TY - THES A1 - Ring, Christoph T1 - Entwicklung und Vergleich von Gewichtungsmetriken zur Analyse probabilistischer Klimaprojektionen aktueller Modellensembles T1 - Development and comparison of metrics for probabilistic climate change projections of state-of-the-art climate models N2 - Der anthropogene Klimawandel ist eine der größten Herausforderungen des 21. Jahrhunderts. Eine Hauptschwierigkeit liegt dabei in der Unsicherheit bezüglich der regionalen Änderung von Niederschlag und Temperatur. Hierdurch wird die Entwicklung geeigneter Anpassungsstrategien deutlich erschwert. In der vorliegenden Arbeit werden vier Evaluationsansätze mit insgesamt 13 Metriken für aktuelle globale (zwei Generationen) und regionale Klimamodelle entwickelt und verglichen, um anschließend eine Analyse der Projektionsunsicherheit vorzunehmen. Basierend auf den erstellten Modellbewertungen werden durch Gewichtung Aussagen über den Unsicherheitsbereich des zukünftigen Klimas getroffen. Die Evaluation der Modelle wird im Mittelmeerraum sowie in acht Unterregionen durchgeführt. Dabei wird der saisonale Trend von Temperatur und Niederschlag im Evaluationszeitraum 1960–2009 ausgewertet. Zusätzlich wird für bestimmte Metriken jeweils das klimatologische Mittel oder die harmonischen Zeitreiheneigenschaften evaluiert. Abschließend werden zum Test der Übertragbarkeit der Ergebnisse neben den Hauptuntersuchungsgebieten sechs global verteilte Regionen untersucht. Außerdem wird die zeitliche Konsistenz durch Analyse eines zweiten, leicht versetzten Evaluationszeitraums behandelt, sowie die Abhängigkeit der Modellbewertungen von verschiedenen Referenzdaten mit Hilfe von insgesamt drei Referenzdatensätzen untersucht. Die Ergebnisse legen nahe, dass nahezu alle Metriken zur Modellevaluierung geeignet sind. Die Auswertung unterschiedlicher Variablen und Regionen erzeugt Modellbewertungen, die sich in den Kontext aktueller Forschungsergebnisse einfügen. So wurde die Leistung der globalen Klimamodelle der neusten Generation (2013) im Vergleich zur Vorgängergeneration (2007) im Schnitt ähnlich hoch bzw. in vielen Situationen auch stärker eingeordnet. Ein durchweg bestes Modell konnte nicht festgestellt werden. Der Großteil der entwickelten Metriken zeigt für ähnliche Situationen übereinstimmende Modellbewertungen. Bei der Gewichtung hat sich der Niederschlag als besonders geeignet herausgestellt. Grund hierfür sind die im Schnitt deutlichen Unterschiede der Modellleistungen in Zusammenhang mit einer geringeren Simulationsgüte. Umgekehrt zeigen die Metriken für die Modelle der Temperatur allgemein überwiegend hohe Evaluationsergebnisse, wodurch nur wenig Informationsgewinn durch Gewichtung erreicht werden kann. Während die Metriken gut für unterschiedliche Regionen und Skalenniveaus verwendet werden Evaluationszeiträume nicht grundsätzlich gegeben. Zusätzlich zeigen die Modellranglisten unterschiedlicher Regionen und Jahreszeiten häufig nur geringe Korrelationen. Dies gilt besonders für den Niederschlag. Bei der Temperatur sind hingegen leichte Übereinstimmungen auszumachen. Beim Vergleich der mittleren Ranglisten über alle Modellbewertungen und Situationen der Hauptregionen des Mittelmeerraums mit den Globalregionen besteht eine signifikante Korrelation von 0,39 für Temperatur, während sie für Niederschlag um null liegt. Dieses Ergebnis ist für alle drei verwendeten Referenzdatensätze im Mittelmeerraum gültig. So schwankt die Korrelation der Modellbewertungen des Niederschlags für unterschiedliche Referenzdatensätze immer um Null und die der Temperaturranglisten zwischen 0,36 und 0,44. Generell werden die Metriken als geeignete Evaluationswerkzeuge für Klimamodelle eingestuft. Daher können sie einen Beitrag zur Änderung des Unsicherheitsbereichs und damit zur Stärkung des Vertrauens in Klimaprojektionen leisten. Die Abhängigkeit der Modellbewertungen von Region und Untersuchungszeitraum muss dabei jedoch berücksichtigt werden. So besitzt die Analyse der Konsistenz von Modellbewertungen sowie der Stärken und Schwächen der Klimamodelle großes Potential für folgende Studien, um das Vertrauen in Modellprojektionen weiter zu steigern. N2 - Climate change is one of the major tasks of the 21st century. The uncertainty of precipitation and temperature change is considered as a main challenge in this context. Thus, the development of appropriate adaptation strategies is very difficult. In this study, four climate model evaluation approaches with 13 metrics in total are developed and compared. Current global (two generations) and regional climate models are evaluated to assess projection uncertainty. Based on model performances, weighting is applied to future climate projections to estimate simulation uncertainty. The evaluations are performed in the Mediterranean and eight sub-regions. Seasonal trend of temperature and precipitation are evaluated for the period 1960–2009. For some metrics, the climatological mean and the spectra of the time series are evaluated as well. In addition, six globally distributed study areas are evaluated to test the metrics’ transferability. Further, temporal consistency is assessed by the evaluation of a second slightly shifted timeframe. Finally, three reference datasets are considered in order to analyse the dependence of the evaluation results between each other. Results indicate that most metrics are suitable to evaluate climate models. Their application to different variables and regions generates reasonable model assessments which fit in the context of current publications in this field of research. In many situations, the results of the current model generation (2013) are similar or better compared to those of the last generation (2007). One single model with superior performance for all variables and situations cannot be found. Most metrics show similar estimations of performances for the same situations. Precipitation turned out to be more suitable