schien entscheidend für die gesteigerte Differenzierungskapazität der Zellen zu sein, was sich in einem weiteren Experiment mit unterschiedlichen Aussaatdichten bestätigte. Interessanterweise deuteten die Ergebnisse außerdem darauf hin, dass ein Zell-Zell-Kontakt-vermittelter Mechanismus die adipogene Differenzierung positiv beeinflusst. Daher wurden anschließend Untersuchungen zur interzellulären Kommunikation dieser Zellen durchgeführt, welche bisher kaum erforscht wurde. Trotz der Vielzahl an Literatur über die Differenzierungsfähigkeit von ASCs ist wenig über die physiologischen Prozesse bekannt, die zur Differenzierung in verschiedene Zelltypen beitragen und diese kontrollieren. So wurde gezeigt, dass die direkte interzelluläre Kommunikation zwischen benachbarten Zellen über Gap Junctions Differenzierungsprozesse moduliert. Connexin 43 (Cx43) stellt dabei die häufigste Isoform der Gap Junction-bildenden Connexine dar. Im Rahmen dieser Arbeit wurde die Expression von Cx43 und die interzelluläre Kommunikation durch Gap Junctions (gap junctional intercellular communication; GJIC) in hASCs, sowie ihre Bedeutung für die adipogene Differenzierung untersucht. Die Cx43 Expression in hASCs wurde histologisch und auf Gen- und Proteinexpressionsebene nachgewiesen und wurde durch die Zellaussaatdichte nachweislich stark beeinflusst. Die Funktionalität der Gap Junctions konnte mit Hilfe eines Assays zur Übertragung von Farbstoffen untersucht werden. Es zeigte sich hierbei eine zelldichteabhängige, adipogene Differenzierungkapazität der hASCs. Die Hemmung der GJIC durch 18α-Glycyrrhetinsäure beeinträchtigte die adipogene Differenzierung deutlich, wie sich durch die Histologie, die Triglyceridquantifizierung und die adipogene Markergenexpression beobachten ließ. Bei Hemmung der GJIC zeigte sich mit Hilfe der Durchflusszytometrie, dass weniger Zellen adipogen differenzieren konnten, was die Bedeutung von GJIC im Differenzierungsprozess hervorhebt. Zusammenfassend veranschaulichen diese Ergebnisse den Einfluss direkter Zell-Zell-Kommunikation über Gap Junctions auf den adipogenen Differenzierungsprozess von hASCs und könnten somit in Zukunft dazu beitragen, direkte interzelluläre Kommunikation in Tissue Engineering Ansätze zu integrieren. KW - Tissue Engineering KW - Fettgewebe KW - Gap Junction KW - Adipose Tissue Engineering Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-185005 ER - TY - THES A1 - Göttlich, Claudia T1 - Etablierung eines humanen 3D Lungentumor-Testsystems zur Analyse von Behandlungseffekten T1 - Establishment of a human 3D lung tumor test system for the analysis of treatment effects N2 - Lungenkrebs ist weltweit für die meisten krebsassoziierten Tode verantwortlich. Ursache dafür ist unter anderem, dass viele Medikamente in der klinischen Anwendung, aufgrund nicht übertragbarer Ergebnisse aus der Präklinik, scheitern. Zur Entwicklung neuer Therapiestrategien werden deshalb Modelle benötigt, welche die in vivo Situation besser widerspiegeln. Besonders wichtig ist es dabei, zu zeigen, für welche Fragestellungen ein neues Testsystem valide Ergebnisse liefert. In dieser Arbeit ist es mit Hilfe des Tissue Engineering gelungen, ein humanes 3D in vitro Lungentumor-Testsystem weiter zu entwickeln und für verschiedene Fragestellungen zu validieren. Zudem konnten sowohl für die Herstellung als auch für die Behandlung der Tumormodelle SOPs etabliert werden. Hier wurde zunächst beobachtet, dass die Auswerteparameter für die Beurteilung von Behandlungseffekten eine geringe Varianz aufweisen und das 3D Modell deshalb als Testsystem geeignet ist. Ein Vergleich der Morphologie, des EMT-Status und der Differenzierung der Tumorzelllinien im 3D Modell mit Tumorbiopsaten von Adenokarzinompatienten verdeutlichte, dass die 3D Modelle tumorrelevante Merkmale besitzen. So sind die Zelllinien auf der biologischen Matrix, verglichen mit der jeweiligen 2D Kultur, durch eine reduzierte Proliferationsrate gekennzeichnet, welche eher der in vivo Situation entspricht. Für die Etablierung und Validierung des 3D Modells als Testsystem war es notwendig, klinisch relevante Therapien in dem Modell anzuwenden und die Ergebnisse der Behandlung in vitro mit denen im Patienten zu vergleichen. Dabei konnte zunächst bestätigt werden, dass eine zielgerichtete Therapie gegen den EGFR in dem 3D System zu einer verstärkten Induktion der Apoptose im Vergleich zu 2D führt. Dies entspricht klinischen Beobachtungen, bei denen EGFR-mutierte Patienten gut auf eine Therapie mit Tyrosin-Kinase-Inhibitoren (TKI) ansprechen. Anschließend wurde in dieser Arbeit erstmals in vitro gezeigt, dass die Behandlung mit einem HSP90-Inhibitor bei KRAS-Mutation wie in behandelten Patienten keine eindeutigen Vorteile bringt, diese jedoch in Experimenten der 2D Zellkultur mit den entsprechenden Zelllinien vorhergesagt werden. Die Ergebnisse aus dem in vitro Modell spiegeln damit verschiedene klinische Studien wider und unterstreichen das Potenzial des 3D Lungentumor-Testsystems die Wirkung zielgerichteter Therapien vorherzusagen. Durch die Messung von Signalwegsaktivierungen über Phospho-Arrays und Western Blot konnten in dieser Arbeit Unterschiede zwischen 2D und 3D nach Behandlung gezeigt werden. Diese lieferten die Grundlage für bioinformatische Vorhersagen für Medikamente. Mit fortschreitender Erkrankung und dem Entstehen invasiver Tumore, die möglicherweise Metastasen bilden, verschlechtert sich die Prognose von Krebspatienten. Zudem entwickeln Patienten, die zunächst auf eine Therapie mit TKI ansprechen, bereits nach kurzer Zeit Resistenzen, die ebenfalls zur Progression des Tumorwachstums führen. Zur Wirkungsuntersuchung von Substanzen in solchen fortgeschrittenen Erkrankungsstadien wurde das bestehende Testsystem erweitert. Zum einen wurde mit Hilfe des Wachstumsfaktors TGF-β1 eine EMT ausgelöst. Hier konnte beobachtet werden, dass sich die Expression verschiedener EMT- und invasionsassoziierter Gene und Proteine veränderte und die Zellen vor allem in dynamischer Kultur verstärkt die Basalmembran der Matrix überquerten. Zum anderen wurde die Ausbildung von Resistenzen gegenüber TKI durch die Generierung von resistenten Subpopulationen aus einer ursprünglich sensitiven Zelllinie und anschließender Kultivierung auf der Matrix abgebildet. Dabei zeigte sich keine der klinisch bekannten Mutationen als ursächlich für die Resistenz, sodass weitere Mechanismen untersucht wurden. Hier konnten Veränderungen in der Signaltransduktion sowie der Expression EMT-assoziierter Proteine festgestellt werden. Im letzten Teil der Arbeit wurde eine neuartige Behandlung im Bereich der Immuntherapie erfolgreich in dem 3D Modell angewendet. Dafür wurden T-Zellen, die einen chimären Antigen-Rezeptor (CAR) gegen ROR1 tragen, in statischer und dynamischer Kultur zu den Tumorzellen gegeben und der Therapieeffekt mittels histologischer Färbung und der Bestimmung der Apoptose evaluiert. Zusätzlich konnten Eigenschaften der T-Zellen, wie deren Proliferation sowie Zytokinausschüttung quantifiziert und damit eine spezifische Wirkung der CAR transduzierten T-Zellen gegenüber Kontroll-T-Zellen nachgewiesen werden. Zusammenfassend ist es in dieser Arbeit gelungen, ein humanes 3D Lungentumor-Testsystem für die Anwendung in der präklinischen Entwicklung von Krebsmedikamenten sowie der Grundlagenforschung im Bereich der Tumorbiologie zu etablieren. Dieses Testsystem ist in der Lage relevante Daten zu Biomarker-geleiteten Therapien, zur Behandlung fortgeschrittener Tumorstadien und zur Verbesserung neuartiger Therapiestrategien zu liefern. N2 - Lung cancer is the most common cause of cancer related deaths worldwide. One reason for this is that many drugs fail in the clinical application due to inefficient transferability of preclinical results. Consequently, for the development of new treatment strategies tumor models that better reflect the in vivo situation are required. It is of special significance to show for which questions a new test system provides valid results. In the here presented work, a human 3D in vitro lung tumor test system was refined and validated for different interrogations using tissue engineering methods. The generation of the model as well as its treatment were defined in SOPs. First, it was shown that the variance of the analysis parameters was low, demonstrating the 3D model to be suitable as a test system. A comparison of the morphology, the EMT status and the differentiation of the tumor cell lines in the 3D model with tumor biopsies from adenocarcinoma patients revealed that the 3D tumor models exhibit tumor relevant characteristics. The cells on the matrix had a lower proliferation rate compared to the respective 2D culture that better mimic the in vivo situation. For the establishment and validation of the test system, clinically relevant therapies were applied and the results of the treatment in vitro were compared to those in patients. By doing so, it was confirmed that a targeted therapy against the EGFR led to an increased apoptosis induction in the 3D system compared to 2D. This resembles clinical observations, in which EGFR-mutated patients respond to the therapy with tyrosine kinase inhibitors (TKIs). Next, it was shown for the first time in vitro in the 3D model that the treatment with a HSP90 inhibitor in the context of a KRAS mutation has no clear advantages as observed in patients, but which had been predicted in 2D cell culture. The results from the in vitro model match several clinical studies and emphasize the potential of the 3D lung tumor test system to predict the effect of targeted treatments. By measuring the activation of signal transduction pathways using phospho-arrays and western blots, differences between 2D and 3D after treatment were shown. These provided the basis for bioinformatic drug predictions. With the progress of the disease and the development of invasive tumors that might form metastases, the prognosis of patients worsens. Additionally, patients that initially respond to a therapy with TKIs develop resistances that also lead to the progression of tumor growth. To evaluate the effect of substances in these life-threatening disease stages, the existing test system was enhanced. On the one hand EMT was induced by addition of the growth factor TGF-β1. Here, it was observed that the expression of several EMT- and invasion-associated genes and proteins changed and the cells crossed the basement membrane to a higher extent, especially in the dynamic culture. On the other hand, the development of resistances against TKIs was represented by the generation of resistant subpopulations from an initial sensitive cell line and subsequent culture on the matrix. In the course of this experiment, none of the known mutations could be attributed to the resistance, so that other potential mechanisms were investigated. Here, changes in the signal transduction as well as in the expression of EMT-associated proteins were found. In the last part of the thesis, a new treatment strategy in the field of immune therapies was successfully tested in the 3D model. For that, T cells bearing a chimeric antigen receptor (CAR) against ROR1 were added to the tumor cells in static and dynamic culture. The therapy effect was determined by histological staining and apoptosis meas-urement. Moreover, the characteristics of the T cells, such as proliferation or cytokine release, were quantified and exhibited a specific effect of the CAR transduced T cells compared to the control T cells. In summary, in this thesis a human 3D lung tumor test system was established for the application in preclinical testing of cancer drugs as well as for basic research in tumor biology. It was shown that the test system can provide relevant data on biomarker-driven therapies, the treatment of advanced tumor stages and the improvement of new treatment strategies. KW - Tissue Engineering KW - Lungentumor KW - 3D Tumormodell KW - zielgerichtete Therapien KW - Resistenz KW - EMT KW - CAR T-Zelltherapie Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164132 ER - TY - THES A1 - Kunze, Andrea Birgit T1 - Etablierung eines dreidimensionalen Tumormodells für das orale Plattenepithelkarzinom unter Einsatz von Tissue Engineering T1 - Establishment of a three-dimensional tumor model for oral squamous cell carcinoma using tissue engineering N2 - Gegenstand dieser Arbeit war die Etablierung eines dreidimensionalen in vitro Tumormodells, welches ein orales in vivo Plattenepithelkarzinom nachbilden sollte. Dabei standen Aufbau, Reproduzierbarkeit und Reliabilität an vorderster Stelle. Als Zellquelle sollten sowohl Tumorzellen aus den Zelllinien FaDu, HLaC79 und HLaC79 Clone 1 als auch primäre Zellen aus karzinogenem Primärgewebe dienen. Als Referenz wurden dabei stets Modelle aus primär isolierten Zellen herangezogen, die ein Äquivalent zur gesunden Mundschleimhaut bildeten. Während der Isolationsvorgang von pathologischen Zellen primärer Plattenepithelkarzinomen aus der Mundhöhle und dem Pharynx aufgrund zahlreicher Kontaminationen und Stagnationen des Zellwachstums keinen Erfolg erzielte und der Versuch eingestellt wurde, war es mit den Tumorzelllinien FaDu und HLaC79 möglich, dreidimensionale in vitro Tumormodelle herzustellen. Ihre Malignität wurde durch die besonderen histologischen Architekturstörungen wie die geringere Epitheldicke, das Fehlen einer Parakeratinisierung im Stratum corneum und die Invasion von Tumorzellen in die Submukosa verdeutlicht. Um einen eindeutigen Vergleich zu den Mukosaäquivalenten zu ziehen, fand eine Immunhistochemie mit unterschiedlichen Markern statt, die vor allem den gestörten Epithelaufbau des Tumormodells verdeutlichte. Als Maß für die Zell-Zell-Kontakte, die im Laufe der Kultivierung entstanden, diente der transepitheliale elektrische Widerstand. Die Behandlung der Tumorzellen und Tumormodelle mit dem klinisch bewährten Zytostatikum Paclitaxel und dem neuen Polyether-Antibiotikum Salinomycin erzielte vor allem in der zweidimensionalen Kultivierung große Erfolge. Hier wurde verdeutlicht, dass Paclitaxel toxisch auf die HLaC79 Tumorzellen wirkt, während die paclitaxelresistenten HLaC79 Clone 1 Tumorzellen immun gegen dieses Medikament sind. Salinomycin hingegen sorgte für eine Verringerung der Zellviabilität bei beiden Zelllinien. Die histologischen Untersuchungen nach der 24-stündigen Medikamentenapplikation mit Paclitaxel bei den Tumormodellen zeigten keine signifikanten Unterschiede, während der transepitheliale elektrische Widerstand stieg und auf eine verstärkte Barriere nach Paclitaxelgabe schließen ließ. N2 - The subject of this work was the establishment of a three-dimensional in vitro tumor model, which should simulate an oral in vivo squamous cell carcinoma. Structure, reproducibility and reliability were paramount. Both tumor cells from the FaDu, HLaC79 and HLaC79 Clone 1 cell lines and primary cells from carcinogenic primary tissue should serve as the cell source. Models from primary isolated cells, which are equivalent to healthy oral mucosa, were used as a reference. While the isolation process of pathological cells of primary squamous cell carcinomas from the oral cavity and the pharynx was unsuccessful due to numerous contamination and stagnation of cell growth, the FaDu and HLaC79 tumor cell lines made it possible to produce three-dimensional in vitro tumor models. Their malignancy was illustrated by the histological architectural disorders such as the reduced epithelial thickness, the lack of parakeratinization in the stratum corneum and the invasion of tumor cells into the submucosa. To make a clear comparison with the mucosa equivalents, an immunohistochemistry with different markers was carried out, which above all clarified the disturbed epithelial structure of the tumor model. The transepithelial electrical resistance was used as a measure of the cell-cell contacts that developed during cultivation. The treatment of tumor cells and tumor models with the clinically proven cytostatic agent paclitaxel and the new polyether antibiotic salinomycin achieved great success, especially in two-dimensional cultivation. It was made clear here that paclitaxel has a toxic effect on the HLaC79 tumor cells, while the paclitaxel-resistant HLaC79 clone 1 tumor cells are immune to this drug. Salinomycin, however, reduced the cell viability of both cell lines. The histological examinations after the 24-hour drug application with paclitaxel in the tumor models showed no significant differences, while the transepithelial electrical resistance increased and suggested a stronger barrier after paclitaxel administration. KW - Tissue Engineering KW - Plattenepithelcarcinom KW - Mundschleimhaut KW - in-vitro-Modell KW - Tumorzelllinien KW - in-vitro-Testsysteme KW - Paclitaxel KW - Salinomycin Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-223356 ER - TY - THES A1 - Bersi, Heidi T1 - Etablierung eines 3D in vitro Blutgefäß-/Gewebemodells zur Testung spezifischer Therapeutika zur Leukämiebehandlung T1 - Establishment of a 3D in vitro blood vessel /tissue model to test specific therapeutic agents to treat leukemia N2 - In Deutschland erkranken jährlich etwa 500.000 Menschen an Krebs, wovon circa 12.000 die Diagnose „Leukämie“ gestellt bekommen [1]. Unter den Leukämien weist die akute myeloische Leukämie (AML) die ungünstigste Prognose auf, sodass hier erheblicher Forschungsbedarf besteht. Zusätzlich schnitten viele potentielle Therapeutika, die sich in bisherigen präklinischen Testsystemen als vielversprechend erwiesen haben, in klinischen Studien schlecht ab [8]. Ziel dieser Arbeit war daher die Etablierung eines 3D in vitro Blutgefäß-/Gewebemodells als verbessertes präklinisches System zur Testung von Therapeutika, die zur erfolgreichen Behandlung von Leukämien beitragen sollen. Das 3D Blutgefäßmodell bestand aus humanen primären Endothelzellen, welche als Monolayer auf der Serosaseite einer dezellularisierten, porzinen, intestinalen Kollagenmatrix (SIS-Ser) wuchsen. Nach 14-tägiger Zellkultur wurden dem Versuchsansatz entsprechend nichtadhärente THP-1 Zellen (AML-M5-Zelllinie) und Tipifarnib oder entsprechende Kontrolllösungen beziehungsweise bimolekulare Antikörperkonstrukte mit PBMCs als Effektorzellen hinzupipettiert. Nach 5-tägiger Inkubation mit Tipifarnib beziehungsweise 24-stündiger Behandlung mit Antikörperkonstrukten wurde der therapiebedingte Anstieg der Apoptoserate in den malignen THP-1 Zellen mittels durchflusszytometrischer Analyse der Modellüberstände ermittelt. Zum Ausschluss verbliebener und durchflusszytometrisch zu analysierender Zellen wurde, stellvertretend für alle Suspensionszellen, eine Anti-CD13/DAB-Färbung durchgeführt, welche negativ ausfiel. Mögliche Kollateralschäden am Endothel wurden mittels histologischen Färbemethoden an Gewebeparaffinschnitten untersucht. In der Durchflusszytometrie zeigte Tipifarnib sowohl im 2D als auch im 3D Modell äquivalente, dosisabhängige und antileukämische Auswirkungen auf die THP-1 Zellen. Bei Applikation der Antikörperkonstrukte ließ lediglich die Kombination beider Hemibodies signifikante Effekte auf die THP-1 Zellen