for model weighting. Here, the differences between model weights are larger because of overall higher spread and lower model performances. Against this, there are mostly high performances on an equal level for simulations of temperature which lead to a minor added value of weighting. While metrics can easily be transferred and applied to different regions and scales, some evaluation results depend on the evaluated timeframe. Further, the model rankings for different regions and seasons show only minor correlations for most situations. This is particularly true for precipitation. However, for temperature there are some significant positive correlations. Comparing the mean ranking over all evaluation results of the main study areas of the Mediterranean with that of the globally distributed regions, there is a significant correlation of 0.39 for temperature and a correlation around zero for precipitation. The choice of reference dataset for the Mediterranean areas is subordinated in this context. For different reference datasets, the overall rankings show correlations around zero for precipitation while those for temperature are between 0.36 and 0.44. Overall, the metrics are suitable for the evaluation of climate models. Thus, they offer promising contributions to improve the range of uncertainty and therefore to enhance the general confidence in climate projections. However, dependence of model assessments on the analysed region and evaluation timeframe has to be considered. Consequently, the analyses of consistency of model evaluations and of climate model strengths and weaknesses have great potential for future studies, to further enhance confidence in climate projections. KW - Anthropogene Klimaänderung KW - Unsicherheit KW - Klima KW - Modellierung KW - Statistik KW - Evaluierung und Gewichtung von Klimamodellen KW - Niederschlag und Temperatur KW - weighting of climate models Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157294 ER - TY - THES A1 - Awoye, Oyémonbadé Hervé Rodrigue T1 - Implications of future climate change on agricultural production in tropical West Africa: evidence from the Republic of Benin T1 - Auswirkungen des zukünftigen Klimawandels auf die landwirtschaftliche Produktion im tropischen West Afrika: eine Fallstudie für die Republik Benin N2 - Environmental interlinked problems such as human-induced land cover change, water scarcity, loss in soil fertility, and anthropogenic climate change are expected to affect the viability of agriculture and increase food insecurity in many developing countries. Climate change is certainly the most serious of these challenges for the twenty-first century. The poorest regions of the world – tropical West Africa included – are the most vulnerable due to their high dependence on climate and weather sensitive activities such as agriculture, and the widespread poverty that limits the institutional and economic capacities to adapt to the new stresses brought about by climate change. Climate change is already acting negatively on the poor smallholders of tropical West Africa whose livelihoods dependent mainly on rain-fed agriculture that remains the cornerstone of the economy in the region. Adaptation of the agricultural systems to climate change effects is, therefore, crucial to secure the livelihoods of these rural communities. Since information is a key for decision-making, it is important to provide well-founded information on the magnitude of the impacts in order to design appropriate and sustainable adaptation strategies. Considering the case of agricultural production in the Republic of Benin, this study aims at using large-scale climatic predictors to assess the potential impacts of past and future climate change on agricultural productivity at a country scale in West Africa. Climate signals from large-scale circulation were used because state-of-the art regional climate models (RCM) still do not perfectly resolve synoptic and mesoscale convective processes. It was hypothesised that in rain-fed systems with low investments in agricultural inputs, yield variations are widely governed by climatic factors. Starting with pineapple, a perennial fruit crops, the study further considered some annual crops such as cotton in the group of fibre crops, maize, sorghum and rice in the group of cereals, cowpeas and groundnuts belonging to the legume crops, and cassava and yams which are root and tuber crops. Thus the selected crops represented the three known groups of photosynthetic pathways (i.e. CAM, C3, and C4 plants). In the study, use was made of the historical agricultural yield statistics for the Republic of Benin, observed precipitation and mean near-surface air temperature data from the Climatic Research Unit (CRU TS 3.1) and the corresponding variables simulated by the regional climate model (RCM) REMO. REMO RCM was driven at its boundaries by the global climate model ECHAM 5. Simulations with different greenhouse gas concentrations (SRES-A1B and B1 emission scenarios) and transient land cover change scenarios for present-day and future conditions were considered. The CRU data were submitted to empirical orthogonal functions analysis over the north hemispheric part of Africa to obtain large-scale observed climate predictors and associated consistent variability modes. REMO RCM data for the same region were projected on the derived climate patterns to get simulated climate predictors. By means of cross-validated Model Output Statistics (MOS) approach combined with Bayesian model averaging (BMA) techniques, the observed climate predictors and the crop predictand were further on used to derive robust statistical relationships. The robust statistical crop models perform well with high goodness-of-fit coefficients (e.g. for all combined crop models: 0.49 ≤ R2 ≤ 0.99; 0.28 ≤ Brier-Skill-Score ≤ 0.90). Provided that REMO RCM captures the main features of the real African climate system and thus is able to reproduce its inter-annual variability, the time-independent statistical transfer functions were then used to translate future climate change signal from the simulated climate predictors into attainable crop yields/crop yield changes. The results confirm that precipitation and air temperature governed agricultural production in Benin in general, and particularly, pineapple yield variations are mainly influenced by temperature. Furthermore, the projected yield changes under future anthropogenic climate change during the first-half of the 21st century amount up to -12.5% for both maize and groundnuts, and -11%, -29%, -33% for pineapple, cassava, and cowpeas respectively. Meanwhile yield gain of up to +10% for sorghum and yams, +24% for cotton, and +39% for rice are expected. Over the time period 2001 – 2050, on average the future yield changes range between -3% and -13% under REMO SRES–B1 (GHG)+LCC, -2% and -11% under REMO SRES–A1B (GHG only),and -3% and -14% under REMO SRES–A1B (GHG)+LCC for pineapple, maize, sorghum, groundnuts, cowpeas and cassava. In the meantime for yams, cotton and rice, the average yield gains lie in interval of about +2% to +7% under REMO SRES–B1 (GHG)+LCC, +0.1% and +12% under REMO SRES–A1B (GHG only), and +3% and +10% under REMO SRES–A1B (GHG)+LCC. For sorghum, although the long-term average future yield depicts a reduction there are tendencies towards increasing yields in the future. The results also reveal that the increases in mean air temperature more than the changes in precipitation patterns are responsible for the projected yield changes. As well the results suggest that the reductions in pineapple yields cannot be attributed to the land cover/land use changes across sub-Saharan Africa. The production of groundnuts and in particular yams and cotton will profit from the on-going land use/land cover changes while the other crops will face detrimental effects. Henceforth, policymakers should take effective measures to limit the on-going land degradation processes and all other anthropogenic actions responsible for temperature increase. Biotechnological improvement of the cultivated crop varieties towards development of set of seed varieties adapted to hotter and dry conditions should be included in the breeding pipeline programs. Amongst other solutions, application of appropriate climate-smart agricultural practices and conservation agriculture are also required to offset the negative impacts of climate change in agriculture. N2 - In vielen Entwicklungsländern gefährden Umweltprobleme wie die tiefgreifende Veränderung der Landoberfläche, Wasserknappheit, Bodendegradation und der anthropogene Klimawandel die Leistung¬sfähigkeit der Landwirtschaft und erhöhen so das Risiko von Nahrungs-mittelknappheit. Von diesen miteinander verwobenen Bedrohungen ist der Klimawandel im 21. Jahrhundert sicherlich die bedeutendste. Die höchste Vulnerabilität weisen die ärmsten Regionen der Welt – unter anderen Westafrika – auf, sowohl wegen der großen Bedeutung von klima- und wettersensitiven Wirtschaftsektoren wie der Landwirtschaft als auch wegen der verbreiteten Armut. Diese schränkt die staatlichen und wirtschaftlichen Anpassungs¬kapazitäten an die neuen Herausforderungen durch den Klimawandel ein. Westafrikanische Kleinbauern, deren Lebensunterhalt wesentlich vom traditionellen Regenfeldbau – dem Eckpfeiler der regionalen Wirtschaft – abhängt, bekommen die negativen Auswirkungen bereits zu spüren. Die Adaption der agroökonomischen Systeme an den Klimawandel ist eine unbedingte Notwendigkeit für die Sicherung der Lebensgrundlage dieser ländlichen Gebiete. Da Wissen die Basis für Entscheidungen darstellt, sind belastbare Informationen über das Ausmaß der Auswirkungen wichtig, um angemessene und nachhaltige Anpassungsstrategien zu entwickeln. Am Beispiel der Republik Benin untersucht diese Studie das Potenzial von makroskaligen klimatischen Prädiktoren zur Erfassung und Quantifizierung des potentiellen Einflusses von beobachteten und künftigen Klimaänderungen auf die landwirtschaftliche Produktion eines westafrikanischen Landes. Die Auswirkungen der großskaligen Zirkulation wurden herangezogen, da auch moderne Regionale Klimamodelle (RCMs) Schwierigkeiten haben, klein- oder mesoskalige synoptische und insbesondere konvektive Prozesse überzeugend zu simulieren. Zugrunde liegt die Annahme, dass Schwankungen des landwirtschaftlichen Ertrags in auf Regenfeldbau basierenden landwirtschaftlichen Systemen mit geringen Kapitaleinsatz zu weiten Teilen auf klimatische Faktoren zurückzuführen sind. Untersucht werden die Ananas als perennierende Pflanze sowie einige einjährige Feldfrüchte wie Baumwolle aus der Gruppe der Faserpflanzen, die Getreidearten Mais, Sorghumhirse und Reis, die Hülsenfrüchte Augenbohne und Erdnuss sowie die Knollen- und Wurzelfrüchte Maniok und Yams. Somit repräsentieren die ausgewählten Feldfrüchte die drei bekannten Photosynthese-Wege, nämlich CAM, C3 und C4. Die vorliegende Studie verwendet historische Ertragsstatistiken der Republik Benin, Beobachtungsdaten der Climate Research Unit für den monatlichen Niederschlag sowie die bodennahe Mitteltemperatur (CRU TS 3.1) und die entsprechenden Variablen simuliert durch das REMO RCM. Dieses Regionalmodell wird an seinen Rändern durch das globale Klimamodell ECHAM 5 angetrieben. Es werden Modellsimulationen mit unterschiedlichen Randbedingungen im Hinblick auf Treibhausgaskonzentrationen (die Szenarien SRES-B1 und SRES-A1B) und Veränderungen der Landbedeckung (LCC) berücksichtigt. Mittels Hauptkomponentenanalyse werden aus den CRU-Daten für den nordhemisphärischen Teil Afrikas Zeitreihen und räumliche Muster für großskalige Prädiktoren gewonnen. Um mit diesen konsistente Prädiktoren für die Simulationen zu erhalten, werden die Datenfelder des REMO RCMs auf die so gewonnenen Raummuster projiziert. Für die beobachteten Zeitreihen der Prädiktoren