erkennen. Dabei zeigten sich bei konstanten Konzentrationen der Antikörperkonstrukte im 3D Modell deutlich höhere Apoptoseraten (58%) als im 2D Modell (38%). Stellt man Vergleiche von Tipifarnib mit den T-Zell-rekrutierenden Antikörperkonstrukten an, so ließen sich im 2D Modell ähnliche Apoptoseraten in den THP-1 Zellen erzielen (jeweils 38% bei Anwendung von 500 nM Tipifarnib). In den 3D Modellen erzielten jedoch die niedriger konzentrierten Antikörperkonstrukte bei kürzerer Inkubationsdauer eine noch höhere spezifische Apoptoserate in den THP-1 Zellen (im Mittel 58%) als 500 nM Tipifarnib (mittlere Apoptoserate 40%). Bezüglich der Nebenwirkungen ließ sich im 3D Modell nach Applikation von Antikörperkonstrukten kein wesentlicher Einfluss auf das Endothel erkennen, während Tipifarnib/DMSO als auch die mit DMSO versetzten Kontrolllösungen zu einer dosisabhänigen Destruktion des ursprünglichen Endothelzellmonolayers führten. Damit stellt die hier beschriebene, hoch spezifische, Hemibody-vermittelte Immuntherapie einen vielversprechenden Ansatz für zukünftige onkologische Therapien dar. Mithilfe des etablierten humanen 3D in vitro Modells konnte im Vergleich zur konventionellen Zellkultur eine natürlichere Mikroumgebung für Zellen geschaffen und die Auswirkungen der Testsubstanzen sowohl auf maligne Zellen, als auch auf die Gefäßstrukturen untersucht werden. N2 - In Germany every year about 500,000 people contract cancer whereof about 12,000 have leukemia [1]. Among all types of leukemia, acute myeloid leukemia (AML) has the worst prognosis so that there is an increased need for research. In addition many potential therapeutic agents, which had been very promising in previous preclinical tests, subsequently performed poorly in clinical studies [8]. The aim of this work was to establish a 3D in vitro blood vessel /tissue model as an enhanced preclinical test system for therapeutic agents, which could contribute to successful treatment of leukemia. The 3D blood vessel model consists of human primary endothelial cells growing as a monolayer on the serosa site of a decellularized porcine intestinal collagen matrix (called SIS-Ser). After 14 days in cell culture non-adherent THP-1 cells (AML-M5) and Tipifarnib or control solution, or other bimolecular antibody constructs and PBMC as effector cells were added to the experimental setting. After 5 days treatment with Tipifarnib or 24 hours with antibody constructs the therapy related effects on THP-1 cells were observed by flow cytometric analysis of the model remants. For exclusion of adherent suspension cells on the matrix an anti CD-13/DAB labeling was carried out, which was negative. Damaging effects on endothelial cells were assessed by histological staining of paraffin sections. In 2D as well as in 3D tipifarnib showed equivalent dose-dependent antileukemic effects on THP-1 by flow cytometry. After application of antibody constructs only the combination of both hemibodies showed significant effects on THP-1. While having constant concentrations in 2D and 3D the antibody constructs resulted in higher apoptotic rate in 3D (58%) than in 2D (38%). In comparison to tipifarnib, the t-cell recruting antibody constructs resulted in a similar apoptotic rate in THP-1 in 2D (38% when using 500 nM tipifarnib) whereas they had higher specific effects on THP-1 in 3D by a shorter incubation period and lower concentrations (58% versus 40% after incubation with 500 nM tipifarnib). Concerning side effects, the hemibodies had no significant influence on the endothelial monolayer whereas tipifarnib/DMSO and DMSO alone led to damage in a dose-dependent manner. So highly specific hemibody- mediated immunotherapy shows a promising approach for future cancer treatment. With this human 3D in vitro model a more natural mico-environment was created for the cells in comparison to conventional cell cultures and it is was possible to investigate the anti-leukemic effects of therapeutic drugs as well as their impact on the endothelial monolayer. KW - Tissue Engineering KW - Gewebekultur KW - Akute myeloische Leukämie KW - Antikörper KW - Immuntherapie KW - 3D in vitro Modell KW - Akute myeloische Leukämie KW - Tipifarnib KW - T-Zell-rekrutierende Antikörperkonstrukte KW - 3D in vitro model KW - acute myeloid leukemia KW - t-cell recruting antibody constructs Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-152506 ER - TY - THES A1 - Fey, Christina T1 - Establishment of an intestinal tissue model for pre-clinical screenings T1 - Etablierung eines Darmgewebemodells für Präklinische Screenings N2 - The small intestine represents a strong barrier separating the lumen from blood circulation thereby playing a major role in the absorption and the transport of pharmacological agents prior to their arrival on the respective target site. In order to gain more knowledge about specialized uptake mechanisms and risk assessment for the patient after oral admission of drugs, intestinal in vitro models demonstrating a close similarity to the in vivo situation are needed. In the past, cell line-based in vitro models composed of Caco-2 cells cultured on synthetic cell carriers represented the “gold standard” in the field of intestinal tissue engineering. Expressive advantages of these models are a reproducible, cost-efficient and standardized model set up, but cell function can be negatively influenced by the low porosity or unwanted molecular adhesion effects of the artificial scaffold material. Natural extracellular matrices (ECM) such as the porcine decellularized small intestinal submucosa (SIS) are used as alternative to overcome some common drawbacks; however, the fabrication of these scaffolds is time- and cost-intensive, less well standardized and the 3Rs (replacement, reduction, refinement) principle is not entirely fulfilled. Nowadays, biopolymer-based scaffolds such as the bacterial nanocellulose (BNC) suggest an interesting option of novel intestinal tissue engineered models, as the BNC shows comparable features to the native ECM regarding fiber arrangement and hydrophilic properties. Furthermore, the BNC is of non-animal origin and the manufacturing process is faster as well as well standardized at low costs. In this context, the first part of this thesis analyzed the BNC as alternative scaffold to derive standardized and functional organ models in vitro. Therefore, Caco-2 cells were cultured on two versions of BNC with respect to their surface topography, the unmodified BNC as rather smooth surface and the surface-structured BNC presenting an aligned fiber arrangement. As controls, Caco-2 in vitro models were set up on PET and SIS matrices. In this study, the BNC-based models demonstrated organ-specific properties comprising typical cellular morphologies, a characteristic tight junction protein expression profile, representative ultrastructural features and the formation of a tight epithelial barrier together with a corresponding transport activity. In summary, these results validated the high quality of the BNC-based Caco-2 models under cost-efficient conditions and their suitability for pre-clinical research purposes. However, the full functional diversity of the human intestine cannot be presented by Caco-2 cells due to their tumorigenic background and their exclusive representation of mature enterocytes. Next to the scaffold used for the setup of in vitro models, the cellular unit mainly drives functional performance, which demonstrates the crucial importance of mimicking the cellular diversity of the small intestine in vitro. In this context, intestinal primary organoids are of high interest, as they show a close similarity to the native epithelium regarding their cellular diversity comprising enterocytes, goblet cells, enteroendocrine cells, paneth cells, transit amplifying cells and stem cells. In general, such primary organoids grow in a 3D Matrigel® based environment and a medium formulation supplemented with a variety of growth factors to maintain stemness, to inhibit differentiation and to stimulate cell migration supporting long term in vitro culture. Intestinal primary spheroid/organoid cultures were set up as Transwell®-like models on both BNC variants, which resulted in a fragmentary cell layer and thereby unfavorable properties of these scaffold materials under the applied circumstances. As the BNC manufacturing process is highly flexible, surface properties could be adapted in future studies to enable a good cell adherence and barrier formation for primary intestinal cells, too. However, the application of these organoid cultures in pre-clinical research represents an enormous challenge, as the in vitro culture is complex and additionally time- and cost-intensive. With regard to the high potential of primary intestinal spheroids/organoids and the necessity of a simplified but predictive model in pre-clinical research purposes, the second part of this thesis addressed the establishment of a primary-derived immortalized intestinal cell line, which enables a standardized and cost-efficient culture (including in 2D), while maintaining the cellular diversity of the organoid in vitro cultures. In this study, immortalization of murine and human intestinal primary organoids was induced by ectopic expression of a 10- (murine) or 12 component (human) pool of genes regulating stemness and the cell cycle, which was performed in cooperation with the InSCREENeX GmbH in a 2D- and 3D-based transduction strategy. In first line, the established cell lines (cell clones) were investigated for their cell culture prerequisites to grow under simplified and cost-efficient conditions. While murine cell clones grew on uncoated plastic in a medium formulation supplemented with EGF, Noggin, Y-27632 and 10% FCS, the human cell clones demonstrated the necessity of a Col I pre coating together with the need for a medium composition commonly used for primary human spheroid/organoid cultures. Furthermore, the preceding analyses resulted in only one human cell clone and three murine cell clones for ongoing characterization. Studies regarding the proliferative properties and the specific gene as well as protein expression profile of the remaining cell clones have shown, that it is likely that transient amplifying cells (TACs) were immortalized instead of the differentiated cell types localized in primary organoids, as 2D, 3D or Transwell®-based cultures resulted in slightly different gene expression profiles and in a dramatically reduced mRNA transcript level for the analyzed marker genes representative for the differentiated cell types of the native epithelium. Further, 3D cultures demonstrated the formation of spheroid-like structures; however without forming organoid-like structures due to prolonged culture, indicating that these cell populations have lost their ability to differentiate into specific intestinal cell types. The Transwell®-based models set up of each clone exhibit organ-specific properties comprising an epithelial-like morphology, a characteristic protein expression profile with an apical mucus-layer covering the villin-1 positive cell layer, thereby representing goblet cells and enterocytes, together with representative tight junction complexes indicating an integer epithelial barrier. The proof of a functional as well as tight epithelial barrier in TEER measurements and in vivo-like transport activities qualified the established cell clones as alternative cell sources for tissue engineered models representing the small intestine to some extent. Additionally, the easy handling and cell expansion under more cost-efficient conditions compared to primary organoid cultures favors the use of these newly generated cell clones in bioavailability studies. Altogether, this work demonstrated new components, structural and cellular, for the establishment of alternative in vitro models of the small intestinal epithelium, which could be used in pre-clinical screenings for reproducible drug delivery studies. N2 - Der Dünndarm bildet eine starke Barriere aus, welche das Lumen vom Blutkreislauf trennt, und dadurch maßgeblich an der Absorption und dem Transport von pharmakologischen Wirkstoffen beteiligt ist, bevor diese ihren Wirkort erreichen. Um ein detaillierteres Wissen über die speziellen Aufnahmemechanismen zu erlangen und zur Risikoabschätzung für den Patienten nach oraler Aufnahme dieser Medikamente, sind intestinale in vitro Modelle erforderlich, die eine große Ähnlichkeit mit der Situation in vivo aufweisen. In der Vergangenheit stellten Caco-2 Zelllinien-basierte in vitro Modelle, die auf synthetischen Trägerstrukturen aufgebaut sind, den „Goldstandard“ auf dem Gebiet der intestinalen Geweberekonstruktion dar. Bedeutende Vorteile dieser Modelle sind der reproduzierbare, kosteneffiziente und standardisierte Modellaufbau, jedoch können die zellulären Funktionen durch die geringe Porosität oder die unerwünschten molekularen Adhäsionseffekte des künstlichen Trägermaterials negativ beeinflusst werden. Um einige häufige Nachteile zu überwinden werden natürliche extrazelluläre Matrizen (ECM) wie die porzine dezellularisierte Dünndarm-submukosa (SIS) verwendet, jedoch ist die Herstellung dieser Trägerstrukturen zeit- und kostenintensiv, weniger gut standardisiert und entspricht nicht ganzheitlich dem 3R-Prinzip (Replace = Vermeiden, Reduce = Verringern, Refine = Verbessern). Heutzutage ermöglichen biopolymer-basierte Trägerstrukturen wie die bakterielle Nanozellulose (BNC) die Entwicklung von neuartigen intestinalen Gewebemodellen, da die BNC eine große Ähnlichkeit hinsichtlich der Faseranordnung und der hydrophilen Eigenschaften mit der nativen ECM aufweist. Darüber hinaus ist die BNC nicht tierischen Ursprungs und der Herstellungsprozess schneller, gut standardisiert als auch kostengünstig. In diesem Zusammenhang wurde im ersten Teil dieser Arbeit nachgewiesen, dass die BNC als alternative Trägerstruktur für standardisierte und funktionelle Organmodelle in vitro geeignet ist. Dafür wurden Caco-2 Zellen auf zwei Varianten der BNC kultiviert, die sich in ihrer Oberflächentopographie unterscheiden, wobei die nicht-modifizierte BNC eine glatte Oberfläche und die oberflächen-strukturierte BNC eine ausgerichtete Faseranordnung aufweist. Als Kontrollen dienten Caco 2 zellbasierte in vitro Modelle, die auf PET- oder SIS Matrizes aufgebaut wurden. In dieser Studie wiesen die BNC-basierten Modelle die wichtigsten organ-spezifischen Eigenschaften auf, darunter eine typische zelluläre Morphologie, ein charakteristisches Expressionsprofil der Tight Junction Proteine, repräsentative ultrastrukturelle Merkmale und die Bildung einer dichten epithelialen Barriere verbunden mit einer entsprechenden Transportaktivität. Zusammenfassend bestätigten diese Ergebnisse die hohe Qualität der BNC-basierten Caco-2 Modelle unter kosteneffizienten Herstellbedingungen und ihre Eignung für präklinische Forschungszwecke. Allerdings kann die volle Funktionsvielfalt des menschlichen Darms durch Caco-2 Zellen aufgrund ihres kanzerogenen Ursprungs und der exklusiven Repräsentanz von Enterozyten nicht abgebildet werden. Neben der Trägerstruktur die für den Aufbau der in vitro Modelle verwendet wird, trägt auch die zelluläre Einheit zur Etablierung von funktionalen Modellen bei, weshalb es von großer Bedeutung ist, die zelluläre Vielfalt des Dünndarms in diesen Modellen in vitro nachzuahmen. In diesem Zusammenhang sind die primären intestinalen Organoide, die sich hauptsächlich aus Enterozyten, Becherzellen, enteroendokrinen Zellen, Paneth Zellen, Vorläuferzellen und Stammzellen zusammensetzen, von großem Interesse, da die zelluläre Komponente eine große Ähnlichkeit zum nativen Epithel aufweist. Derartige primäre Organoide werden üblicherweise in einer 3D-Matrigel® Umgebung und einer speziellen Formulierung des Mediums, die mit einer Vielzahl an Wachstumsfaktoren ergänzt wird, um das Stammzellpotenzial zu erhalten, die Differenzierung zu hemmen, die Zellmigration zu stimulieren und somit eine langfristige in vitro-Kultivierung zu unterstützt. Intestinale primäre Sphäroid-/Organoidkulturen wurden auf beiden BNC Varianten als Transwell®-ähnliche Modelle aufgebaut. Dabei zeigte sich eine fragmentierte Zellschicht was darauf schließen lässt, dass die Matrix unter diesen Bedingungen für den Modellaufbau ungeeignet ist. Da der BNC-Herstellungsprozess sehr flexibel ist, könnten die Oberflächen-eigenschaften in zukünftigen Studien angepasst werden, um so eine gute Zelladhäsion auch für primäre Darmzellen zu ermöglichen. Die Anwendung dieser Organoid-basierten Kulturen stellt jedoch für die präklinische Forschung eine enorme Herausforderung dar, da die Kultivierung komplex und zudem sehr zeit- und kosten-intensiv ist. Im Hinblick auf das hohe Potenzial der primären intestinalen Sphäroide/Organoide und der Notwendigkeit eines vereinfachten aber prädiktiven Modells für präklinische Forschungs-zwecke, befasste sich der zweite Teil der Arbeit mit der Etablierung einer primären immortalisierten intestinalen Zelllinie, die eine standardisierte und kosteneffiziente Kultur ermöglicht, wobei die zelluläre Vielfalt der in vitro Organoid-Kulturen erhalten bleibt. In dieser Studie wurden primäre Organoide aus dem murinen und dem menschlichen Dünndarm durch die ektopische Expression eines 10- (murin) bzw. 12 Komponenten (human) Pools von Genen, welche im Hinblick auf die Regulation der Stammzellen und dem Zellzyklus bekannt sind, in Zusammenarbeit mit der InSCREENeX GmbH in einer 2D- und 3D-basierten Transduktionsstrategie immortalisiert. In erster Linie wurden die etablierten Zelllinien (Zellklone) auf ihren Bedarf an Wachstumsfaktoren für die Kultivierung unter vereinfachten und kosteneffizienten Bedingungen hin untersucht. Während die murinen Zellklone auf unbeschichteten Kunststoff in einer Mediumformulierung mit hEGF, mNoggin, Y-27632 und 10% FCS wuchsen, zeigten die humanen Zellklone eine Notwendigkeit für eine Col I-Vorbeschichtung zusammen mit einer Zusammensetzung des Mediums, wie sie üblicherweise für primäre humane Sphäroide/Organoide verwendet wird. Darüber hinaus führten diese vorangegangenen Analysen dazu, dass nur ein humaner Zellklon und drei murine Zellklone umfänglich charakterisiert wurden. Studien zu proliferativen Eigenschaften und spezifischen Gen- sowie Proteinexpressionsprofilen dieser Klone haben gezeigt, dass vermutlich Vorläuferzellen (TACs) anstelle der differenzierten Zelltypen der primären Organoide immortalisiert wurden, da die Kultivierung in 2D, 3D oder in Transwell®-basierten Modellen zu einem geringfügig veränderten Genexpressionsprofil im Vergleich untereinander und zudem zu einem stark reduzierten mRNA-Transkriptionswert für die analysierten Markergene, welche die differenzierten Zelltypen des nativen Epithels repräsentieren, die Folge war. Weiterhin zeigte die 3D-Kultivierung die Bildung von Sphäroid-ähnlichen Strukturen, jedoch keine Organoid-ähnlichen Strukturen unter verlängerten Kultur-bedingungen, was darauf hinweist, dass diese Zellpopulationen ihre Eigenschaft zur Differenzierung hin zu spezifischen intestinalen Zelltypen eingebüßt