und die zeitliche Entwicklung der unterschiedlichen Feldfrüchte als Prädiktant werden mittels eines kombinierten Ansatzes aus kreuzvalidierten Model Output Statistics (MOS) und Bayesian Model Averaging (BMA) Techniken robuste statistische Zusammenhänge erfasst. Die resultierenden statistischen Modelle zeigen gute Performance, beispielsweise gilt für alle erzeugten Modelle 0,49 ≤ R² ≤ 0,99 und 0,28 ≤ Brier-Skill-Score ≤ 0,90. Da das REMO RCM die Hauptcharakteristika des beobachteten Klimas in Afrika erzeugt und daher die interannuelle Variabilität realistisch reproduziert, können mithilfe der zeitunabhängigen statistischen Transferfunktionen Klimaänderungssignale, gewonnen aus den simulierten Prädiktoren, in zu erwartende Veränderungen der Ernteerträge übersetzt werden. Die Ergebnisse bestätigen, dass Niederschlag und bodennahe Temperatur allgemein die landwirtschaftliche Produktion bestimmen und insbesondere die Schwankungen in den Ananas¬-erträgen primär thermisch bedingt scheinen. Weiterhin finden sich unter den simulierten künftigen Klimabedingungen projizierte Ertragsänderungen von bis zu -12,5% für Mais und Erdnuss und -11% , -29% und -33% für Ananas, Maniok und Augenbohne. Zugleich werden Ertragssteigerungen von +10% für Sorghumhirse und Yams, +24% für Baumwolle und +39% für Reis projiziert. Diese Änderungen sind abhängig von den Randbedingungen. Im Mittel betragen die simulierten Änderungen der Erträge während der Periode von 2001 bis 2050 zwischen -13% und -3% für SRES-B1 + LCC, -11% und -2% für SRES-A1B sowie -14% bis -3% für SRES-A1B + LCC für Ananas, Mais, Sorghumhirse, Erdnuss, Augenbohne und Maniok. Daneben finden sich für Yams, Baumwolle und Reis Zuwächse im Ernteertrag, die in Intervallen zwischen +2% bis +7% für SRES-B1 + LCC, +0.1% bis +12% für SRES-A1B und +3% bis +10% für SRES-A1B + LCC liegen. Obwohl die durchschnittliche Veränderung im Ertrag der Sorghumhirse negativ ist, lassen sich auch Tendenzen hin zu positiven Veränderungen feststellen. Die Ergebnisse zeigen zudem, dass die projizierte Zunahme der mittleren Lufttemperatur die simulierten Ernteerträge stärker beeinflusst als Veränderungen in den Niederschlagsmustern. Weiterhin scheint im Fall der Ananas der simulierte Rückgang im Ertrag nicht auf Veränderungen bei Landnutzung oder Landoberflächenbedeckung im subsaharischen Afrika zurückführbar. Die Erdnuss- und insbesondere Yams- und Baumwollerzeugung werden von den Veränderungen in der Landoberflächenbedeckung, die für die übrigen Feldfrüchte nachteilige Effekte bedeuten, profitieren. Zukünftig sollten politische Entscheidungsträger wirksame Maßnahmen einleiten, um die fortschreitende Landdegradation sowie alle anderen anthropogenen Prozesse, die zur globalen Erwärmung beitragen, einzuschränken. Biotechnologische Verbesserungen der verwendeten Nutzpflanzen, um an heißere und trockenere Bedingungen angepasste Varianten zu erzeugen, sollten in die bestehenden Aufzuchtprogramme integriert werden. Weiterhin sind unter anderem die Anwendung von geeigneten, klimaintelligenten landwirtschaftlichen Verfahren sowie eine nachhaltige Agrarwirtschaft notwendig, um die Schäden des Klimawandels auf die Landwirtschaft auszugleichen. KW - Benin KW - Klimaänderung KW - climate change impact KW - large-scale climate circulation KW - West Africa KW - food security KW - agriculture KW - Agrarproduktion KW - Klimawandel KW - Landwirtschaft Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122887 ER - TY - THES A1 - Steger, Christian T1 - Simulation ausgewählter Zeitscheiben des Paläoklimas in Asien mit einem hochaufgelösten Regionalmodell T1 - Simulation of selected timeslices of the paleoclimate in Asia with a high-resolution regional climate model N2 - Das Tibetplateau (TP) ist das höchste Gebirgsplateau der Erde und bildete sich im Verlauf der letzten 50 Millionen Jahre. Durch seine Ausmaße veränderte das TP nicht nur das Klima im heutigen Asien, sondern bewirkte Veränderungen weltweit. Heute stellt das TP einen Hotspot des Klimawandels dar und ist als Quellgebiet vieler großer Flüsse in Asien für die Wasserversorgung von Milliarden von Menschen von zentraler Bedeutung. Vor diesem Hintergrund ist es wichtig, die Prozesse, die das Klima in der Region steuern, besser zu verstehen und die Variabilität des Klimas auf unterschiedlichen Zeitskalen abschätzen zu können. Grundlegendes Ziel der vorliegenden Arbeit ist es, räumlich hochaufgelöste quantitative Informationen über die Veränderung der klimatischen Verhältnisse in Asien während der Bildungsphase des TP und unter warm- und kaltzeitlichen Randbedingungen zur Verfügung zu stellen und dadurch eine Verbindung zwischen den verschiedenen Zeitskalen herzustellen. Hierfür werden das heutige Klima und das Paläoklima der Region mit Hilfe von Klimamodellen simuliert. Da frühere Studien zeigen konnten, dass die Ergebnisse von hochaufgelösten Modellen besser mit Paläoklimarekonstruktionen übereinstimmen, als die von vergleichsweise niedrig aufgelösten Globalmodellen, erfolgt ein dynamisches Downscaling des globalen Klimamodells ECHAM5 mit dem regionalen Klimamodell REMO. Die Heraushebung des TP wird durch eine Serie von fünf Simulationen (Topogra- phieexperimente) approximiert, in denen die Höhe des TP in 25%-Schritten von 0% bis 100% der heutigen Höhe verändert wird. Die Schwankungen des Klimas im spä- ten Quartär sind durch Simulationen für das mittlere Holozän und den Hochstand der letzten Vereisung, das Last-Glacial-Maximum, repräsentiert (Quartärexperi- mente). In den Quartärexperimenten wurden die Treibhausgaskonzentrationen, Orbitalparameter, Landbedeckung und verschiedene Vegetationsparameter an die Bedingungen der jeweiligen Zeitscheibe angepasst. Die Auswertung der Simulati- onsergebnisse konzentriert sich auf jährliche und jahreszeitliche Veränderungen der bodennahen Temperatur und des Niederschlags. Außerdem werden die sich erge- benden Änderungen in der Intensität des indischen Monsuns anhand verschiedener Monsunindizes analysiert. Für das TP und die sich unmittelbar anschließenden Ge- biete wird zusätzlich eine Clusteranalyse durchgeführt, um die dort vorkommenden regionalen Klimatypen identifizieren und charakterisieren zu können. In den Topographieexperimenten zeigt sich, dass die 2m-Temperatur im Bereich des TP im Jahresmittel mit abnehmender Höhe des Plateaus um bis zu 30◦C zunimmt, während es in den übrigen Teilen des Modellgebiets nahezu überall kälter wird. Die Jahressumme des Niederschlags nimmt mit abnehmender Höhe des TP westlich und nördlich davon zu. Im Bereich des TP sowie südlich und östlich davon gehen die Niederschläge zurück. Die starke Niederschlagszunahme nördlich des TP kann durch die Ausbildung eines Höhentrogs statt eines Höhenrückens in diesem Bereich erklärt werden. Das grundsätzliche räumliche Muster der Veränderungen besteht dabei bereits bei einer Plateauhöhe von 75% des Ausgangswertes und ändert sich bei weiterer Verringerung der Höhe nicht wesentlich. Lediglich der Betrag der Veränderungen nimmt zu. Dies gilt für die 2m-Temperatur und den Niederschlag und sowohl im Jahresmittel als auch für die einzelnen Jahreszeiten. Bezüglich der Intensität des indischen Sommermonsuns zeigt sich, dass zwischen 25% und 75% der heutigen Höhe des TP die stärkste Intensivierung stattfindet. Eine mit heute vergleichbare Monsunintensität tritt erst auf, wenn das TP die Hälfte seiner jetzigen Höhe erreicht hat. Im mittleren Holozän ist es im Jahresmittel in den meisten Teilen des Modellge- biets kälter und feuchter als heute. Die Unterschiede sind jedoch größtenteils gering und nicht signifikant. Hinsichtlich der Temperatur zeigen die Modelldaten nur vereinzelt eine gute Übereinstimmung mit den rekonstruierten Werten. Allerdings weisen die Rekonstruktionen eine hohe räumliche Variabilität auf, wodurch die in diesem Datensatz vorhandenen Unsicherheiten widergespiegelt werden. Hinsicht- lich des Niederschlags ist die Übereinstimmung besser. Hier deuten sowohl die simulierten als auch die rekonstruierten Daten auf feuchtere Bedingungen hin. In der Simulation für das Last-Glacial-Maximum liegen die Temperaturen überall im Modellgebiet im Jahresmittel und in allen Jahreszeiten um bis zu 8◦C unter den heutigen Werten. Es besteht eine gute Übereinstimmung mit den rekonstruierten Temperaturwerten für diese Zeitscheibe. Zu einer signifikanten Abnahme der jährlichen Niederschlagsmenge kommt es westlich und nordwestlich des TP, in Indien, Südostasien und entlang der Ostküste Chinas. Für die Bereiche, für die Niederschlagsrekonstruktionen verfügbar sind, stimmen die Modellergebnisse gut mit diesen überein. Zu einer signifikanten Niederschlagszunahme kommt es nur zwischen der Nordküste des Golfs von Bengalen und dem Himalaya, wobei dies möglicherweise ein Modellartefakt darstellt. Hinsichtlich der Monsunintensität bestehen große Unterschiede zwischen den Indizes. Während der Extended Indian Monsoon Rainfall Index eine starke Ab- schwächung des indischen Sommermonsuns anzeigt, ist der Wert des Webster and Yang Monsoon Index verglichen mit heute nahezu unverändert. Ein Vergleich der Monsunintensität in den Topographie- und den Quartärexperimenten macht deut- lich, dass der indische Monsun durch den Wechsel von warm- und kaltzeitlichen Randbedingungen mindestens so stark beeinflusst wird wie durch die Hebung des TP. N2 - The Tibetan Plateau (TP) is the world’s most elevated highland which was built over the past 50 million years. With its extent, the TP did not only influence the climate in Asia, but also caused global changes. Today, the TP represents a climate change hot spot and is, as the source region of many large rivers in Asia, crucial for the water supply of billions of people. Considering this background, it is important to obtain a better understanding of the processes that control the climate in the region and to estimate the climate variability on different time scales. The basic goal of this study is to provide spatial highly resolved quantitative information about the changes in the climatic conditions in Asia during the uplift of the TP and during periods with warmer and colder boundary conditions and thus to put these different timescales in relation. Therefore, the modern climate and the paleoclimate of the region are being simulated with climate models. The global climate model ECHAM5 is dynamically downscaled with the regional climate model REMO, because previous studies have shown, that the results of models with higher resolution are more consistent with paleoclimate reconstructions than the results of models with lower resolution. The uplift of the TP is approximated by a series of five simulations (topography experiments) in which the elevation of the TP is varied in steps of 25% from 0% to 100% of its present day height. The late Quaternary climate variations are represented by two simulations with boundary conditions for the Mid-Holocene and the Last-Glacial-Maximum (Quaternary experiments). For the Quaternary experiments, the greenhouse gas concentration, orbital parameters, land cover and some vegetation parameters have been adopted for the particular time slice. The evaluation of the simulations’ results focusses on annual and seasonal changes of the near surface temperature and precipitation. Variations in the strength of the Indian monsoon are analyzed by means of different monsoon indices. In order to identify and characterize the regional climate types there, a cluster analysis is conducted for the TP and adjacent regions. The topography experiments show that the annual mean 2m-temperature drops by up to 30◦C in the region of the TP when the height of the plateau is reduced while it becomes colder nearly everywhere else in the model domain. The annual precipitation amount is reduced in the west and north of the TP when its height is reduced. The immense precipitation increase to the