haben. Die Transwell®-basierten Modelle, welche für jeden Klon etabliert wurden, weisen zudem Organ-spezifische Eigenschaften auf, wie eine epitheliale Morphologie, ein charakteristisches Protein-expressionsprofil mit einer apikalen Schleimschicht, welche den Villin-1 positiven Zelllayer bedeckt und somit den Nachweis erbringt, dass die entstandenen immortalisierten Zellpopulationen zu einem gewissen Anteil aus Becherzellen und Enterozyten bestehen. Zudem konnten repräsentative Tight-Junction Komplexe, die auf eine dichte epitheliale Barriere hinweisen, in entsprechenden Proteinexpressionsprofilanalysen nachgewiesen werden. Der Nachweis einer sowohl dichten als auch funktionellen epithelialen Barriere konnte weitergehend durch TEER-Messungen und in vivo-ähnliche Transportmechanismen für die etablierten Zellklone qualifiziert werden, wodurch diese Zellen als alternative Zellquelle für in vitro Modelle des Dünndarms verwendet werden können. Darüber hinaus begünstigt die einfache Handhabung und Zellexpansion unter kostengünstigeren Bedingungen im Vergleich zu primären Organoidkulturen den Einsatz dieser neu-generierten Zellklone für Bioverfügbarkeits-Studien. Zusammenfassend zeigte diese Arbeit neue Komponenten, strukturelle und zelluläre, für die Etablierung alternativer in vitro-Modelle des Dünndarmepithels, die in präklinischen Screenings für reproduzierbare Studien hinsichtlich der Medikamententestung verwendet werden können. KW - Dünndarm KW - In vitro KW - Tissue Engineering KW - intestinal in vitro model KW - bacterial nanocellulose KW - primary-cell-derived immortalized cell line KW - in vitro Modelle KW - Bakterielle Nanocellulose KW - Primär-basierte immortalisierte Zelllinie Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-244107 ER - TY - THES A1 - Nelke, Lena T1 - Establishment and optimization of 3-dimensional mamma carcinoma models for therapy simulation and drug testing T1 - Etablierung und Optimierung 3-dimensionaler Mammakarzinommodelle für die Therapiesimulation und die Wirkstofftestung N2 - Breast cancer is the most common cancer among women worldwide and the second most common cause of cancer death in the developed countries. As the current state of the art in first-line drug screenings is highly ineffective, there is an urgent need for novel test systems that allow for reliable predictions of drug sensitivity. In this study, a tissue engineering approach was used to successfully establish and standardize a 3-dimensional (3D) mamma carcinoma test system that was optimized for the testing of anti-tumour therapies as well as for the investigation of tumour biological issues. This 3D test system is based on the decellularised scaffold of a porcine small intestinal segment and represents the three molecular subsets of oestrogen receptor-positive, HER2/Neu-overexpressing and triple negative breast cancer (TNBC). The characterization of the test system with respect to morphology as well as the expression of markers for epithelial-mesenchymal transition (EMT) and differentiation indicate that the 3D tumour models cultured under static and dynamic conditions reflect tumour relevant features and have a good correlation with in vivo tumour tissue from the corresponding xenograft models. In this respect, the dynamic culture in a flow bioreactor resulted in the generation of tumour models that exhibited best reflection of the morphology of the xenograft material. Furthermore, the proliferation indices of 3D models were significantly reduced compared to 2-dimensional (2D) cell culture and therefore better reflect the in vivo situation. As this more physiological proliferation index prevents an overestimation of the therapeutic effect of cytostatic compounds, this is a crucial advantage of the test system compared to 2D culture. Moreover, it could be shown that the 3D models can recapitulate different tumour stages with respect to tumour cell invasion. The scaffold SISmuc with the preserved basement membrane structure allowed the investigation of invasion over this barrier which tumour cells of epithelial origin have to cross in in vivo conditions during the process of metastasis formation. Additionally, the data obtained from ultrastructural analysis and in situ zymography indicate that the invasion observed is connected to a tumour cell-associated change in the basement membrane in which matrix metalloproteinases (MMPs) are also involved. This features of the model in combination with the mentioned methods of analysis could be used in the future to mechanistically investigate invasive processes and to test anti-metastatic therapy strategies. The validation of the 3D models as a test system with respect to the predictability of therapeutic effects was achieved by the clinically relevant targeted therapy with the monoclonal antibody trastuzumab which induces therapeutic response only in patients with HER2/Neu-overexpressing mamma carcinomas due to its specificity for HER2. While neither in 2D nor in 3D models of all molecular subsets a clear reduction of cell viability or an increase in apoptosis could be observed, a distinct increase in antibody-dependent cell-mediated cytotoxicity (ADCC) was detected only in the HER2/NEU-overexpressing 3D model with the help of an ADCC reporter gene assay that had been adapted for the application in the 3D model in the here presented work. This correlates with the clinical observations and underlines the relevance of ADCC as a mechanism of action (MOA) of trastuzumab. In order to measure the effects of ADCC on the tumour cells in a direct way without the indirect measurement via a reporter gene, the introduction of an immunological component into the models was required. This was achieved by the integration of peripheral blood mononuclear cells (PBMCs), thereby allowing the measurement of the induction of tumour cell apoptosis in the HER2/Neu-overexpressing model. Hence, in this study an immunocompetent model could be established that holds the potential for further testing of therapies from the emergent field of cancer immunotherapies. Subsequently, the established test system was used for the investigation of scientific issues from different areas of application. By the comparison of the sensitivity of the 2D and 3D model of TNBC towards the water-insoluble compound curcumin that was applied in a novel nanoformulation or in a DMSO-based formulation, the 3D test system was successfully applied for the evaluation of an innovative formulation strategy for poorly soluble drugs in order to achieve cancer therapy-relevant concentrations. Moreover, due to the lack of targeted therapies for TNBC, the TNBC model was applied for testing novel treatment strategies. On the one hand, therapy with the WEE1 kinase inhibitor MK 1775 was evaluated as a single agent as well as in combination with the chemotherapeutic agent doxorubicin. This therapy approach did not reveal any distinct benefits in the 3D test system in contrast to testing in 2D culture. On the other hand, a novel therapy approach from the field of cellular immunotherapies was successfully applied in the TNBC 3D model. The treatment with T cells that express a chimeric antigen receptor (CAR) against ROR1 revealed in the static as well as in the dynamic model a migration of T cells into the tumour tissue, an enhanced proliferation of T cells as well as an efficient lysis of the tumour cells via apoptosis and therefore a specific anti-cancer effect of CAR-transduced T cells compared to control T cells. These results illustrate that the therapeutic application of CAR T cells is a promising strategy for the treatment of solid tumours like TNBC and that the here presented 3D models are suitable for the evaluation and optimization of cellular immunotherapies. In the last part of this work, the 3D models were expanded by components of the tumour stroma for future applications. By coculture with fibroblasts, the natural structures of the intestinal scaffold comprising crypts and villi were remodelled and the tumour cells formed tumour-like structures together with the fibroblasts. This tissue model displayed a strong correlation with xenograft models with respect to morphology, marker expression as well as the activation of dermal fibroblasts towards a cancer-associated fibroblast (CAF) phenotype. For the integration of adipocytes which are an essential component of the breast stroma, a coculture with human adipose-derived stromal/stem cells (hASCs) which could be successfully differentiated along the adipose lineage in 3D static as well as dynamic models was established. These models are suitable especially for the mechanistic analysis of the reciprocal interaction between tumour cells and adipocytes due to the complex differentiation process. Taken together, in this study a human 3D mamma carcinoma test system for application in the preclinical development and testing of anti-tumour therapies as well as in basic research in the field of tumour biology was successfully established. With the help of this modular test system, relevant data can be obtained concerning the efficacy of therapies in tumours of different molecular subsets and different tumour stages as well as for the optimization of novel therapy strategies like immunotherapies. In the future this can contribute to improve the preclinical screening and thereby to reduce the high attrition rates in pharmaceutical industry as well as the amount of animal experiments. N2 - Brustkrebs ist die häufigste Krebsart bei Frauen und die zweithäufigste Todesursache bei Krebserkrankungen in den Industrienationen. Aufgrund der Ineffizienz der derzeit verwendeten Modelle für die Identifizierung neuer Therapeutika herrscht ein hoher Bedarf an neuartigen Testsystemen, welche aussagekräftige Vorhersagen über die Wirksamkeit ermöglichen. In dieser Arbeit wurde mit Hilfe des Tissue Engineerings erfolgreich ein 3-dimensionales (3D) Mammakarzinom-Testsystem etabliert, standardisiert und für die Testung von anti-tumoralen Therapien sowie weitere tumorbiologische Fragestellungen optimiert. Dieses 3D Testsystem basiert auf der dezellularisierten Gerüststruktur eines porcinen Dünndarmsegments und repräsentiert die drei molekularen Subtypen des Östrogen-Rezeptor-positiven, HER2/Neu-überexprimierenden sowie des tripel-negativen Brustkrebses (TNBC). Die Charakterisierung des Testsystems anhand der Morphologie sowie der Expression von Markern zur Bestimmung der epithelialen-mesenchymalen Transition (EMT) und der Differenzierung zeigte, dass die statisch und dynamisch kultivierten 3D Modelle Tumor-relevante Charakteristika widerspiegeln und eine deutliche Ähnlichkeit zu in vivo Tumormaterial aus entsprechenden Xenograft-Modellen aufweisen, wobei die dynamische Kultivierung in einem Flussreaktor zur Generierung von Tumormodellen führte, welche die Morphologie des Tumorgewebes aus Xenograft-Modellen am besten repräsentierten. Des Weiteren war die Proliferationsrate in den 3D Modellen im Vergleich zu 2-dimensionalen (2D) Zellkulturen signifikant reduziert und entspricht daher eher der Situation in vivo. Dies ist ein entscheidender Vorteil des Testsystems gegenüber der 2D Zellkultur, da durch die physiologischere Proliferationsrate eine Überschätzung des Therapieeffekts zytostatischer Medikamente vermieden wird. Zudem konnte gezeigt werden, dass mit Hilfe der 3D Modelle unterschiedliche Tumorstadien in Bezug auf die Tumorzellinvasion abgebildet werden können. Die Gerüststruktur SISmuc mit erhaltener Basalmembranstruktur ermöglichte eine Untersuchung der Invasion über diese Barriere, welche Tumorzellen epithelialen Ursprungs unter in vivo-Bedingungen beim Prozess der Metastasierung überwinden müssen. Zudem deuten die durch ultrastrukturelle Analysen und in situ Zymographie gewonnenen Daten darauf hin, dass die beobachtete Invasion mit einer Tumorzell-assoziierten Veränderung der Basalmembran, an der auch Matrix-Metalloproteinasen (MMPs) beteiligt sind, einhergeht. Diese Eigenschaften des Modells in Kombination mit den erwähnten Untersuchungsmethoden könnten in Zukunft dazu eingesetzt werden, Invasionsprozesse mechanistisch zu untersuchen sowie neue anti-metastatisch wirkende Therapiestrategien zu testen. Die Validierung der 3D Modelle als Testsystem bezüglich der Vorhersagbarkeit von Therapieeffekten erfolgte mit Hilfe der klinisch relevanten, zielgerichteten Therapie mit dem monoklonalen Antikörper Trastuzumab, welcher aufgrund seiner Spezifität für HER2/Neu nur in Patienten mit HER2/Neu-überexprimierendem Mammakarzinom einen Therapieerfolg erzielt. Während weder in 2D noch in den 3D Modellen aller molekularer Subtypen eine eindeutige Reduktion der Zellviabilität oder ein Anstieg der Apoptose gemessen werden konnte, zeigte sich mit Hilfe eines ADCC-Reportergenassays, der in dieser Arbeit für die Anwendung im 3D Modell angepasst wurde, ein deutlicher Anstieg der Antikörper-abhängigen zellvermittelten Zytotoxizität (ADCC) lediglich für das HER2/Neu-überexprimierende Modell. Dies entspricht den klinischen Beobachtungen und unterstreicht die Relevanz der ADCC als Wirkmechanismus des Antikörpers. Um die direkten Effekte einer ADCC auf die Tumorzellen im 3D Testsystem direkt – ohne den Umweg über ein Reportergen – messbar zu machen, war die Einführung einer immunologischen Komponente notwendig. Dies gelang mit Hilfe der Integration von mononukleären Zellen des peripheren Blutes (PBMCs), wodurch die Induktion der Apoptose im HER2/Neu-überexprimierenden Modell messbar war. Somit konnte im Rahmen dieser Arbeit ein immunkompetentes Modell etabliert werden, welche das Potenzial für weitere Testungen aus dem aufstrebenden Bereich der Krebsimmuntherapien bietet. Anschließend wurde das etablierte Testsystem zur Untersuchung von Fragestellungen aus unterschiedlichen Anwendungsbereichen eingesetzt. Durch den Vergleich der Sensitivität von Tumorzellen in 2D und im 3D Modell des TNBC gegenüber des wasserunlöslichen Wirkstoffs Curcumin, welcher in einer neuartigen Nanoformulierung bzw. in einer DMSO-basierten Formulierung appliziert wurde, konnte das 3D Testsystem für die Evaluation einer innovativen Formulierungsstrategie für unlösliche Wirkstoffe angewendet werden, um für die Krebstherapie relevante Dosierungen zu erreichen. Weiterhin wurden aufgrund des Mangels an zielgerichteten Therapien für das tripel-negative Mammakarzinom neuartige Therapiestrategien anhand des 3D Modells getestet. Zum einen wurde die Therapie mit dem WEE1-Kinase Inhibitor MK 1775 als Monotherapie sowie in Kombination mit dem Chemotherapeutikum Doxorubicin evaluiert. Diese zeigte im Gegensatz zu Testungen in 2D Kultur keinen eindeutigen Therapieeffekt im 3D Testsystem. Zum anderen wurde eine neuartige Behandlung aus dem Bereich der zellulären Immuntherapie erfolgreich im TNBC 3D Modell angewendet. Die Behandlung mit T-Zellen, welche einen chimären Antigen-Rezeptor (CAR) gegen ROR1 tragen, zeigte sowohl im statischen als auch im dynamischen Modell eine Migration der T-Zellen in das Tumorgewebe, eine erhöhte Proliferation der T-Zellen sowie eine effiziente Lyse der Tumorzellen mittels Apoptose und damit eine spezifische anti-tumorale Wirkung der CAR-transduzierten T-Zellen im Vergleich zu Kontroll-T-Zellen. Diese Ergebnisse verdeutlichen einerseits, dass die therapeutische Anwendung von CAR-T-Zellen eine vielversprechende Strategie für die Behandlung von soliden Tumoren wie des TNBC ist, zum anderen, dass die hier vorgestellten 3D Modelle als Testsystem für die Evaluierung und Optimierung von zellulären Immuntherapien geeignet sind. Im letzten Teil der Arbeit wurde das 3D Modell für die zukünftige Anwendung um Komponenten des Tumorstromas erweitert. Durch die Kokultur mit Fibroblasten wurden die natürlichen Strukturen der Darmmatrix, bestehend aus Krypten und Villi, umgebaut und die Krebszellen bildeten zusammen mit den Fibroblasten tumorartige Strukturen aus. Das so erzeugte Gewebemodell zeigte sowohl in morphologischer Hinsicht als auch bezogen auf die Markerexpression und die Aktivierung der dermalen Fibroblasten hin zu Krebs-assoziierten Fibroblasten (CAFs) starke Ähnlichkeit mit Xenograft-Modellen. Für die Integration von Adipozyten, welche ein wichtiger Bestandteil des Stromas in der Brust sind, wurde eine Kokultur mit humanen, aus dem Fettgewebe stammenden Stroma-/Stammzellen (hASCs) etabliert, welche sowohl im statischen als auch im dynamischen 3D Modell erfolgreich adipogen differenziert werden konnten. Diese Modelle eignen sich aufgrund des komplexen Differenzierungsprozesses vor allem für die mechanistische Untersuchung der Interaktionen zwischen Tumorzellen und Adipozyten. Zusammenfassend ist es in dieser Arbeit gelungen, ein humanes 3D Mammakarzinom-Testsystem zur Anwendung in der präklinischen Entwicklung und Testung anti-tumoraler Therapien sowie der Grundlagenforschung im Bereich der Tumorbiologie zu etablieren. Mit Hilfe dieses modularen Testsystems können relevante Daten zur Wirksamkeit von Therapien in Tumoren unterschiedlicher molekularer Subtypen sowie unterschiedlich fortgeschrittener Tumorstadien und zur Optimierung neuartiger Therapiestrategien wie Immuntherapien gewonnen werden. Dies kann in Zukunft dazu beitragen das präklinische Screening zu verbessern und somit die hohen klinischen Ausfallraten in der pharmazeutischen Industrie und die Zahl von Tierversuchen zu reduzieren. KW - Brustkrebs KW - Mamma carcinoma KW - Tissue Engineering KW - Drug testing KW - 3D model KW - therapy simulation KW - Mammakarzinom KW - Wirkstofftestung KW - 3D Modell KW - Therapiesimulation Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172280 ER - TY - THES A1 - Schürlein, Sebastian T1 - Entwicklung von Technologien zur Optimierung von Tissue Engineering Prozessen am Beispiel der Herstellung von kardialem Gewebe T1 - Development of technologies to optimize tissue engineering processes, documented on the example of the generation of cardiac tissue N2 - Kardiovaskuläre Erkrankungen, wie beispielsweise der Herzinfarkt, sind die häufigste Todesursache weltweit. Bei einem Herzinfarkt sterben Areale des Herzens aufgrund einer Unterversorgung mit Blut ab. Da das Herzmuskelgewebe ein sogenanntes terminal differenziertes Gewebe ist, kommt es zu keiner Regeneration des Gewebes, mit der Folge einer Herzinsuffizienz beziehungsweise dem Tod des Patienten. Eine alternative Behandlungsmöglichkeit zu einer Herztransplantation stellt das Tissue Engineering dar. Mit Hilfe des Tissue Engineerings können dreidimensionale Gewebe aufgebaut und kultiviert werden, um auf diese Weise ein funktionelles Gewebe zu erhalten, durch welches das abgestorbene Gewebeareal des Herzens zukünftig auch ersetzt werden könnte. In der vorliegenden Arbeit wurden notwendige Technologien für den Aufbau von Geweben entwickelt sowie erste Versuche für die Erzeugung eines funktionellen Herzmuskelgewebes durchgeführt. Beim Aufbau von dreidimensionalen Geweben finden Trägerstrukturen Anwendung, die mit Zellen besiedelt werden. Solche Trägerstrukturen können aus biologischen oder synthetischen Polymeren hergestellt sein oder aus der extrazellulären Matrix eines dezellularisierten Gewebes bestehen. Für