north of the TP can be explained by the formation of a trough instead of a ridge in the mid-troposphere of this region. The general spatial pattern of the changes already persists when the height of the TP is reduced to 75% of the present day value and it does not change fundamentally when the height is reduced further. This pertains for the 2m-temperature, the precipitation and for the annual as well as the seasonal means. The analysis of the intensity of the Indian Summer Monsoon shows that the strongest intensification appears between 25% to 75% of the TP’s present day elevation. Half of the current elevation is necessary to get a monsoon intensity comparable to the one of today. In the Mid-Holocene, it is on average colder and more humid in most parts of the model domain compared to present day. But the differences are mostly small and not significant. Concerning the temperature, the model data coincides only sporadically with reconstructed values. However, the reconstructions show great spatial variability, which reflects the uncertainties that are present in this data set. Regarding precipitation, the simulated data matches the reconstructions better. Both the simulated and the reconstructed data point towards wetter conditions. Compared to present day values, the simulation of the Last-Glacial-Maximum shows up to 8◦C lower annual and seasonal mean temperatures everywhere in the model domain compared to present day values. The results are in good conformity with reconstructed temperature values for this time slice. A significant reduction of the annual precipitation amount appears in the west and north of the TP, in India, Southeast Asia and along the east coast of China. Where precipitation reconstructions are available, the model results show good accordance with these values. A significant increase in precipitation appears only between the northern coast of the Bay of Bengal and the Himalayas, but this potentially represents a model artifact. There are big differences between the indices in terms of the monsoon intensity. The Extended Indian Monsoon Rainfall Index shows a strong reduction of the Indian Summer Monsoon,whereas the value of the Webster and Yang Monsoon Index remains nearly unchanged compared to the present day value. A comparison of the monsoon intensity in the topography and the quaternary experiments reveals that the change in boundary conditions between warm and cold intervals affects the Indian monsoon at least as much as the uplift of the TP. KW - Paläoklima KW - Asien KW - Monsun KW - Paläoklimamodellierung KW - Regionalmodell KW - Klimaänderung KW - Tibet KW - Klimavariation Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122606 ER - TY - THES A1 - Baumhoer, Celia Amélie T1 - Glacier Front Dynamics of Antarctica - Analysing Changes in Glacier and Ice Shelf Front Position based on SAR Time Series T1 - Gletscherfrontdynamiken in der Antarktis - Die Analyse von Gletscher- und Eisschelffrontänderungen basierend auf SAR-Zeitreihen N2 - The Antarctic Ice Sheet stores ~91% of the global ice volume which is equivalent to a sea-level rise of 58.3 meters. Recent disintegration events of ice shelves and retreating glaciers along the Antarctic Peninsula and West Antarctica indicate the current vulnerable state of the Antarctic Ice Sheet. Glacier tongues and ice shelves create a safety band around Antarctica with buttressing effects on ice discharge. Current decreases in glacier and ice shelf extent reduce the effective buttressing forces and increase ice discharge of grounded ice. The consequence is a higher contribution to sea-level rise from the Antarctic Ice Sheet. So far, it is unresolved which proportion of Antarctic glacier retreat can be attributed to climate change and which part to the natural cycle of growth and decay in the lifetime of a glacier. The quantitative assessment of the magnitude, spatial extent, distribution, and dynamics of circum-Antarctic glacier and ice shelf retreat is of utmost importance to monitor Antarctica’s weakening safety band. In remote areas like Antarctica, earth observation provides optimal properties for large-scale mapping and monitoring of glaciers and ice shelves. Nowadays, the variety of available satellite sensors, technical advancements regarding spatial resolution and revisit times, as well as open satellite data archives create an ideal basis for monitoring calving front change. A systematic review conducted within this thesis revealed major gaps in the availability of glacier and ice shelf front position measurements despite the improved satellite data availability. The previously limited availability of satellite imagery and the time-consuming manual delineation of calving fronts did neither allow a circum-Antarctic assessment of glacier retreat nor the assessment of intra-annual changes in glacier front position. To advance the understanding of Antarctic glacier front change, this thesis presents a novel automated approach for calving front extraction and explores drivers of glacier retreat. A comprehensive review of existing methods for glacier front extraction ascertained the lack of a fully automatic approach for large-scale monitoring of Antarctic calving fronts using radar imagery. Similar backscatter characteristics of different ice types, seasonally changing backscatter values, multi-year sea ice, and mélange made it challenging to implement an automated approach with traditional image processing techniques. Therefore, the present abundance of satellite data is best exploited by integrating recent developments in big data and artificial intelligence (AI) research to derive circum-Antarctic calving front dynamics. In the context of this thesis, the novel AI-based framework “AntarcticLINES” (Antarctic Glacier and Ice Shelf Front Time Series) was created which provides a fully automated processing chain for calving front extraction from Sentinel-1 imagery. Open access Sentinel-1 radar imagery is an ideal data source for monitoring current and future changes in the Antarctic coastline with revisit times of less than six days and all-weather imaging capabilities. The developed processing chain includes the pre-processing of dual-polarized Sentinel-1 imagery for machine learning applications. 38 Sentinel-1 scenes were used to train the deep learning architecture U-Net for image segmentation. The trained weights of the neural network can be used to segment Sentinel-1 scenes into land ice and ocean. Additional post-processing ensures even more accurate results by including morphological filtering before extracting the final coastline. A comprehensive accuracy assessment has proven the correct extraction of the coastline. On average, the automatically extracted coastline deviates by 2-3 pixels (93 m) from a manual delineation. This accuracy is in range with deviations between manually delineated coastlines from different experts. For the first time, the fully automated framework AntarcticLINES enabled the extraction of intra-annual glacier front fluctuations to assess seasonal variations in calving front change. Thereby, for example, an increased calving frequency of Pine Island Glacier and a beginning disintegration of Glenzer Glacier were revealed. Besides, the extraction of the entire Antarctic coastline for 2018 highlighted the large-scale applicability of the developed approach. Accurate results for entire Antarctica were derived except for the Western Antarctic Peninsula where training imagery was not sufficient and should be included in future studies. Furthermore, this dissertation presents an unprecedented record of circum-Antarctic calving front change over the last two decades. The newly extracted coastline for 2018 was compared to previous coastline products from 2009 and 1997. This revealed that the Antarctic Ice Sheet shrank 29,618±1193 km2 in extent between 1997-2008 and gained an area of 7,108±1029 km2 between 2009-2018. Glacier retreat concentrated along the Antarctic Peninsula and West Antarctica. The only East Antarctic coastal sector primarily experiencing calving front retreat was Wilkes Land in 2009-2018. Finally, potential drivers of circum-Antarctic glacier retreat were identified by combining data on glacier front change with changes in climate variables. It was found that strengthening westerlies, snowmelt, rising sea surface temperatures, and decreasing sea ice cover forced glacier retreat over the last two decades. Relative changes in mean air temperature could not be identified as a driver for glacier retreat and further investigations on extreme events in air temperature are necessary to assess the effect of atmospheric forcing on frontal retreat. The strengthening of all identified drivers was closely connected to positive phases of the Southern Annular Mode (SAM). With increasing greenhouse gases and ozone depletion, positive phases of SAM will occur more often and force glacier retreat even further in the future. Within this thesis, a comprehensive review on existing Antarctic glacier and ice shelf front studies was conducted revealing major gaps in Antarctic calving front records. Therefore, a fully automated processing chain for glacier and ice shelf front extraction was implemented to track circum-Antarctic calving front fluctuations on an intra-annual basis. The large-scale applicability was certified by presenting two decades of circum-Antarctic calving front change. In combination with climate variables, drivers of recent glacier retreat were identified. In the future, the presented framework AntarcticLINES will greatly contribute to the constant monitoring of the Antarctic coastline under the pressure of a changing climate. N2 - Der antarktische Eisschild speichert ~91 % des globalen Eisvolumens. Ein gänzliches Abschmelzen des Eisschildes hätte global einen Meeresspiegelanstieg von 58,3 Metern zur Folge. Der aktuelle Zerfall von Eisschelfen und der Gletscherrückgang entlang der Antarktischen Halbinsel und Westantarktis verdeutlichen den vulnerablen Status des antarktischen Eisschildes. Gletscherzungen und Eisschelfe säumen die antarktische Küstenlinie und halten die Eisströme Richtung Ozean zurück. Ein Rückzug der Eisschelfe und Gletscher vermindert den Rückhalteeffekt und führt zu zunehmenden Gletscher-Fließgeschwindigkeiten in Richtung Ozean. Der dadurch verursachte Masseverlust trägt zum globalen Meeresspiegelanstieg bei. Bislang ist ungeklärt, welcher Anteil des antarktischen Gletscherrückgangs auf den Klimawandel und welcher auf den natürlichen Kalbungszyklus der Gletscher und Eisschelfe zurückzuführen ist. Aufgrund des vermehrten Zerfalls von Eisschelfen in den letzten Dekaden ist es von großer Wichtigkeit, den Gletscherrückgang zu quantifizieren und dessen Ausmaß, räumlichen Ausdehnung, Verteilung und Dynamik zirkumantarktisch zu erfassen, um mögliche Auswirkungen auf den Meeresspiegelanstieg frühzeitig zu erkennen. In abgelegenen Regionen wie der Antarktis bietet die Erdbeobachtung optimale Voraussetzungen für das großflächige Kartieren und Beobachten von Gletschern und Eisschelfen. Heute stellt die Fülle an frei-verfügbaren Satellitendaten verschiedener Sensoren, in Kombination mit technischen Neuerungen hinsichtlich der räumlichen und zeitlichen Abdeckung, eine ideale Basis für das Monitoring der Kalbungsfronten dar. Trotz der guten Datenverfügbarkeit hat ein umfassender Literaturüberblick − welcher im Rahmen dieser Dissertation durchgeführt wurde − große Lücken in der Verfügbarkeit von Gletscher- und Eisschelffrontpositionsmessungen festgestellt. Die zuvor limitierte Verfügbarkeit von Satellitendaten und die zeitaufwändige manuelle Ableitung der Küstenlinie machten eine zirkumantarktische Beurteilung des Gletscherrückgangs und die intra-annuelle Analyse von Gletscherfrontpositionen unmöglich. Für ein besseres Verständnis antarktischer