eine standardisierte Dezellularisierung von Geweben wurde eine computergesteuerte Pumpeneinheit, für die Herstellung von Nanofaserscaffolds eine Elektrospinninganlage entwickelt. Mit Hilfe der Dezellularisierungseinheit können komplexe Organe, wie ein Herz im Ganzen, reproduzierbar dezellularisiert werden. Untersuchungen der mittels Elektrospinning hergestellten Nanofaserscaffolds, welche als Alternative zu der dezellularisierten, natürlichen Matrix eingesetzt werden können, zeigten bei allen hergestellten Zusammensetzungen eine Orientierung der Zellen entlang der Fasern. Die Kultivierung von Zellmatrixkonstrukten erfolgt im Tissue Engineering häufig unter dynamischen Bedingungen. Hierfür wurde ein mobiler Stand Alone Inkubator mit der erforderlichen Peripherie für eine Kultur unter Perfusion des Gewebes entwickelt. Als Weiterentwicklung des Stand Alone Inkubators ist eine modulare Bioreaktorplattform, bestehend aus Wärmetauscher, Beutelpumpe und Gasaustauscher, aufgebaut worden. In dieses System kann über Standard Anschlüsse jegliche Art von Bioreaktor in das System eingebunden werden. Durch die Kompaktheit des Systems ist es möglich mehrere Ansätze parallel auf engem Raum durchzuführen. Die Funktion der Plattform, wurde in der vorliegenden Arbeit durch die Gewebekultur einer nativen porzinen Karotis nachgewiesen. Für den Aufbau des kardialen Gewebes dient die small intestinal submucosa ohne Serosa (SISser) als Trägerstruktur. Der Aufbau des Gewebekonstrukts erfolgte in verschiedenen Ansätzen unter Einsatz verschiedener Zellarten. Native, aus Herzbiopsien generierte Cardiosphere derived cells (CDCs) verteilten sich gleichmäßige über die Oberfläche der Matrix, jedoch konnten immunhistologisch keine spezifischen kardialen Marker bei den artifiziellen Geweben nachgewiesen werden. Zellmatrixkonstrukte aus einer Mono Kultur von Kardiomyozyten, differenziert aus induzierten pluripotenten Stammzellen (iPS Zellen) sowie einer Co Kultur dieser Kardiomyozyten mit mesenchymalen Stammzellen und Zellen aus einer Herzbiopsie zeigten nach wenigen Tagen in Kultur ein kontraktiles Verhalten. Immunhistologische Färbungen der beiden Gewebe bestätigten die Expression der spezifischen kardialen Marker, wie beispielsweise kardiales Troponin T, kardiales Troponin C und alpha Actinin. Die Kardiomyozyten der Mono Kultur sind jedoch nicht über die gesamte Matrixoberfläche verteilt, sondern bilden Aggregate. Bei der Co Kultur kann eine gleichmäßige Verteilung der Zellen auf der Matrix beobachtet werden. Der vielversprechendste Ansatz für den Aufbau eines Herzmuskelgewebes, welches als Implantat oder Testsystem eingesetzt werden kann, bildet nach den in dieser Arbeit erzielten Ergebnissen, ein Konstrukt aus der SISser und der Co Kultur der Zellen. Allerdings muss die Zusammensetzung der Co Kultur sowie das Verhältnis der Zellzahlen optimiert werden. N2 - Cardiovascular diseases as myocardial infarction are the most frequent cause of death worldwide. During a myocardial infarction, areas of the heart are being damaged because of an insufficient nutrient supply. Heart tissue is a terminal differentiated tissue, this means that it can’t be regenerated by itself. The consequence of this characteristic is a heart insufficiency or the death of the patient. An alternative treatment to heart transplantation is promised by tissue engineering. By using the methods of tissue engineering, cells can be cultured on a scaffold to generate a mature tissue, which can be used to replace the damaged areas of the heart. In the present work systems for the generation of tissues have been developed and first experiments to build up a functional cardiac patch were performed. To generate three-dimensional tissues, scaffolds colonized with cells are necessary. These scaffolds can be produced with biological or synthetic polymers or even decellularized tissues can be used. A computer controlled decellularization platform was designed to ensure a standardized, reproducible decellularization of complex organs like hearts. Furthermore, an electrospinning device was developed for the production of nanofiber scaffolds. On such matrices, seeded cells grow along the fibers. Most cell-matrix-constructs are cultured under dynamic conditions in tissue engineering. A stand alone incubator system containing the required periphery to apply different culture conditions was developed. As further development a compact modular bioreactor platform consisting of a heat exchanger, a bag pump and a gas exchanger was established. All kinds of bioreactors can be enclosed to the system via standard Luer Lock Connectors. Due to the compactness of the system, it is possible to parallelize and run experiments easily on narrow space. The functionality of the platform was demonstrated by a tissue culture of a native porcine carotid artery. The small intestinal submucosa without serosa (SISser) was employed as matrix for the development of a functional cardiac patch. In different experiments diverse cell types were used to generate a cardiac construct. Cardiosphere derived cells (CDC) seeded on the SISser showed an equal distribution all over the surface of the matrix, but no expression of specific cardiac markers. Constructs consisting of a mono culture of induced pluripotent stem cell derived cardiomyocytes (CM iPS cells) or a co culture of CM iPS cells, mesenchymal stem cells and cells isolated form a heart biopsy showed a contraction of the whole matrix after a few days in culture. Furthermore, cardiac markers like cardiac troponin T, cardiac troponin C and alpha actinin could be observed by immunohistological staining. Regarding the morphology of the different tissues, the mono culture of the CM iPS cells formed agglomerates on the surface of the matrix whereas the co culture showed a well distribution of the cells all over the surface of the matrix. Consequently, the co culture on the SISser is the most promising approach for the development of a functional cardiac patch. However, the combination of cell types within the co culture and their ratio has to be optimized. KW - Tissue Engineering KW - Herzmuskel KW - Bioreaktorplattform KW - Elektrospinning KW - kardiales Tissue Engineering KW - kardiales Gewebe KW - bioreactor plattform KW - electrospinning KW - cardiac tissue engineering KW - Biomaterial KW - Gewebekultur Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142432 ER - TY - THES A1 - Schönwälder, Sina Maria Siglinde T1 - Entwicklung und Charakterisierung von Gelatine-basierten Hydrogelen und PLGA-basierten Janus-Partikeln T1 - Development and characterization of gelatin-based hydrogels and PLGA-based Janus particles N2 - Zusammenfassung In der Regenerativen Medizin sind polymerbasierte Biomaterialien von großer Bedeutung für die Entwicklung und Anwendung verbesserter bzw. neuer Therapien. Die Erforschung der Oberflächeneigenschaften von Biomaterialien, welche als Implantate eingesetzt werden, ist eine grundlegende Voraussetzung für deren erfolgreichen Einsatz. Die Protein-Oberflächen- Interaktion geschieht initial, sobald ein Implantat mit Körperflüssigkeiten oder mit Gewebe in Kontakt kommt, und trägt maßgeblich zur direkten Wechselwirkung von Implantat und umgebenden Zellen bei. Dieser Prozess wird in der vorliegenden Arbeit an Gelatine untersucht. Daher bestand ein Ziel darin, stabile, nanometerdünne Gelatineoberflächen herzustellen und darauf die Adsorption von humanen Plasmaproteinen und bakteriellen Proteinen zu analysieren. Die Abscheidung der Gelatinefilme in variabler Schichtdicke auf zuvor mit PPX-Amin modifizierten Oberflächen wurde unter Verwendung eines Rotationsbeschichters durchgeführt. Um stabile Hydrogelfilme zu erhalten, wurden die Amingruppen der disaggregierten Gelatinefibrillen untereinander und mit denen der Amin-Modifizierung durch ein biokompatibles Diisocyanat quervernetzt. Dieser Prozess lieferte einen reproduzierbaren und chemisch stabilen Gelatinefilm, welcher durch die substratunabhängige Amin-Modifizierung kovalent auf unterschiedlichste Oberflächen aufgebracht werden konnte. Die durch den Herstellungsprozess präzise eingestellte Schichtdicke (Nano- bzw. Mikrometermaßstab) wurde mittels Ellipsometrie und Rasterkraftmikroskopie ermittelt. Die ebenso bestimmte Rauheit war unabhängig von der Schichtdicke sehr gering. Gelatinefilme, die auf funktionalisierte und strukturierte Proben aufgebracht wurden, konnten durch Elektronenmikroskopie dargestellt werden. Mit Hilfe der Infrarot-Reflexions-Absorptions-Spektroskopie wurden die Gelatinefilme im Hinblick auf ihre Stabilität chemisch charakterisiert. Zur Quantifizierung der Adsorption humaner Plasmaproteine (Einzelproteinlösungen) und komplexer Proteingemische aus steril filtrierten Kulturüberständen des humanpathogenen Bakteriums Pseudomonas aeruginosa wurde die Quarzkristall-Mikrowaage mit Dissipationsüberwachung eingesetzt. Hiermit konnte nicht nur die adsorbierte Menge an Proteinen auf dem Gelatinehydrogel bzw. Referenzoberflächen (Gold, PPX-Amin, Titan), sondern auch die viskoelastischen Eigenschaften des adsorbierten Proteinfilms bestimmt werden. Allgemein adsorbierte auf dem Gelatinehydrogel eine geringere Proteinmasse im Vergleich zu den Referenzoberflächen. Circa ein Viertel der adsorbierten Proteine migrierte in die Poren des gequollenen Gels und veränderte dessen viskoelastische Eigenschaften. Durch anschließende MALDI-ToF/MS- und MS/MS-Analyse konnten die bakteriellen Proteine auf den untersuchten Oberflächen identifiziert und untereinander verglichen werden. Hierbei zeigten sich nur geringfügige Unterschiede in der Proteinzusammensetzung. Zudem wurde eine Sekundärionenmassenspektrometrie mit Flugzeitanalyse an reinen Gelatinefilmen und an mit humanen Plasmaproteinen beladenen Gelatinefilmen durchgeführt. Durch eine anschließende multivariante Datenanalyse konnte zwischen den untersuchten Proben eindeutig differenziert werden. Dieser Ansatz ermöglicht es, die Adsorption von unterschiedlichen Proteinen auf proteinbasierten Oberflächen markierungsfrei zu untersuchen und kann zur Aufklärung der in vivo-Situation beitragen. Darüber hinaus bietet dieser Untersuchungsansatz neue Perspektiven für die Gestaltung und das schnelle und effiziente Screening von unterschiedlichen Proteinzusammensetzungen. Biomaterialien können jedoch nicht nur als Implantate oder Implantatbeschichtungen eingesetzt werden. Im Bereich des drug delivery und der Depotarzneimittel sind biologisch abbaubare Polymere, aufgrund ihrer variablen Eigenschaften, von großem Interesse. Die Behandlung von bakteriellen und fungalen Pneumonien stellt insbesondere bei Menschen mit Vorerkrankungen wie Cystische Fibrose oder primäre Ziliendyskinesie eine große Herausforderung dar. Oral oder intravenös applizierte Wirkstoffe erreichen die Erreger aufgrund der erhöhten Zähigkeit des Bronchialsekretes oft nicht in ausreichender Konzentration. Daher besteht ein weiteres Ziel der vorliegenden Arbeit darin, mittels electrohydrodynamic cojetting mikrometergroße, inhalierbare, wirkstoffbeladene Partikel mit zwei Kompartimenten (Janus-Partikel) herzustellen und deren Eignung für die therapeutische Anwendung bei Lungeninfektionen zu untersuchen. Durch das in dieser Arbeit entwickelte Lösungsmittelsystem können Janus-Partikel aus biologisch abbaubaren Co-Polymeren der Polymilchsäure (Poly(lactid-co-glycolid), PLGA) hergestellt und mit verschiedenen Wirkstoffen beladen werden. Darunter befinden sich ein Antibiotikum (Aztreonam, AZT), ein Antimykotikum (Itraconazol, ICZ), ein Mukolytikum (Acetylcystein, ACC) und ein Antiphlogistikum (Ibuprofen, IBU). Die Freisetzung der eingelagerten Wirkstoffe, mit Ausnahme von ICZ, konnte unter physiologischen Bedingungen mittels Dialyse und anschließender Hochleistungsflüssigkeitschromatographie gemessen werden. Die Freisetzungsrate wird von der Kettenlänge des Polymers beeinflusst, wobei eine kürzere Kettenlänge zu einer schnelleren Freisetzung führt. Das in die Partikel eingelagerte Antimykotikum zeigte in vitro eine gute Wirksamkeit gegen Aspergillus nidulans. Durch das Einlagern von ICZ in die Partikel ist es möglich diesen schlecht wasserlöslichen Wirkstoff in eine für Patienten zugängliche und wirksame Applikationsform zu bringen. In Interaktion mit P. aeruginosa erzielten die mit Antibiotikum beladenen Partikel in vitro bessere Ergebnisse als der Wirkstoff in Lösung, was sich in einem in vivo-Infektionsmodell mit der Wachsmotte Galleria mellonella bestätigte. AZT-beladene Partikel hatten gegenüber einer identischen Wirkstoffmenge in Lösung eine 27,5% bessere Überlebensrate der Wachsmotten zur Folge. Des Weiteren hatten die Partikel keinen messbaren negativen Einfluss auf die Wachsmotten. Dreidimensionale Atemwegsschleimhautmodelle, hergestellt mit Methoden des Tissue Engineerings, bildeten die Basis für Untersuchungen der Partikel in Interaktion mit humanen Atemwegszellen. Die Untersuchung von Apoptose- und Entzündungsmarkern im Überstand der 3D-Modelle zeigte diesbezüglich keinen negativen Einfluss der Partikel auf die humanen Zellen. Diese gut charakterisierten und standardisierten in vitro-Testsysteme machen es möglich, Medikamentenuntersuchungen an menschlichen Zellen durchzuführen. Hinsichtlich der histologischen Architektur und funktionellen Eigenschaften der 3D-Modelle konnte eine hohe in vitro-/in vivo-Korrelation zu menschlichem Gewebe festgestellt werden. Humane Mucine auf den 3D-Modellen dienten zur Untersuchung der schleimlösenden Wirkung von ACC-beladenen Partikeln. Standen diese in räumlichem Kontakt zu den Mucinen, wurde deren Zähigkeit durch das freigesetzte ACC herabgesetzt, was qualitativ mittels histologischen Methoden bestätigt werden konnte. Die in dieser Arbeit entwickelten Herstellungsprotokolle dienen als Grundlage und können für die Synthese ähnlicher Systeme, basierend auf anderen Polymeren und Wirkstoffen, modifiziert werden. Gelatine und PLGA erwiesen sich als vielseitig einsetzbare Werkstoffe und bieten eine breite Anwendungsvielfalt in der Regenerativen Medizin, was die erzielten Resultate bekräftigen. N2 - In the field of regenerative medicine, polymer-based biomaterials are of great importance for the development and application of improved or new therapies. The research on the surface properties of biomaterials, which are used as implants, is essential for their successful use. The protein-surface interaction is the initial step and occurs when an implant comes into contact with bodily fluids or tissues and significantly increases direct interaction of the implant and the surrounding cells. This thesis investigates these processes on gelatin. Accordingly, one of the project’s major goals was to produce stable nanometer-thin gelatin surfaces and analyze the adsorption of human plasma and bacterial proteins. The deposition of gelatin films and the assortment of layer thicknesses on PPX-amine modified surfaces were carried out using a spin coater. To gain hydrogel films with reproducible properties, the amine groups of the disaggregated gelatin fibrils were cross- linked with each other and with those of the amine modification by a biocompatible diisocyanate. The result was a reproducible and chemically stable gelatin film, which could be applied to a wide variety of surfaces through the substrate-independent amine modification. The manufacturing process precisely adjusted the layer thickness to the nano- or micrometer scale which could be determined applying ellipsometry and atomic- force microscopy. The roughness was very low regardless of the layer thickness. Gelatin films applied to the functionalized and patterned samples could be visualized by electron microscopy. With the help of infrared reflection absorption spectroscopy, the gelatin films were chemically characterized in terms of stability. The adsorption of human plasma proteins (single protein solutions) as well as the complex protein mixtures of sterile filtered supernatants belonging to Pseudomonas aeruginosa, a human pathogenic bacterium, were quantified by quartz crystal microbalance with dissipation monitoring. Both the adsorbed amount of proteins on the gelatin hydrogel or reference surfaces (gold, PPX-amine, titanium) and the viscoelastic properties of the adsorbed protein film were determined. In general, there was less protein mass adsorbed on the gelatin hydrogel compared to the reference surfaces. About a quarter of the adsorbed proteins migrated into the pores of the swollen gel and changed its viscoelastic properties. Subsequent MALDI-ToF/MS and MS/MS analysis were used to identify and compare the adsorbed bacterial proteins on the investigated surfaces. Only slight differences were found in the adsorbed protein composition. A secondary ion mass spectrometry with time-of-flight analysis was performed on pure gelatin films and gelatin films loaded with human plasma proteins. By subsequent multivariate data analysis, it was possible to clearly differentiate between the examined samples. Not only does this approach enable us to screen the adsorption of different proteins on protein-based surfaces without labeling, but it also contributes to the elucidation of the in vivo-situation. ach provides new perspectives regarding the design and efficient screening of different protein compositions. ... KW - PLGA KW - Partikel KW - Gelatine KW - Polylactid-co-Glycolid KW - Hydrogel KW - Tissue Engineering Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142636 ER - TY - THES A1 - Mineif, Anna Teresa T1 - Entwicklung und Charakterisierung eines humanen oralen Plattenepithelkarzinomäquivalentes T1 - Development and characterisation of a human oral squamous cell carcinoma equivalent N2 - Trotz hochmoderner Technologien und ausgefeilter therapeutischer und rekonstruktiver chirurgischer Heilungsmethoden beträgt die 5-Jahres Überlebensrate bei der Diagnose PECA der Mundhöhle im Durchschnitt auch im Jahre 2017 nur 55 % und die Heilungsmethoden haben sich in den letzten drei Jahrzehnten kaum verbessert. Umso wichtiger ist es deshalb, die Forschung voranzutreiben und ein aussagekräftiges Tumormodell zu etablieren, das bei der Entwicklung neuer Therapieansätze schnell und sicher gute Ergebnisse liefert. In dieser Studie soll mit Hilfe des Tissue Engineering (TE) ein in gesunder Mundschleimhaut (MSH) integriertes 3D-Tumormodell generiert werden, welches bestmöglich die Analyse pathologischer Mechanismen im Tumorzentrum, sowie im Randbereich von gesundem und erkranktem Gewebe, und auch die Analyse der Auswirkungen neuartiger Chemotherapeutika auf gesunde und maligne Zellen in direkter Nachbarschaft ermöglicht – ohne Tierversuche. In der Konsequenz könnte ein erheblicher Fortschritt mit höheren Erfolgsaussichten der Therapieansätze erzielt werden. Es wird ein Tumormodell generiert, in dem auf Basis eines gesunden MSH-Modells Tumorzellen eingebracht werden, um - genauso, wie die Tumorentstehung in vivo von statten gehen würde – Tumorentstehung und Tumorwachstum in der Umgebung von gesunder MSH analysieren zu können. Das Modell basiert dabei auf einer Matrix aus dezellularisierter, porciner, small-intestinal-submucosa (SIS/MUC), die mit primären Fibroblasten, primären Keratinozyten und Tumorzellen der Tumorzelllinie FaDu besiedelt wird. Eine Besonderheit der FaDu-Zellen ist die vorangegangene Transduktion mit dem Lentivirus RFP – um die eingewanderten Zellen von gesunden Zellen unterscheiden zu können. Der Vorgang der Transduktion war gelungen und es konnte eine Fluoreszenz der noch in Zellkulturschalen kultivierten Zellen erzielt werden. Allerdings waren die fluoreszierenden Zellen in den fixierten Schnitten nicht mehr nachweisbar. Zur Generierung eines Tumormodelles wurden auf Basis eines OMÄ drei unterschiedliche Applikationsformen zur Integration von Tumorzellen getestet. Die Integration von Tumorzellen fand in Form von Spots, Sphäroiden oder Tumorzellgemischen (prim. Keratinozyten/FaDu-Zellen) in zuvor kultivierte gesunde OMÄ statt. Dabei sollte das Applizieren von Spots oder Sphäroiden das Tumorzellwachstum auch in der Umgebung von gesundem Gewebe initiieren. Dies würde die Möglichkeit schaffen, auch in vitro, gesundes neben pathologischem Gewebe und den Übergang dazu genau analysieren zu können. Es sollen sowohl die optimale Konzentration der Tumorzellen, welche für die Entstehung von Tumoren nötig ist, als auch die geeignetste Applikationsmethode eruiert werden, um optimale Tumormodelle zuverlässig reproduzierbar ansetzen zu können. Die Modelle wurden histologisch und immunhistochemisch analysiert und die Ergebnisse mit ermittelten TEER-Werte in Korrelation gesetzt. In dieser Arbeit konnte mit der Applikation von Spots oder Sphäroiden kein suffizientes Tumorwachstum in Umgebung von gesunder MSH erzielt werden. Die Zellen lagen ohne Reaktion des angrenzenden Stratum corneums auf der zu stark ausgeprägten Hornschicht der OMÄ auf und es war keine Einwanderung in das darunterliegende Gewebe möglich. Allerdings ist es gelungen, durch Applikation eines Zellgemisches variierender Mischungsverhältnisse von primären Keratinozyten und Tumorzellen der Zelllinie FaDu ein 3D-Tumorwachstum unterschiedlicher Malignitätsstufen zu initiieren. Je kleiner das Mischungsverhältnis und je höher in der Konsequenz die Anzahl der FaDu-Tumorzellen, desto ausgeprägter waren die morphologischen Anzeichen einer Tumorbildung. Abhängig vom Mischungsverhältnis war dabei die Ausprägung des Tumors. Auch wenn dadurch keine Kombination von gesundem und pathologischem Gewebe in einem Modell mehr imitiert werden konnte, so konnten zumindest nach histologischen und immunhistochemischen Untersuchungen eindeutige pathologische, maligne Tumormodelle generiert werden. Die Tumormodelle zeigten durchgehend Zell- und Kernpleomorphismen, atypische und vermehrte suprabasale Mitosen, eine Störung der normalen Gewebearchitektur, die Ausbildung von Interzellularbrücken, Einzelzelldyskeratosen und Verhornungsknospen, sowie Stellen der Durchbrechung der Basalmembran und Invasion von Tumorzellen in die darunterliegende Lamina propria. All das sind eindeutige Kennzeichen malignen Wachstums Auch die Ergebnisse der TEER-Wert Messung stimmten mit den morphologischen Entwicklungen der Modelle überein. So stiegen die TEER-Werte der Kontrollmodelle konsequent an, was für eine deutliche Entwicklung von kontinuierlichem Gewebe spricht und im Gegensatz dazu fielen die TEER-Werte im zeitlichen Verlauf der Tumormodelle, bei denen die Basalmembran und somit die Kontinuität des Gewebes durchbrochen wurde rapide ab, bzw. lagen im konstant niedrigen Bereich. Der Erfolg der Etablierung dieses zuverlässig rekonstruierbaren 3D, in vitro generierten Tumormodells, das der in vivo Situation eines Plattenepithelkarzinoms sehr nahekommt, bietet der Wissenschaft eine sehr gute Möglichkeit, weitere Studien zum Tumorwachstum durchzuführen. Außerdem kann die Weiterentwicklung und Verbesserung vielversprechender, neuartiger chemotherapeutischer und radiologischer Therapieverfahren erheblich voran¬getrieben und dadurch die Heilungschancen mit geringeren Nebenwirkungen für den Patienten verbessert und eine erhöhte Lebensqualität erzielt werden. N2 - Despite state-of-the-art technologies and sophisticated therapeutic and reconstructive surgical methods, the average 5-year survival rate of patients diagnosed with oral squamous cell carcinoma (OSCC) is still only 55% in 2017. Healing methods have barely improved over the last three decades. Therefore, it is important to establish a meaningful tumour model that delivers fast and reliable results in the development of new therapeutic approaches. In this study, Tissue Engineering is used to generate a three-dimensional tumour model integrated into healthy oral mucosa. This enables an ideal analysis of pathological mechanisms in the tumour center, as well as in the margins of healthy and diseased tissue. It also allows the analysis of the effects of novel chemotherapeutic agents on healthy and malignant cells in proximity - without animal testing. Consequently, a considerable progress could be achieved with a higher chance of success of therapeutic approaches. A tumour model, based on a healthy oral mucosa equivalent (OME), is generated in which tumour cells are integrated in order to be able to analyse tumourigenesis and tumour growth in the environment of healthy oral mucosa just as the tumour development would take place in vivo. For this primary fibroblasts, primary keratinocytes and tumour cells were cultured on a matrix of decellularized, porcine, small intestinal submucosa (SIS/MUC). For this FaDu cells were transduced with the lentivirus RFP to be able to distinguish the immigrated cells from healthy cells. The transduction was successful. It was possible to achieve a fluorescence of the cells still cultivated in cell culture dishes. However, the fluorescent cells could no longer be detected in the fixed tissue sections. For the tumour model three different forms of application of the tumour cells on the OMEs have been tested. The application of cell-spots, spheroids or cell mixtures of primary keratinocytes and FaDu tumour cells in previously cultivated OME. The application of spots or spheroids should initiate tumour cell growth even in the environment of healthy tissue. This would enable the in vitro analysation of the area of healthy and pathological tissue in one model. Therefore, the optimal concentration of tumour cells, which is necessary for the tumour development, and the most suitable application method are to be determined to be able to apply a suitable reproducible tumour model. The models were analysed histologically and immunohistochemically, and the results were correlated with determined TEER values. In this work, the application of spots or spheroids did not achieve tumour growth in the environment of healthy oral mucosa. The cells were not responsive to the adjacent stratum corneum on the highly pronounced horn layer of the OME and no migration into the underlying tissue was possible. However, by applying a cell mixture of varying mixing ratios of primary keratinocytes and tumour cells of the FaDu cell line, it has been possible to initiate 3D tumour growth of different malignant stages. The smaller the mixing ratio and the higher the number of FaDu tumour cells, the more pronounced have been the morphological signs of tumour formation. Even if it was no longer possible to mimic a combination of healthy and pathological tissue in a model, clear pathological, malignant tumour models could be generated at least after histological and immunohistochemical investigations. The tumour models consistently showed cellular- and nuclearpleomorphisms, atypical and increased suprabasal mitoses, disruption of normal tissue architecture, the formation of intercellular bridges, single cell dyskeratosis and cornification buds, as well as sites of disruption of the basement membrane and invasion of tumour cells into the underlying lamina propria. All these are clear signs of malignant growth. The results of the TEER value measurement were also consistent with the morphological developments of the models. Thus, the TEER values of the control models rose consistently, which indicates a significant development of continuous tissue. In contrast, the TEER values over the course of time of the tumour models, in which the basal membrane and thus the continuity of the tissue was broken, fell rapidly or were in a constantly low range. The success of the establishment of this reliably reconstructable 3D, in vitro generated tumour model, which is very close to the in vivo situation of a squamous cell carcinoma, offers the science a very good opportunity to carry out further studies on tumour growth. In addition, the further development and improvement of promising, novel chemotherapeutic and radiological therapy methods can be considerably advanced, thereby improving the chances of recovery with fewer side effects for the patient and achieving an increased quality of life. KW - orales Plattenepithelkarzinomäquivalent KW - Tissue Engineering KW - SIS/MUC KW - TEER-Wert KW - Tumormodell KW - Mundschleimhautäquivalent Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-185512 ER - TY - THES A1 - Dally, Iris T1 - Entwicklung eines bioartifiziellen Rekonstruktionsgewebes für die Luftröhrenchirugie und Umsetzung in einen GMP-Prozess T1 - Development of a bioartificial tissue for reconstruction of the trachea and its implementation in a GMP process N2 - Das Ziel dieser Arbeit war die Entwicklung eines vaskularisierten, autologen Implantats zur Behandlung von schweren Verletzungen der Trachea im Umfeld der guten Herstellungspraxis. Die Matrix besteht aus einem circa 14 cm langen Stück porcinen, azellularisierten Dünndarm und BioVaSc (Biological Vascularized Scaffold) genannt wird. Dieses wird dann mit isolierten und kultivierten Zellen des Patienten besiedelt und reift für zwei Wochen in einem speziell hierfür entwickelten Bioreaktorsystem. Danach erfolgt die Analyse bzw. die Implantation in den Patienten. Nach der Präparation und Überprüfung der Qualität, erfolgte die Azellularisierung der BioVaSc zur Entfernung der porcinen Zellen und der enzymatische Abbau der DNS, unter Erhalt des natürlichen Gefäßsystems. Hierfür ist Natriumdesoxycholat verwendet worden, wobei Rückstände davon das Ansiedeln der autologen Zellen negativ beeinflussen könnten. Deshalb wurde ein Test etabliert, mit dessen Hilfe, das Auswaschen der Azellularisierungsdetergenz bis zur Sterilisation nachweisbar war. Des Weiteren könnten in der BioVaSc natürlicherweise enthaltene Endotoxine Immunreaktionen im späteren Empfänger auslösen. Die gesetzlichen Grenzwerte konnten durch Modifikationen des Protokolls, unter Berücksichtigung der guten Herstellungspraxis, erreicht werden. Weiterhin konnte histologisch eine weitgehende DNS- und Zellfreiheit nachgewiesen werden, in der quantitativen Analyse ergab sich eine Abreicherung von 97% im Vergleich zum Ausgangsmaterial. Zur Bestimmung der funktionellen Stabilität der azellularisierten Matrix wurde die maximal tolerable Zugspannung bestimmt. Zur Besiedlung der Gefäße der Matrix wurden mikrovaskuläre Endothelzellen und für das Lumen Fibroblasten und Skelettmuskelzellen verwendet. Die Protokolle zur Isolation und Kultur sind hierzu unter den Bedingungen der guten Herstellungspraxis etabliert, optimiert und mit, soweit möglich, zertifizierten Reagenzien durchgeführt worden. Zur genauen Charakterisierung der Zellen wurden diese immunhistologisch über vier Passagen analysiert, wobei sich je nach Zelltyp und Differenzierungsstadium unterschiedliche Expressionsmuster ergaben. Zur Herstellung des autologen Implantats wurden zunächst die mikrovaskulären Endothelzellen in das vorhandene Gefäßsystem der BioVaSc eingebracht und dann für sieben Tage im etablierten Bioreaktorsystem kultiviert. Danach erfolgte die Besiedlung des Lumens mit Skelettmuskelzellen und Fibroblasten und die weitere siebentägige Kultur im Bioreaktorsystem. Die Besiedlung des Gefäßsystems musste optimiert werden, um sowohl die Besiedlungsdichte zu steigern als auch die Effizienz zu erhöhen. Das Lumen konnte mit der etablierten Methode vollständig besiedelt werden. Nach vierzehntägiger Kultur im Bioreaktorsystem erfolgte die Kontrolle der Zellvitalität, wobei sowohl in den Gefäßstrukturen als auch im Lumen der BioVaSc vitale Zellen nachweisbar waren. Histologische Analysen zeigten, dass die mikrovaskulären Endothelzellen in den verbliebenen vaskulären Strukturen CD31 und den vWF exprimieren. Wohingegen die histologische Unterscheidung zwischen Fibroblasten und Skelettmuskelzellen nicht möglich ist. Zusätzlich wurde die BioVaSc mit upcyte mvEC der Firma Medicyte besiedelt. Nach der vierzehntägigen Kultur im Bioreaktorsystem waren die Zellen sowohl in den Gefäßstrukturen als auch im Lumen und im Bindegewebe vital nachweisbar. In der histologischen Analyse konnte die Ausbildung von CD31, eNOS und vWF nachgewiesen werden. Des Weiteren wurde die Matrix mit mesenchymalen Stammzellen besiedelt, um zu analysieren, ob die Scherkräfte die Ausbildung endothelialer Marker stimulieren können. Nach vierzehntägiger Kultur konnte in den histologischen Analysen keine Ausbildung von CD31 oder dem vWF gefunden, allerdings vitale Zellen nachgewiesen werden. N2 - In this work, a vascularized implant for the treatment for tracheal defects was developed according to GMP standards. For this purpose, a part of porcine small intestine was prepared, decellularized and sterilized. The remaining matrix, trademarked BioVaSc “Biological, Vascularized Scaffold”, was colonized with isolated and cultured cells from the patient and then matured for two weeks in a bioreactor system. Finally, the prepared for implantation autologous implant was extensively characterized. After the integrity check of the vessel system the decellularization process was started, which is performed by removing the porcine cells with sodium desoxycholat and enzymatic degradation of the residual DNA. As traces of sodium desoxycholat could negatively affect the seeding of the autologous cells, a test was established to demonstrate the depletion of sodium desoxycholat to acceptable traces in the final matrix preparation. Furthermore, the porcine starting material for the BioVaSc contains endotoxins, which could trigger immune reactions in the recipient if not efficiently removed. The legal limit for endotoxine levels in pharmaceutical products could be achieved through modifications of the protocol. In order to establish a GMP compliant process, specially certified chemicals were used wherever possible. The protocol was optimized until histological analysis showed only few residual cells and DNA residues. The quantitative DNA analysis revealed a decrease of 97 % of the initial DNA content. To determine storage stability, a tensile test to check elasticity of the BioVaSc was established. To colonize the matrix, autologous microvascular endothelial cells, fibroblasts and skeletal muscle cells were used. The protocols were established and optimized under GMP conditions and, wherever possible, certified reagents were used. For accurate characterization of these cells, immunohistology analyses were performed at each of the four passages for all cell types. For the final manufacturing of the autologous implant, microvascular endothelial cells were introduced into the vascular system of the BioVaSc and were cultured for seven days in a custom made bioreactor system under defined shear stress conditions resembling the human blood pressure. This was followed by culturing of skeletal muscle cells and fibroblasts in the lumen of the gut, followed by an additional seven-day culture period. Colonization of the vascular system had to be optimized in order to increase the population density as well as the efficiency of reseeding. The lumen was fully populated with fibroblasts and skeletal muscle cells by the established protocol. However, the discrimination between fibroblasts and skeletal muscle cells with normal histology was difficult because no fitting antibody was available. After a two-week culture in the custom made bioreactor system the analysis showed vital cells in the vascular structures and in the lumen of the BioVaSc. Further histological analysis were performed. In order to explore alternative cell sources, the BioVaSc was reseeded with upcyte mvEC. These transfected cells are highly proliferative and show typical endothelial markers. After fourteen days of culture in the bioreactor system, cells could be detected in vascular structures, lumen and in connective tissue. Live / dead staining and MTT identified vital cells within vascular structures. The histological analysis revealed expression of CD31, eNOS and vWF. Furthermore, the matrix was reseeded with mesenchymal stem cells; to test if shear stress triggers differentiation into endothelial like cells. This was checked through displaying the corresponding endothelial markers in histological analyses. After fourteen days of culture in the bioreactor system, histological analyzes show no expression of CD31 or vWF factor. Vital cells could be detected. KW - Regenerative Medizin KW - Luftröhre KW - GMP-Regeln KW - bioartifizielles Rekonstruktionsgewebe KW - bioartificial tissue KW - Tissue Engineering KW - Advanced Therapy Medicinal Product KW - Arzneimittel für neuartige Therapien KW - windpipe KW - Trachea Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-98422 ER - TY - THES A1 - Lotz, Christian T1 - Entwicklung eines Augenirritationstests zur Identifikation aller GHS-Kategorien für den Endpunkt Augenreizung T1 - Development of an eye irritation test to identify all GHS categories of eye irritation N2 - Die Risikobewertung von Chemikalien ist für die öffentliche Gesundheit von entschei-dender Bedeutung, weshalb strenge Testverfahren zu deren toxikologischer Begutach-tung angewandt werden. Die ursprünglich tierbasierten Testverfahren werden aufgrund von neuen wissenschaftlichen Erkenntnissen und wegen ökonomischer Ineffizienz sowie ethischer Fragwürdigkeit immer mehr durch alternative Methoden ohne Tiermodelle ersetzt. Für den toxikologischen Endpunkt der Augenreizung wurden bereits die ersten alternativen Testsysteme auf der Basis von ex vivo- oder in vitro-Modellen entwickelt. Jedoch ist bis dato kein alternatives Testsystem in der Lage, das gesamte Spektrum der verschiedenen Kategorien der Augenreizungen nach dem global harmonisierten System zur Einstufung und Kennzeichnung von Chemikalien (GHS) vorherzusagen und damit den tierbasierten Draize-Augenreizungstest vollends zu ersetzen. Gründe hierfür sind fehlende physiologische Merkmale im Modell sowie eine destruktive Analysemethode. Aufgrund dessen wurden in dieser Studie die Hypothesen getestet, ob ein verbessertes In-vitro-Modell oder eine zerstörungsfreie, hochsensitive Analysemethode die Vorher-sagekraft des Augenreizungstests verbessern können. Dafür wurden zunächst neue Mo-delle aus humanen Hornhaut- und Hautepithelzellen entwickelt. Die Modelle aus pri-mären cornealen Zellen zeigten eine gewebespezifische Expression der Marker Zytokera-tin 3 und 12 sowie Loricrin. In beiden Modellen konnte durch die Verkürzung der Kul-turdauer die Ausbildung einer Hornschicht verhindert werden. Die Modelle wiesen dadurch eine sensiblere Barriere vergleichbar der nativen Cornea auf. Darüber hinaus konnte durch die chemische Quervernetzung mit Polyethylenglykolsuccinimidylglutara-tester ein transparentes, nicht kontrahierendes Stroma-Äquivalent etabliert werden. Der Stroma-Ersatz konnte zur Generierung von Hemi- und Voll-Cornea-Äquivalenten einge-setzt werden und lieferte somit erste Ansatzpunkte für die Rekonstruktion der nativen Hornhaut. Parallel dazu konnte ein zerstörungsfreies Analyseverfahren basierend auf der Impe-danzspektroskopie entwickelt werden, das wiederholte Messungen der Gewebeintegri-tät zulässt. Zur verbesserten Messung der Barriere in dreidimensionalen Modelle wurde hierfür ein neuer Parameter, der transepitheliale elektrische Widerstand (TEER) bei der Frequenz von 1000 Hz, der TEER1000 Hz definiert, der eine genauere Aussage über die Integrität der Modelle zulässt. Durch die Kombination der entwickelten cornealen Epithelzellmodelle mit der TEER1000 Hz-Messung konnte die Prädikitivität des Augenrei-zungstests auf 78 - 100 % erhöht werden. Von besonderer Bedeutung ist dabei, dass die nicht destruktive Messung des TEER1000 Hz zum ersten Mal erlaubte, die Persistenz von Irritationen durch wiederholte Messungen in einem in vitro-Modell zu erkennen und somit die GHS-Kategorie 1 von GHS-Kategorie 2 zu unterscheiden. Der wissenschaftli-che Gewinn dieser Forschungsarbeit ist ein neues Testverfahren, das alle GHS-Kategorien in einem einzigen in vitro-Test nachweisen und den Draize-Augenreizungstest gänzlich ersetzen kann. N2 - The assessment of the risk of chemicals is of crucial importance for public health. Hence, strict test procedures have been developed for toxicological evaluation of consumer products. The original animal-based test methods are being replaced by alternative methods due to new scientific findings, economic inefficiency and ethical doubts. For the toxicological endpoint of eye irritation, the first alternative test systems based on ex vivo or in vitro models have been developed. However, to date no alternative test meth-od has been able to predict the entire spectrum of eye irritation categories specified in the globally harmonized system for the classification and labelling of chemicals (GHS). Thus, no stand-alone test methods can replace the animal-based Draize eye irritation test resulting in the need of complex integrated testing strategies. Reasons for this are the lack of key physiological characteristics of the implemented models, species specific differences and the employed destructive analysis method. Therefore, this study tested whether a refinement of the used models or a more sensitive analytical method could improve the predictive power of the eye irritation test. First, new models of human corneal and skin epithelial cells were developed. Since a key fea-ture of the human cornea is a lack of cornification, several parameters such as calcium and retinoic acid to reduce the cornification were investigated. In both models the for-mation of a stratum corneum could be prevented most effectively by shortening the cul-ture time. Hence, the models had a more sensitive barrier comparable to the native cor-nea. However, only the model based on primary cornea cells showed a cornea-specific expression of the markers cytokeratin 3 and 12 as well as loricrin. Models based on skin keratinocytes retained a skin-specific phenotype. In addition, a stromal matrix was de-veloped to allow for the generation of a full-thickness cornea model. For this a cell-seeded collagen hydrogel was chemically cross-linkined via a polyethylene glycol suc-cinimidyl glutarate generating a transparent, non-contracting stroma equivalent. In parallel, a non-destructive highly sensitive analysis method based on impedance spec-troscopy was developed that allows repeated measurements of the tissue integrity. To improve the measurement of the barrier in three-dimensional models, a new parameter, the transepithelial electrical resistance (TEER) at the frequency of 1000 Hz, the TEER1000 Hz was defined. By combining the developed corneal epithelial cell models with the TEER1000 Hz measurement, the predictivity of the eye irritation test could be increased to 78 - 100 %. Moreover, the TEER1000 Hz allowed for the first time to detect the persistence of irritative effects by repeated measurements in an in vitro model and thus to distinguish between all GHS categories. The scientific yield of this research work is therefore a new test method that can detect all GHS categories in a single in vitro test and holds the possibility to completely replace the Draize eye irritation test. KW - Tissue Engineering KW - Eye irritation Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170126 ER - TY - THES A1 - Schmidt [geb. Schmid], Freia Florina T1 - Ein dreidimensionales kutanes Melanommodell für den Einsatz in der präklinischen Testung T1 - A three-dimensional cutaneous melanoma model for use in preclinical testing N2 - Das maligne Melanom nimmt als Tumorerkrankung mit hoher Metastasierungsrate und steigenden Inzidenzraten bei höchster Mortalität aller Hauttumoren eine zunehmende Bedeutung in der modernen Onkologie ein. Frühzeitige Diagnosemöglichkeiten und moderne Behandlungen konnten das Überleben der Patienten bereits erheblich verbessern. Jedoch besteht nach wie vor Bedarf an geeigneten Modellen, um die Melanomprogression vollständig zu verstehen und neue wirksame Therapien zu entwickeln. Hierfür werden häufig Tiermodelle verwendet, diese spiegeln jedoch nicht die menschliche Mikroumgebung wider. Zweidimensionalen Zellkulturen fehlen dagegen entscheidende Elemente der Tumormikroumgebung. Daher wurde in dieser Arbeit ein dreidimensionales epidermales Tumormodell des malignen Melanoms, welches aus primären humanen Keratinozyten und verschiedenen Melanomzelllinien besteht, entwickelt. Die eingesetzten Melanomzelllinien variieren in ihren Treibermutationen, wodurch das Modell in der Lage ist, Wirkstoffe zu untersuchen, die spezifisch auf diese Mutationen wirken. Mit Techniken des Tissue Engineerings konnte ein dreidimensionales Hautmodell aufgebaut werden, das alle charakteristischen Schichten der Epidermis aufweist und im Bereich des stratum basale Melanomcluster ausbildet. Diese reichen je nach Größe und Ausdehnung bis in suprabasale Epidermisschichten hinein. Die Tumor-Histopathologie, der Tumorstoffwechsel sowie tumorassoziierte Proteinsekretionen ließen sich im in vitro Modell nachweisen. Darüber hinaus konnte ein Protokoll entwickelt werden, mit dem einzelne Zellen aus den Modellen reisoliert werden können. Dies ermöglichte es, den Proliferationszustand innerhalb des jeweiligen Modells zu charakterisieren und die Wirkung von Antitumortherapien gezielt zu bewerten. Die Anwendbarkeit als Testsystem im Bereich der Tumortherapeutika wurde mit dem in der Klinik häufig verwendeten v-raf-Maus-Sarkom-Virus-Onkogen-Homolog B (BRAF)-Inhibitor Vemurafenib demonstriert. Der selektive BRAF-Inhibitor reduzierte erfolgreich das Tumorwachstum in den Modellen mit BRAF-mutierten Melanomzellen, was durch eine Verringerung der metabolischen Aktivität, der proliferierenden Zellen und des Glukoseverbrauchs gezeigt wurde. Für die Implementierung des Modells in die präklinische Therapieentwicklung wurde B-B-Dimethylacrylshikonin, ein vielversprechender Wirkstoffkandidat, welcher einen Zellzyklusarrest mit anschließender Apoptose bewirkt, im Modell getestet. Bei einer Anwendung der Modelle im Bereich der Testung topischer Behandlungen ist eine Barrierefunktion der Modelle notwendig, die der in vivo Situation nahe kommt. Die Barriereeigenschaften der Hautäquivalente wurden durch die Melanomzellen nachweislich nicht beeinflusst, sind aber im Vergleich zur in vivo Situation noch unzureichend. Eine signifikante Steigerung der Hautbarriere konnte durch die Bereitstellung von Lipiden und die Anregung hauteigener Regenerationsprozesse erreicht werden. Über den Nachweis des transepidermalen Wasserverlusts konnte eine Messmethode zur nicht-invasiven Bestimmung der Hautbarriere etabliert und über den Vergleich zur Impedanzspektroskopie validiert werden. Hierbei gelang es, erstmals die Korrelation der Hautmodelle zur in vivo Situation über ein solches Verfahren zu zeigen. Das entwickelte epidermale Modell konnte durch die Integration eines dermalen Anteils und einer Endothelzellschicht noch weiter an die komplexe Struktur und Physiologie der Haut angepasst werden um Untersuchungen, die mit der Metastierung und Invasion zusammenhängen, zu ermöglichen. Die artifizielle Dermis basiert auf einem Kollagen-Hydrogel mit primären Fibroblasten. Eine dezellularisierte Schweinedarmmatrix ließ sich zur Erweiterung des Modells um eine Endothelzellschicht nutzen. Dabei wanderten die primären Fibroblasten apikal in die natürliche Schweindarmmatrix ein, während die Endothelzellen basolateral eine geschlossene Schicht bildeten. Die in dieser Arbeit entwickelten Gewebemodelle sind in der Lage, die Vorhersagekraft der in vitro Modelle und die in vitro - in vivo Korrelation zu verbessern. Durch die Kombination des Melanommodells mit einer darauf abgestimmten Analytik wurde ein neuartiges Werkzeug für die präklinische Forschung zur Testung von pharmazeutischen Wirkstoffen geschaffen. N2 - Malignant melanoma, as a tumor disease with a high metastasis rate and rising incidence rates with the highest mortality of all skin tumors, is assuming increasing importance in modern oncology. Early diagnosis and modern treatments significantly improved patient survival. There is still an unmet need for appropriate models to fully understand melanoma progression and to develop new effective therapies. Animal models are widely used but do not reflect the human microenvironment, while two-dimensional cell cultures lack crucial elements of this tumor microenvironment. Therefore, a three-dimensional epidermal tumor model of malignant melanoma consisting of primary human keratinocytes and various melanoma cell lines was developed in this work. The melanoma cell lines vary in their driver mutations, enabling the model to investigate compounds specifically designed to target one mutation. Tissue engineering techniques were used to generate a three-dimensional skin model that shows all characteristic layers of the epidermis and forms melanoma clusters in the stratum basale. Depending on size and extension, these extend into suprabasal epidermal layers. Tumor histopathology, tumor metabolism, and tumor-associated protein secretions could be demonstrated in the in vitro model. In addition, a protocol could be developed to reisolate single cells from the models. This made it possible to characterize the proliferation state within the respective model and to specifically evaluate the effect of antitumor therapies. Applicability as a test system in the field of tumor therapeutics was demonstrated with the v-raf mouse sarcoma virus oncogene homolog B (BRAF) inhibitor commonly used in the clinic. This selective BRAF inhibitor successfully reduced tumor growth in models with BRAF-mutated melanoma cells, indicated by a reduction in metabolic activity, proliferating cells, and glucose consumption. For the implementation of the model in preclinical development, B-B-dimethylacrylshikonin, a promising drug candidate, which induces cell cycle arrest followed by apoptosis, was tested in the model. An application of the models in the field of testing topical treatments requires a barrier function of the models close to the in vivo situation. The barrier properties of the skin equivalents were demonstrably not influenced by the melanoma cells, but are still insufficient compared to the in vivo situation. A significant increase in the skin barrier could be achieved by providing lipids and stimulating the skin's own regeneration processes. A measurement method for the non-invasive determination of the skin barrier was established by detection of transepidermal water loss and validated by comparison with impedance spectroscopy. For the first time, the correlation of the skin models to the in vivo situation was demonstrated by such a method. The developed epidermal model could be further adapted to the complex structure and physiology of the skin by integrating a dermal portion and an endothelial cell layer to allow studies related to metastasis and invasion. The artificial dermis is based on a collagen hydrogel with primary fibroblasts. A decellularized porcine intestinal matrix could be used to extend the model with an endothelial cell layer. Here, the primary fibroblasts migrated apically into the natural porcine intestinal matrix, while the endothelial cells formed a closed layer basolaterally. The tissue models developed in this work are able to improve the predictive power of the in vitro models and the in vitro - in vivo correlation. By combining the melanoma model with matched analytics, a novel tool for preclinical research for testing of pharmaceutical agents was established. KW - Tissue Engineering KW - Melanom KW - Hautmodell KW - Alternative zum Tierversuch Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-329255 ER - TY - THES A1 - Alzheimer, Mona T1 - Development of tissue-engineered three-dimensional infection models to study pathogenesis of \(Campylobacter\) \(jejuni\) T1 - Entwicklung dreidimensionaler Infektionsmodelle basierend auf Gewebezüchtung zur Erforschung der Pathogenese von \(Campylobacter\) \(jejuni\) N2 - Infectious diseases caused by pathogenic microorganisms are one of the largest socioeconomic burdens today. Although infectious diseases have been studied for decades, in numerous cases, the precise mechanisms involved in the multifaceted interaction between pathogen and host continue to be elusive. Thus, it still remains a challenge for researchers worldwide to develop novel strategies to investigate the molecular context of infectious diseases in order to devise preventive or at least anti-infective measures. One of the major drawbacks in trying to obtain in-depth knowledge of how bacterial pathogens elicit disease is the lack of suitable infection models to authentically mimic the disease progression in humans. Numerous studies rely on animal models to emulate the complex temporal interactions between host and pathogen occurring in humans. While they have greatly contributed to shed light on these interactions, they require high maintenance costs, are afflicted with ethical drawbacks, and are not always predictive for the infection outcome in human patients. Alternatively, in-vitro two-dimensional (2D) cell culture systems have served for decades as representatives of human host environments to study infectious diseases. These cell line-based models have been essential in uncovering virulence-determining factors of diverse pathogens as well as host defense mechanisms upon infection. However, they lack the morphological and cellular complexity of intact human tissues, limiting the insights than can be gained from studying host-pathogen interactions in these systems. The focus of this thesis was to establish and innovate intestinal human cell culture models to obtain in-vitro reconstructed three-dimensional (3D) tissue that can faithfully mimic pathogenesis-determining processes of the zoonotic bacterium Campylobacter jejuni (C. jejuni). Generally employed for reconstructive medicine, the field of tissue engineering provides excellent tools to generate organ-specific cell culture models in vitro, realistically recapitulating the distinctive architecture of human tissues. The models employed in this thesis are based on decellularized extracellular matrix (ECM) scaffolds of porcine intestinal origin. Reseeded with intestinal human cells, application of dynamic culture conditions promoted the formation of a highly polarized mucosal epithelium maintained by functional tight and adherens junctions. While most other in-vitro infection systems are limited to a flat monolayer, the tissue models developed in this thesis can display the characteristic 3D villi and crypt structure of human small intestine. First, experimental conditions were established for infection of a previously developed, statically cultivated intestinal tissue model with C. jejuni. This included successful isolation of bacterial colony forming units (CFUs), measurement of epithelial barrier function, as well as immunohistochemical and histological staining techniques. In this way, it became possible to follow the number of viable bacteria during the infection process as well as their translocation over the polarized epithelium of the tissue model. Upon infection with C. jejuni, disruption of tight and adherens junctions could be observed via confocal microscopy and permeability measurements of the epithelial barrier. Moreover, C. jejuni wildtype-specific colonization and barrier disruption became apparent in addition to niche-dependent bacterial localization within the 3D microarchitecture of the tissue model. Pathogenesis-related phenotypes of C. jejuni mutant strains in the 3D host environment deviated from those obtained with conventional in-vitro 2D monolayers but mimicked observations made in vivo. Furthermore, a genome-wide screen of a C. jejuni mutant library revealed significant differences for bacterial factors required or dispensable for interactions with unpolarized host cells or the highly prismatic epithelium provided by the intestinal tissue model. Elucidating the role of several previously uncharacterized factors specifically important for efficient colonization of a 3D human environment, promises to be an intriguing task for future research. At the frontline of the defense against invading pathogens is the protective, viscoelastic mucus layer overlying mucosal surfaces along the human gastrointestinal tract (GIT). The development of a mucus-producing 3D tissue model in this thesis was a vital step towards gaining a deeper understanding of the interdependency between bacterial pathogens and host-site specific mucins. The presence of a mucus layer conferred C. jejuni wildtype-specific protection against epithelial barrier disruption by the pathogen and prevented a high bacterial burden during the course of infection. Moreover, results obtained in this thesis provide evidence in vitro that the characteristic corkscrew morphology of C. jejuni indeed grants a distinct advantage in colonizing mucous surfaces. Overall, the results obtained within this thesis highlight the strength of the tissue models to combine crucial features of native human intestine into accessible in-vitro infection models. Translation of these systems into infection research demonstrated their ability to expose in-vivo like infection outcomes. While displaying complex organotypic architecture and highly prismatic cellular morphology, these tissue models still represent an imperfect reflection of human tissue. Future advancements towards inclusion of human primary and immune cells will strive for even more comprehensive model systems exhibiting intricate multicellular networks of in-vivo tissue. Nevertheless, the work presented in this thesis emphasizes the necessity to investigate host-pathogen interactions in infection models authentically mimicking the natural host environment, as they remain among the most vital parts in understanding and counteracting infectious diseases. N2 - In der heutigen Zeit tragen insbesondere durch pathogene Mikroorganismen ausgelöste Infektionskrankheiten zur sozioökonomischen Belastung bei. Obwohl bereits jahrzehntelang an der Entstehung von Infektionskrankheiten geforscht wird, bleiben in zahlreichen Fällen die genauen Mechanismen, welche an den vielfältigen Interaktionen zwischen Pathogen und Wirt beteiligt sind, unbeschrieben. Gerade deshalb bleibt es für Wissenschaftler weltweit eine Herausforderung, neue Strategien zur Untersuchung des molekularen Kontexts von Infektionskrankheiten zu entwickeln, um präventive oder zumindest anti-infektive Maßnahmen ergreifen zu können. In den meisten Fällen ist jedoch das Fehlen geeigneter Infektionsmodelle, mit denen der Krankheitsverlauf im Menschen authentisch nachgestellt werden kann, eines der größten Hindernisse um detailliertes Wissen darüber gewinnen zu können wie bakterielle Pathogene die Krankheit auslösen. Zahlreiche Studien sind dabei auf Tiermodelle angewiesen, um die komplexen zeitlichen Abläufe zwischen Wirt und Pathogen im menschlichen Körper nachzuahmen. Während diese Modelle in hohem Maß dazu beigetragen haben, Aufschluss über diese Abläufe zu geben, sind sie doch sehr kostenintensiv, mit ethischen Bedenken behaftet und können nicht immer die Folgen einer Infektion im menschlichen Patienten vorhersagen. Seit Jahrzehnten werden daher alternativ in-vitro 2D Zellkultursysteme eingesetzt, um den Verlauf von Infektionskrankheiten zu erforschen, welche die Bedingungen im menschlichen Wirt wiederspiegeln sollen. Diese auf Zelllinien basierenden Modelle sind essentiell in der Entdeckung von Virulenzfaktoren diverser Pathogene, aber auch in der Aufklärung von wirtsspezifischen Abwehrmechanismen. Dennoch fehlt ihnen die morphologische und zelluläre Komplexität von intaktem menschlichen Gewebe. Dadurch sind die Erkenntnisse, die mit diesen Systemen über Infektionsverläufe gewonnen werden können, limitiert. Die vorgelegte Arbeit konzentriert sich auf die Etablierung und Weiterentwicklung intestinaler, humaner Zellkulturmodelle, um dreidimensionales Gewebe in vitro zu rekonstruieren mit dem Ziel, Pathogenese-beeinflussende Prozesse des zoonotischen Bakteriums C. jejuni nachzustellen. Das Fachgebiet der Gewebezüchtung wird üblicherweise für rekonstruktive Medizin eingesetzt und bietet exzellente Mittel zur in-vitro Herstellung organspezifischer Zellkulturmodelle, welche die unverkennbare Mikroarchitektur humanen Gewebes realistisch nachempfinden können. Die in dieser Arbeit verwendeten Modelle basieren auf einem extrazellulären Matrixgerüst, das aus der Dezellularisierung von Schweinedarm gewonnen wurde. Durch die Wiederbesiedelung mit human Kolonzellen und der Kultivierung unter dynamischen Bedingungen entwickelte sich ein hochpolarisiertes mucosales Epithel, das durch funktionale Zell-Zell-Kontakte (tight und adherens junctions) aufrechterhalten wird. Während andere in-vitro Infektionssysteme meist durch die Präsenz einer flachen Zellschicht limitiert werden, entwickelt das in dieser Arbeit eingeführte Gewebemodell die für den menschlichen Dünndarm charakteristische Architektur aus Villi und Krypten. Zunächst wurden experimentelle Bedingungen für die Infektion eines zuvor entwickelten, statisch kultivierten Dünndarmmodells mit C. jejuni etabliert. Dies beinhaltete die erfolgreiche Isolierung koloniebildender Einheiten, die Messung der epithelialen Barrierefunktion, sowie immunhistochemische und histologische Färbetechniken. Dadurch konnte die Anzahl der Bakterien sowie deren Translokalisierung über das polarisierte Epithel während des Infektionsprozesses nachvollzogen werden. Außerdem konnte die Beeinträchtigung von Zell-Zell-Kontakten durch konfokale Mikroskopie und Permeabilitätsmessungen der epithelialen Barriere beobachtet werden. Neben der Bestimmung der Kolonisierungsrate von C. jejuni Isolaten und der dadurch hervorgerufenen spezifischen Zerstörung der epithelialen Barriere konnten die Bakterien auch innerhalb der 3D Mikroarchitektur des Gewebemodells lokalisiert werden. Außerdem konnte im Rahmen der 3D Gewebeumgebung beobachtet werden, dass Pathogenese-relevante Phänotypen von C. jejuni Mutantenstämmen im Vergleich zu konventionellen in-vitro 2D Zellschichten abwichen, diese aber dafür mit den in-vivo gemachten Beobachtungen übereinstimmten. Darüber hinaus wies die genomweite Suche einer C. jejuni Mutantenbibliothek signifikante Unterschiede zwischen bakteriellen Faktoren, die für die Interaktion mit nicht polarisierten Wirtszellen oder dem hochprismatischen Epithel des Gewebemodells bedeutsam oder entbehrlich waren, auf. Die Aufklärung der Funktion einiger bisher nicht charakterisierter Faktoren, die zu einer effizienten Kolonisierung menschlichen Gewebes beitragen, verspricht eine faszinierende Aufgabe für die zukünftige Forschung zu werden. Die vorderste Verteidigungslinie gegen eindringende Pathogene bildet die schützende, viskoelastische Mukusschicht, die mukosale Oberflächen entlang des menschlichen Gastrointestinaltrakts überzieht. Mit der Entwicklung eines mukusproduzierenden Gewebemodells in der hier vorgelegten Arbeit gelang ein entscheidender Schritt zur Erforschung der Wechselbeziehungen zwischen bakteriellen Pathogenen und wirtsspezifischen Muzinen. Während des Infektionsverlaufs wurde das unterliegende Epithel durch die Anwesenheit der Mukusschicht vor der Zerstörung durch die Mikroben geschützt und eine erhöhte bakterielle Belastung verhindert. Darüber hinaus liefern die Resultate dieser Arbeit einen in-vitro Nachweis für den bakteriellen Vorteil einer spiralförmigen Morphologie, um muköse Oberflächen zu besiedeln. Zusammenfassend unterstreicht diese Arbeit das Potential der hier entwickelten Gewebemodelle, entscheidende Eigenschaften des menschlichen Darms in einem leicht zugänglichen in-vitro Infektionsmodell zu vereinigen. Der Einsatz dieser Modelle im Rahmen der Infektionsforschung bewies deren Fähigkeit in-vivo beobachtete Infektionsverläufe widerzuspiegeln. Während diese Infektionsmodelle bereits organotypische Architektur und hochprismatische Zellmorphologie aufweisen, ist ihre Darstellung von menschlichem Gewebe noch nicht perfekt. Durch den Einsatz von humanen Primär- und Immunzellen wird es in Zukunft möglich sein, noch umfassendere Modellsysteme zu entwickeln, die komplexe multizelluläre Netzwerke von in-vivo Geweben aufweisen. Nichtsdestotrotz verdeutlicht die hier vorgelegte Arbeit wie wichtig es ist, die Interaktionen zwischen Wirt und Pathogen innerhalb von Infektionsmodellen zu erforschen, welche die natürliche Wirtsumgebung wiedergeben. Dies spielt eine entscheidende Rolle, um die Entstehung von Infektionskrankheiten nachvollziehen und ihnen entgegenwirken zu können. KW - Campylobacter jejuni KW - Tissue Engineering KW - Small RNA KW - 3D tissue model KW - Bacterial infection KW - 3D Gewebemodelle KW - Bakterielle Infektion KW - 3D cell culture KW - Infection models Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193440 ER - TY - THES A1 - Rossi, Angela Francesca T1 - Development of functionalized electrospun fibers as biomimetic artificial basement membranes T1 - Entwicklung funktionalisierter elektrogesponnener Fasern als biomimetische künstliche Basalmembranen N2 - The basement membrane separates the epithelium from the stroma of any given barrier tissue and is essential in regulating cellular behavior, as mechanical barrier and as structural support. It further plays an important role for new tissue formation, homeostasis, and pathological processes, such as diabetes or cancer. Breakdown of the basement membrane is believed to be essential for tumor invasion and metastasization. Since the basement membrane is crucial for many body functions, the development of artificial basement membranes is indispensable for the ultimate formation of engineered functional tissue, however, challenging due to their complex structure. Electrospinning enables the production of fibers in the nano- or microscale range with morphological similarities to the randomly orientated collagen and elastic fibers in the basement membrane. However, electrospun fibers often lack the functional similarity to guide cells and maintain tissue-specific functions. Hence, their possible applications as matrix structure for tissue engineering are limited. Herein, the potential of polyester meshes, modified with six armed star-shaped pre-polymers and cell-adhesion-mediating peptides, was evaluated to act as functional isotropic and bipolar artificial basement membranes. Thereby, the meshes were shown to be biocompatible and stable including under dynamic conditions, and the degradation profile to correlate with the rate of new tissue formation. The different peptide sequences did not influence the morphology and integrity of the fibers. The modified membranes exhibited protein-repellent properties over 12 months, indicating the long-term stability of the cross-linked star-polymer surfaces. Cell culture experiments with primary fibroblasts and a human keratinocyte cell line (HaCaT) revealed that cell adhesion and growth strongly depends on the peptide sequences and their combinations employed. HaCaT cells grew to confluence on membranes modified with a combination of laminin/collagen type IV derived binding sequences and with a combination of fibronectin/laminin/collagen type IV derived peptide sequences. Fibroblasts strongly adhered to the fibronectin derived binding sequence and to membranes containing a combination of fibronectin/laminin/collagen type IV derived peptide sequences. The adhesion and growth of fibroblasts and HaCaT cells were significantly reduced on membranes modified with laminin, as well as collagen IV derived peptide sequences. HaCaT cells and fibroblasts barely adhered onto meshes without peptide sequences. Co-culture experiments at the air-liquid interface with fibroblasts and HaCaT cells confirmed the possibility of creating biocompatible, biofunctional and biomimetic isotropic and bipolar basement membranes, based on the functionalized fibers. HaCaT cells grew in several layers, differentiating towards the surface and expressing cytokeratin 10 in the suprabasal and cytokeratin 14 in the basal layers. Migration of fibroblasts into the electrospun membrane was shown by vimentin staining. Moreover, specific staining against laminin type V, collagen type I, III, IV and fibronectin illustrated that cells started to remodel the electrospun membrane and produced new extracellular matrix proteins following the adhesion to the synthetic surface structures. The culturing of primary human skin keratinocytes proved to be difficult on electrospun fibers. Cells attached to the membrane, but failed to form a multilayered, well-stratified, and keratinized epidermal layer. Changing the fiber composition and fixation methods did not promote tissue development. Further investigations of the membrane demonstrated the tremendous influence of the pore size of the membrane on epithelial formation. Furthermore, primary keratinocytes reacted more sensitive to pH changes in the medium than HaCaT cells did. Since primary keratinocytes did not adequately develop on the functionalized meshes, polycarbonate membranes were used instead of electrospun meshes to establish oral mucosa models. The tissue-engineered models represented important features of native human oral mucosa. They consisted of a multilayered epithelium with stratum basale, stratum spinosum, stratum granulosum, and stratum corneum. The models formed a physical barrier and the expression of characteristic cell markers was comparable with that in native human oral mucosa. The results from the ET-50 assay and the irritation study reflected the reproducibility of the tissue equivalents. Altogether, electrospinning enables the production of fibers with structural similarity to the basement membrane. Incorporating extracellular matrix components to mimic the functional composition offers a safe and promising way to modify the fibers so that they can be used for different tissue engineering applications. The resultant biomimetic membranes that can be functionalized with binding sequences derived from widely varying proteins can be used as a toolbox to study the influence of isotropic and bipolar basement membranes on tissue formation and matrix remodeling systematically, with regards to the biochemical composition and the influence and importance of mono- and co-culture. The oral mucosa models may be useful for toxicity and permeation studies, to monitor the irritation potential of oral health care products and biomaterials or as a disease model. N2 - Die Basalmembran trennt das Epithel vom Stroma eines jeden Wandgewebes und ist entscheidend bei der Regulierung des Zellverhaltens, als mechanische Barriere, und als strukturelle Unterstützung. Darüber hinaus spielt sie eine wichtige Rolle sowohl bei der Neubildung von Gewebe und der Homöostase, als auch bei pathologischen Prozessen, wie Diabetes mellitus oder Krebs. Es wird angenommen, dass die Überquerung der Basalmembran eine entscheidende Rolle bei der Tumorinvasion und Metastasierung spielt. Wegen der großen Bedeutung der Membran für eine Vielzahl an Körperfunktionen, ist die Entwicklung von strukturierten und funktionalen künstlichen Basalmembranen für den Aufbau von im Labor entwickeltem funktionalem Gewebe unerlässlich; nichtsdestotrotz stellt die Herstellung aufgrund der komplexen Struktur eine Herausforderung dar. Das elektrostatische Verspinnen ermöglicht es, Fasern im Nano oder Mikrometer Maßstab mit morphologischen Ähnlichkeiten zu den zufällig orientierten Kollagen und elastischen Fasern in der Basalmembran herzustellen. Allerdings fehlt den elektrogesponnenen Fasern häufig die funktionale Ähnlichkeit um die Zellbewegung innerhalb des Gewebes zu regulieren und gewebespezifische Funktionen aufrecht zu erhalten. Daher sind ihre Anwendungsmöglichkeiten als Membranen für das Tissue Engineering begrenzt. In dieser Arbeit wurde das Potential eines Polyestergerüsts beurteilt, das mit einem sechsarmigen sternförmigen Additiv und Zelladhäsion vermittelnden Peptiden modifiziert worden war, als isotrope und bipolare künstliche Basalmembran. Zunächst wurden die Materialeigenschaften der Faservliese untersucht. Dabei konnte gezeigt werden, dass die Vliese biokompatibel, und auch unter dynamischen Bedingungen stabil sind. Zudem korrelierte der Abbau der Vliese mit dem Aufbau von neuem Gewebe. Die Modifizierung der Faseroberfläche mit Peptidsequenzen beeinflusste nicht die Morphologie und die Integrität der Fasern. Die funktionalisierten Gerüste zeigten proteinabweisende Eigenschaften über 12 Monate, was die langfristige Stabilität der quervernetzten Stern Polymer Oberflächen bestätigte. Zellkulturversuche mit primären Fibroblasten und einer humanen Keratinozyten Zelllinie (HaCaT) ergaben, dass die Zelladhäsion und das Wachstum stark von den Peptidsequenzen und deren Kombinationen abhängig sind. HaCaT Zellen wuchsen zur Konfluenz auf Vliesen, die mit einer Kombination aus Laminin/Kollagen Typ IV stammenden Peptidsequenzen und mit einer Kombination aus Fibronektin/Laminin/Kollagen Typ IV stammenden Peptidsequenzen funktionalisiert worden waren. Fibroblasten dagegen adhärierten und proliferierten stark auf Vliesen, die mit Fibronektin, und einer Kombination aus Fibronektin/Laminin/Kollagen Typ IV stammenden Bindungssequenzen modifiziert worden waren. Die Adhäsion und das Wachstum von Fibroblasten und HaCaT Zellen waren dagegen auf mit Laminin sowie mit Kollagen Typ IV funktionalisierten Membranen deutlich geringer. Fibroblasten und HaCaT Zellen adhärierten kaum auf Vliesen ohne Peptidsequenzen. Ko Kultur Versuche an der Luft Flüssigkeits Grenzfläche mit Fibroblasten und HaCaT Zellen bestätigten, dass es möglich ist, basierend auf funktionalisierten Fasern, biokompatible, biofunktionale und biomimetische isotrope und anisotrope Basalmembranen aufzubauen. HaCaT Zellen wuchsen mehrschichtig, differenzierten und polarisierten, dies wurde belegt durch den Nachweis von Zytokeratin 14 in den basalen und Zytokeratin 10 in den oberen Schichten des Epithels. Die Vimentin Färbung zeigte, dass die Fibroblasten in das Vlies einwandern. Durch spezifische Färbung von Laminin V, Kollagen I, III, IV und Fibronektin konnte gezeigt werden, dass die Zellen beginnen das Vlies umzubauen und extrazelluläre Matrix Proteine zu produzieren. Die Kultivierung von primären Keratinozyten, sowohl aus der humanen Haut als auch aus der humanen Mundschleimhaut, erwies sich als komplex auf elektrogesponnenen Fasern. Die Zellen adhärierten auf der Membran, bildeten aber weder mit noch ohne Fibroblasten ein mehrschichtiges, verhorntes Epithel aus. Die Anpassung der Faserzusammensetzung und der Fixierungsmethoden begünstigte die Entwicklung des Epithels nicht. Weiterführende experimentelle Studien belegten, dass der Porendurchmesser des Vlieses eine wichtige Rolle für die Entwicklung des Epithels spielt und dass primäre Keratinozyten stärker auf pH Veränderungen reagieren als HaCaT Zellen. Da die funktionalisierten Fasern sich nicht als geeignete Struktur für primäre Keratinozyten erwiesen, wurden Polycarbonat Membranen anstelle von elektrogesponnenen Strukturen als Träger für den Aufbau von Mundschleimhautmodellen verwendet. Die Modelle zeigten wichtige Eigenschaften der nativen Mundschleimhaut. Es bildete sich ein mehrschichtiges, polarisiertes Epithel aus basalen Zellen, einer Stachelzellschicht, Körnerzellschicht und Hornschicht. Die Modelle entwickelten eine physikalische Barriere und exprimierten Zellmarker ähnlich der nativen Mundschleimhaut. Die Ergebnisse des ET 50 Assays und der Irritationsstudie legten dar, dass die Modelle reproduzierbar hergestellt werden können. Das elektrostatische Spinnen ermöglicht es, fibrilläre Strukturen, die der Basalmembran sehr ähnlich sind, herzustellen. Die Funktionalisierung der Fasern mit Zelladhäsionssignalen stellt eine vielversprechende Möglichkeit dar, diese Fasern so zu modifizieren, dass sie als Basalmembranen für verschiedene Anwendungen des Tissue Engineerings geeignet sind. Die biomimetischen Membranen können mit Bindungssequenzen von sehr unterschiedlichen Proteinen modifiziert werden. Darüber hinaus können sie genutzt werden, den Einfluss von isotropen und anisotropen Basalmembranen auf die Gewebebildung und den Matrixumbau systematisch in Bezug auf die biochemische Zusammensetzung und den Einfluss sowie die Bedeutung von Mono und Ko Kultur zu untersuchen. Die Mundschleimhautmodelle können für toxikologische Untersuchungen, Permeationsstudien, sowie als Krankheitsmodelle eingesetzt werden. Außerdem können sie verwendet werden, um das Irritationspotenzial von Mundhygieneprodukten und Biomaterialien einzuschätzen. KW - Tissue Engineering KW - Basalmembran KW - Skin KW - Basement membrane KW - Bipolar Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-137618 N1 - die Online-Version weicht insofern von der gedruckten Fassung ab als im Appendix die Arbeitsanweisungen aus dem Labor fehlen (diese dürfen nicht im WWW veröffentllicht sein) ER - TY - THES A1 - Choi, Jihyoung T1 - Development of an Add-On Electrode for Non-Invasive Monitoring in Bioreactor Cultures and Medical Devices T1 - Entwicklung einer Zusatzelektrode für das nicht-invasive Monitoring von Bioreaktorkulturen und Medizinprodukten N2 - Electrochemical impedance spectroscopy (EIS) is a valuable technique analyzing electrochemical behavior of biological systems such as electrical characterization of cells and biomolecules, drug screening, and biomaterials in biomedical field. In EIS, an alternating current (AC) power signal is applied to the biological system, and the impedance of the system is measured over a range of frequencies. In vitro culture models of endothelial or epithelial barrier tissue can be achieved by culturing barrier tissue on scaffolds made with synthetic or biological materials that provide separate compartments (apical and basal sides), allowing for further studies on drug transport. EIS is a great candidate for non-invasive and real-time monitoring of the electrical properties that correlate with barrier integrity during the tissue modeling. Although commercially available transendothelial/transepithelial electrical resistance (TEER) measurement devices are widely used, their use is particularly common in static transwell culture. EIS is considered more suitable than TEER measurement devices in bioreactor cultures that involve dynamic fluid flow to obtain accurate and reliable measurements. Furthermore, while TEER measurement devices can only assess resistance at a single frequency, EIS measurements can capture both resistance and capacitance properties of cells, providing additional information about the cellular barrier's characteristics across various frequencies. Incorporating EIS into a bioreactor system requires the careful optimization of electrode integration within the bioreactor setup and measurement parameters to ensure accurate EIS measurements. Since bioreactors vary in size and design depending on the purpose of the study, most studies have reported using an electrode system specifically designed for a particular bioreactor. The aim of this work was to produce multi-applicable electrodes and established methods for automated non-invasive and real-time monitoring using the EIS technique in bioreactor cultures. Key to the electrode material, titanium nitride (TiN) coating was fabricated on different substrates (materials and shape) using physical vapor deposition (PVD) and housed in a polydimethylsiloxane (PDMS) structure to allow the electrodes to function as independent units. Various electrode designs were evaluated for double-layer capacitance and morphology using EIS and scanning electron microscopy (SEM), respectively. The TiN-coated tube electrode was identified as the optimal choice. Furthermore, EIS measurements were performed to examine the impact of influential parameters related to culture conditions on the TiN-coated electrode system. In order to demonstrate the versatility of the electrodes, these electrodes were then integrated into in different types of perfusion bioreactors for monitoring barrier cells. Blood-brain barrier (BBB) cells were cultured in the newly developed dynamic flow bioreactor, while human umblical vascular endothelial cells (HUVECs) and Caco-2 cells were cultured in the miniature hollow fiber bioreactor (HFBR). As a result, the TiN-coated tube electrode system enabled investigation of BBB barrier integrity in long-term bioreactor culture. While EIS measurement could not detect HUVECs electrical properties in miniature HFBR culture, there was the possibility of measuring the barrier integrity of Caco-2 cells, indicating potential usefulness for evaluating their barrier function. Following the bioreactor cultures, the application of the TiN-coated tube electrode was expanded to hemofiltration, based on the hypothesis that the EIS system may be used to monitor clotting or clogging phenomena in hemofiltration. The findings suggest that the EIS monitoring system can track changes in ion concentration of blood before and after hemofiltration in real-time, which may serve as an indicator of clogging of filter membranes. Overall, our research demonstrates the potential of TiN-coated tube electrodes for sensitive and versatile non-invasive monitoring in bioreactor cultures and medical devices. N2 - Die elektrochemische Impedanzspektroskopie (EIS) ist eine nützliche Methode, um das elektrochemische Verhalten von biologischen Systemen zu analysieren, wie z.B. die elektrische Charakterisierung von Zellen und Biomolekülen, Drug Screening und Biomaterialien im biomedizinischen Bereich. Für die EIS wird ein Wechselstrom an das biologische System angeschlossen und die Impedanz des Systems über einen Frequenzbereich gemessen. In vitro-Modelle von Gewebekulturen epithelialer Barrieren können mithilfe künstlicher oder biologischer Materialien, die über unterschiedliche Kompartimente (apikale und basolaterale Seite) verfügen, hergestellt werden und ermöglichen weitere Untersuchungen zum Transport von Arzneistoffen. Die EIS bietet dabei eine hervorragende Methode für das nicht-invasive Echtzeit-Monitoring der elektrischen Eigenschaften, die mit der Barriere-Integrität während der Gewebeentwicklung korreliert. Obwohl kommerziell erhältliche Geräte zur Messung des transendothelialen/transepithelialen elektrischen Widerstands (TEER) umfangreich verwendet werden, ist ihre Verwendung besonders bei statischen Transwell-Kulturen verbreitet. Durch die EIS kann im Gegensatz zur TEER-Messung für Bioreaktor-Kulturen, die einen dynamischen Medienfluss aufweisen, genauere und verlässliche Messungen erhalten werden. Zudem können EIS-Messungen anders als die TEER-Messung, die nur den Widerstand einer einzelnen Frequenz misst, gleichzeitig den elektrischen Widerstand und die Kapazität von Zellen erfassen und damit zusätzliche Informationen über die zellulären Barriereeigenschaften über verschiedene Frequenzen hinweg liefern. Der EIS-Einbau in ein Bioreaktor-System bedarf einer sorgfältigen Optimierung der Elektrodenintegration in das Bioreaktor-Setup und der Messparameter, um akkurate EIS-Messungen durchführen zu können. Da Bioreaktoren abhängig vom Untersuchungszweck in ihrer Größe und ihrem Design variieren, verwenden die meisten Studien speziell entwickelte Elektrodensysteme für einzelne Bioreaktoren. Das Ziel dieser Arbeit war die Herstellung von vielseitig anwendbaren Elektroden und etablierten Methoden für das automatisierte nicht-invasive Echtzeit-Monitoring von Bioreaktor-Kulturen mithilfe der EIS. Entscheidend für das Elektrodenmaterial war die Titannitrid (TiN)-Beschichtung, die auf verschiedenen Substraten (Materialien und Formen) durch Physical Vapor Deposition (PVD) hergestellt und in einer Polydimethylsiloxan (PDMS)-Struktur untergebracht wurde, damit die Elektroden unabhängig voneinander arbeiten können. Verschiedene Elektrodendesigns wurden auf Doppelschicht-Kapazität mithilfe der EIS bzw. auf die Morphologie mit Rasterelektronenmikroskopie untersucht. Die TiN-beschichteten Elektroden in Röhrenform erwiesen sich als optimal. Weiterhin wurden EIS-Messungen durchgeführt, um die Auswirkung von beeinflussenden Parametern auf die Kulturbedingungen durch das TiN-beschichtete Elektrodensystem zu untersuchen. Um die Vielseitigkeit der Elektroden aufzuzeigen, wurden diese anschließend zum Monitoring von Barriere-bildenden Zellen in unterschiedliche Perfusionsbioreaktoren integriert. Zellen der Blut-Hirn-Schranke (BHS) wurden im neu entwickelten dynamischen Flussreaktor kultiviert, wohingegen humane umbilikale vaskuläre Endothelzellen (HUVEC) und Caco-2-Zellen in Hohlfaserbioreaktoren (HFBR) in Miniaturform kultiviert wurden. Das TiN-beschichtete Röhrenelektrodensystem ermöglichte die Untersuchung der BHS-Barrieren-Integrität in einer Langzeit-Bioreaktorkultur. Während die EIS-Messung in der Miniaturform-HFBR-Kultur keine elektrischen Eigenschaften der HUVECs detektieren konnte, war es möglich, eine Barriere-Integrität der Caco-2-Zellen zu messen, die den potentiellen Nutzen für die Evaluierung deren Barrierefunktion aufzeigt. Nach den Bioreaktorkulturen wurde die Anwendung der TiN-beschichteten Röhrenelektrode auf die Hämofiltration erweitert, auf Grundlage der Hypothese, dass das EIS-System ein Gerinnen oder Verstopfen während der Hämofiltration überwachen könnte. Die Ergebnisse zeigen, dass das EIS-Monitoring-System Veränderungen in der Ionenkonzentration des Blutes vor und nach Hämofiltration in Echtzeit verfolgen kann, welches eventuell als Messgröße für ein Verstopfen der Filtermembranen genutzt werden kann. Insgesamt weisen TiN-beschichtete Röhrenelektroden unseren Forschungen zufolge ein großes Potential für ein empfindliches und vielfältiges nicht-invasives Monitoring von Bioreaktorkulturen und Medizingeräte auf. KW - Monitoring KW - Tissue Engineering KW - Electrode KW - Perfusion Bioreactor KW - Hemofiltration KW - Medizinprodukt KW - Electrochemical Impedance Spectroscopy Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-358232 ER - TY - THES A1 - Schweinlin, Matthias Oliver T1 - Development of advanced human intestinal in vitro models T1 - Entwicklung von erweiterten humanen intestinalen in vitro Modellen N2 - The main function of the small intestine is the absorption of essential nutrients, water and vitamins. Moreover, it constitutes a barrier protecting us from toxic xenobiotics and pathogens. For a better understanding of these processes, the development of intestinal in vitro models is of great interest to the study of pharmacological and pathological issues such as transport mechanisms and barrier function. Depending on the scientific questions, models of different complexity can be applied. In vitro Transwell® systems based on a porous PET-membrane enable the standardized study of transport mechanisms across the intestinal barrier as well as the investigation of the influence of target substances on barrier integrity. However, this artificial setup reflects only limited aspects of the physiology of the native small intestine and can pose an additional physical barrier. Hence, the applications of this model for tissue engineering are limited. Previously, tissue models based on a biological decellularized scaffold derived from porcine gut tissue were demonstrated to be a good alternative to the commonly used Transwell® system. This study showed that preserved biological extracellular matrix components like collagen and elastin provide a natural environment for the epithelial cells, promoting cell adhesion and growth. Intestinal epithelial cells such as Caco-2 cultured on such a scaffold showed a confluent, tight monolayer on the apical surface. Additionally, myofibroblasts were able to migrate into the scaffold supporting intestinal barrier formation. In this thesis, dendritic cells were additionally introduced to this model mimicking an important component of the immune system. This co-culture model was then successfully proven to be suitable for the screening of particle formulations developed as delivery system for cancer antigens in peroral vaccination studies. In particular, nanoparticles based on PLGA, PEG-PAGE-PLGA, Mannose-PEG-PAGE-PLGA and Chitosan were tested. Uptake studies revealed only slight differences in the transcellular transport rate among the different particles. Dendritic cells were shown to phagocytose the particles after they have passed the intestinal barrier. The particles demonstrated to be an effective carrier system to transport peptides across the intestinal barrier and therefore present a useful tool for the development of novel drugs. Furthermore, to mimic the complex structure and physiology of the gut including the presence of multiple different cell types, the Caco-2 cell line was replaced by primary intestinal cells to set up a de novo tissue model. To that end, intestinal crypts including undifferentiated stem cells and progenitor cells were isolated from human small intestinal tissue samples (jejunum) and expanded in vitro in organoid cultures. Cells were cultured on the decellularized porcine gut matrix in co-culture with intestinal myofibroblasts. These novel tissue models were maintained under either static or dynamic conditions. Primary intestinal epithelial cells formed a confluent monolayer including the major differentiated cell types positive for mucin (goblet cells), villin (enterocytes), chromogranin A (enteroendocrine cells) and lysozyme (paneth cells). Electron microscopy images depicted essential functional units of an intact epithelium, such as microvilli and tight junctions. FITC-dextran permeability and TEER measurements were used to assess tightness of the cell layer. Models showed characteristic transport activity for several reference substances. Mechanical stimulation of the cells by a dynamic culture system had a great impact on barrier integrity and transporter activity resulting in a tighter barrier and a higher efflux transporter activity. In Summary, the use of primary human intestinal cells combined with a biological decellularized scaffold offers a new and promising way to setup more physiological intestinal in vitro models. Maintenance of primary intestinal stem cells with their proliferation and differentiation potential together with adjusted culture protocols might help further improve the models. In particular, dynamic culture systems and co culture models proofed to be a first crucial steps towards a more physiological model. Such tissue models might be useful to improve the predictive power of in vitro models and in vitro in vivo correlation (IVIVC) studies. Moreover, these tissue models will be useful tools in preclinical studies to test pharmaceutical substances, probiotic active organisms, human pathogenic germs and could even be used to build up patient-specific tissue model for personalized medicine. N2 - Die Hauptfunktion des Dünndarms besteht in der Aufnahme von lebenswichtigen Nährstoffen, Wasser und Vitaminen. Zudem stellt er eine Barriere dar, die uns vor toxischen Fremdstoffen und Pathogenen schützt. Um diese Prozesse besser zu verstehen, ist die Entwicklung neuer in vitro Modellen des Darms von großem Interesse um pharmakologische und pathologische Studien durchzuführen. Abhängig von der wissenschaftlichen Fragestellung können Modelle von unterschiedlicher Komplexität zur Anwendung kommen. In vitro Transwell® Systeme basierend auf einer porösen PET-Membran ermöglichen die Untersuchung von Transportmechanismen über die intestinal Barriere und den Einfluss von Wirkstoffen auf deren Integrität. Dieser künstliche Aufbau ähnelt jedoch nur eingeschränkt der Physiologie des Dünndarms und kann eine zusätzliche physikalische Barriere darstellen. Die Anwendungsmöglichkeiten dieses Modells im Tissue Engineering sind daher begrenzt. Gewebemodelle basierend auf einer dezellularisierten biologischen Matrix hergestellt aus Schweinedarmgewebe haben sich als gute Alternative zum herkömmlichen Transwell® System herausgestellt. Diese Studie zeigt, dass die erhaltenen Komponenten der biologischen Extrazellulärmatrix wie Kollagen und Elastin eine natürliche Umgebung für die Epithelzellen bieten und Zelladhäsion und Wachstum der Zellen fördern. Darmepithelzellen wie Caco-2 Zellen, welche auf einer solchen Matrix kultiviert wurden, bildeten einen konfluenten, dichten Monolayer auf der apikalen Oberfläche aus. Zusätzlich ermöglichte dieser Aufbau die Migration von Myofibroblasten in die Matrix, was die Bildung der intestinalen Barriere unterstützt. In dieser Doktorarbeit wurden zusätzlich dendritische Zellen als wichtige Komponente des adaptiven Immunsystems in das Modell integriert. Dieses Ko-Kultur Modell erwies sich als geeignet um partikuläre Formulierungen zu testen, welche als Transportsysteme für Tumorantigene entwickelt wurden. Es wurden Partikel basierend auf PLGA, PEG-PAGE-PLGA, Mannose-PEG-PAGE-PLGA und Chitosan untersucht. Aufnahmestudien ergaben nur geringfügige Unterschiede in den Transportraten zwischen den verschiedenen Partikeln. Es konnte ausserdem gezeigt werden, dass dendritische Zellen die Partikel phagozytieren, nachdem sie die intestinale Barriere überwunden haben. Die Partikel erwiesen sich als effektives Transportsystem um Peptide über die intestinale Barriere zu schleusen und stellen daher ein nützliches Werkzeug für die Entwicklung neuartiger Medikamente dar. Um die komplexe Struktur und Physiologie des Darms noch besser nachzustellen, wurde für den Aufbau des Modells die Caco-2 Zelllinie durch primäre Darmzellen ersetzt. Die Darmkrypten, welche undifferenzierte Stammzellen und Vorläuferzellen enthalten, wurden aus humanen Dünndarmgewebe, dem Jejunum, isoliert und in vitro expandiert. Die Zellen wurden zusammen mit Myofibroblasten auf der dezellularisierten Schweinedarmmatrix, unter statischen und dynamischen Bedingungen, kultiviert. Die primären Darmepithelzellen bildeten einen konfluenten Monolayer, welcher alle differenzierten intestinalen Zelltypen aufwies, gezeigt durch Zellen positiv für Mucin (Becherzellen), Villin (Enterozyten), Chromogranin A (enteroendokrine Zellen) und Lysozym (Paneth-Zellen). Mit Hilfe von Elektronenmikroskopie ließen sich essentielle funktionelle Einheiten eines intakten Epithels darstellen, wie die Mikrovilli und Tight Junctions. Um die Dichtigkeit des Epithels zu überprüfen wurde mit FITC-Dextran die Permeabilität bestimmt und TEER-Messungen durchgeführt. Die Modelle zeigten einen charakteristischen Transport für mehrere Referenzsubstanzen. Mechanische Stimulation durch ein dynamisches Kultivierungssystem hatte einen starken Einfluss auf die Barriereintegrität und Transporteraktivität der Modelle, was sich in einer dichteren Barriere und erhöhten Efflux-Transporteraktivität widerspiegelte. Alles in allem bietet die Verwendung primärer intestinaler Zellen in Kombination mit einer dezellularisierten biologischen Matrix eine neue, vielversprechende Möglichkeit physiologischere in vitro Modelle des Darms aufzubauen. Der Erhalt intestinaler Stammzellen mit ihrem Proliferations- und Differenzierungspotential zusammen mit angepassten Protokollen könnte dabei helfen die Modelle weiter zu verbessern. Insbesondere die dynamische Kultivierung und die Ko-Kultur-Modelle erwiesen sich als entscheidender Schritt auf dem Weg zu physiologischeren Modellen. Solche Gewebemodelle könnten sich als nützlich erweisen, wenn es darum geht die Vorhersagekraft der in vitro Modelle, sowie die in vitro-in vivo Korrelation zu verbessern. Solche Gewebemodelle können ein nützliches Werkzeuge in der präklinischen Forschung für die Testung von pharmazeutischen Wirkstoffen, probiotisch aktiven Organismen, sowie humaner pathogener Keime sein und sogar zum Aufbau personalisierter Modelle für die regenerative Medizin dienen. KW - Tissue Engineering KW - in vitro KW - Dünndarm KW - intestinal in vitro model KW - intestine Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142571 ER -