Gletscherfrontveränderungen, präsentiert diese Dissertation ein neues, automatisiertes Konzept zur Kalbungsfrontextraktion und untersucht ob klimatische Faktoren für den beobachteten Kalbungsfrontenrückgang verantwortlich sind. Anhand des Literaturüberblicks konnte festgestellt werden, dass bis dato kein komplett automatisiertes Verfahren für die Gletscherfrontextraktion aus großvolumigen Radarsatellitenbildern bestand. Ähnliche Rückstreuwerte von verschiedenen Eistypen, saisonal veränderliche Rückstreuwerte, mehrjähriges Meereis und Eis-Mélange erschwerten die Entwicklung eines automatisierten Ansatzes mit traditionellen Bildverarbeitungsansätzen. Doch die Neuerungen in den Bereichen „Big Data“ und der künstlichen Intelligenz (KI) ermöglichen es, die heutige Fülle an Satellitendaten für die Ableitung von Kalbungsfronten zu nutzen. Im Rahmen dieser Dissertation wurde das neuartige Framework “AntarcticLINES” (Antarctic Glacier and Ice Shelf Front Time Series) kreiert, welches eine komplett automatisierte, KI-basierte Prozessierungskette für die Gletscherfrontenextraktion von Sentinel-1 Daten beinhaltet. Frei verfügbare Sentinel-1 Daten sind ideal, um derzeitige und zukünftige Veränderungen der antarktischen Küstenlinie zu beobachten, da die Orbitwiederholrate weniger als sechs Tage beträgt und die Bildgebung wetterunabhängig ist. Die entwickelte Prozessierungskette beinhaltet die Vorprozessierung, Maskierung und Zerlegung der Satellitenbilder in kleinere Kacheln. Es wurden 38 Sentinel-1 Szenen genutzt, um die Deep Learning Architektur U-Net für eine Bildsegmentierung zu trainieren. Die trainierten Gewichte des Neuronalen Netzes können genutzt werden, um Sentinel-1 Szenen in die Klassen Ozean und Eis zu segmentieren. Eine zusätzliche Nachprozessierung ermöglicht noch genauere Ergebnisse durch morphologisches Filtern, bevor die finale Küstenlinie zwischen den beiden Klassen extrahiert wird. Eine umfangreiche Genauigkeitsauswertung hat ergeben, dass die automatisch abgeleitete Küstenlinie im Mittel 2-3 Pixel (93 m) von einer manuell abgeleiteten Küstenlinie abweicht. Diese Genauigkeit ist im Rahmen der durchschnittlichen Abweichungen von manuell abgeleiteten Küstenlinien verschiedener Experten. Erstmals ermöglicht das Framework AntarcticLINES die automatisierte Extraktion von intra-annuellen Gletscherfrontfluktuationen, um saisonale Variationen in der Kalbungsfrontänderung zu untersuchen. Dadurch konnte beispielsweise eine erhöhte Kalbungsfrequenz des Pine-Island-Gletschers festgestellt werden. Die Extraktion der antarktischen Küstenlinie für 2018 zeigt die mögliche Anwendung der entwickelten Methodik für großräumige Gebiete. Für den Großteil der Antarktis wurden genaue Ergebnisse erzielt, lediglich entlang der westlichen Antarktischen Halbinsel fehlten Trainingsdaten, welche in zukünftigen Studien inkludiert werden sollten. Darüber hinaus präsentiert diese Dissertation einen bis dato beispiellosen Datensatz zu zirkumantarktischen Veränderungen der Kalbungsfronten über die letzten zwei Jahrzehnte. Die neu extrahierte Küstenlinie für das Jahr 2018 wurde mit früheren Küstenlinienprodukten von 2009 und 1997 verglichen. Dies hat offengelegt, dass der Antarktische Eisschild zwischen 1997 und 2008 eine Fläche von 29,618±1193 km2 verlor und zwischen 2009 und 2018 eine Fläche von 7,108±1029 km2 dazugewann. Der Gletscherrückgang konzentrierte sich entlang der Antarktischen Halbinsel und der Westantarktis. Der einzige ostantarktische Sektor, in dem sich simultaner Gletscherrückgang zeigte, war Wilkes Land in den Jahren 2009 bis 2018. Im Anschluss wurden Ursachen für den Antarktischen Gletscherrückgang durch die Korrelation mit Klimavariablen identifiziert. Zunehmende Westwinde, Schneeschmelze, ansteigende Meeresoberflächentemperaturen und zurückgehendes Meereis begünstigten den Gletscherrückgang in den letzten zwei Dekaden. Relative Veränderungen in der durchschnittlichen Lufttemperatur konnten nicht als Ursache für den Gletscherrückgang identifiziert werden und weiter Analysen zu Extremereignissen in der Lufttemperatur sind nötig um Frontveränderungen verursacht durch atmosphärischen Antrieb besser verstehen zu können. Die Verstärkung aller identifizierten Treiber ist eng mit positiven Phasen des Southern Annular Mode (SAM) verbunden. In Anbetracht ansteigender Konzentrationen von Treibhausgasen und dem Ozonrückgang werden positive Phasen des SAMs in Zukunft öfter auftreten, was in Folge den Gletscherrückgang noch weiter vorantreiben kann. Zusammengefasst wurde im Rahmen dieser Dissertation ein umfassender Literaturüberblick zu existierenden Gletscher- und Eisschelffrontstudien durchgeführt, welcher größere Lücken in Kalbungsfrontstudien aufzeigte. Es wurde eine voll-automatisierte Prozessierungskette entwickelt, um zirkumantarktische Kalbungsfrontpositionen intra-annuell beobachten zu können und die Datenlücken zu schließen. In Kombination mit Klimavariablen wurden treibende Kräfte, die den aktuellen Gletscherrückgang begünstigen, identifiziert. In Zukunft wird das präsentierte Framework AntarcticLINES zur konstanten Beobachtung der Antarktischen Küstenlinie eingesetzt, um Veränderungen in Anbetracht eines sich ändernden Klimas zu analysieren. KW - Antarctica KW - Remote Sensing KW - Glacier KW - SAR Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-245814 ER - TY - THES A1 - Jäger, Daniel T1 - Steuerungsfaktoren der Hangstabilität an Massenbewegungen im Fränkischen Schichtstufenland T1 - Influences of slope stability on mass movements in northern Bavaria N2 - Massenbewegungen zählen zu den am häufigsten auftretenden Naturgefahren in Deutschland. Dabei wird die von instabilen Hängen ausgehende Gefährdung speziell in den Regionen der Mittelgebirge regelmäßig unterschätzt. In Bezug auf die Verbreitung von Massenbewegungen in Mittelgebirgen stellt das süddeutsche Schichtstufenland einen besonderen Schwerpunkt dar. Die Disposition der Schichtstufenhänge beruht dabei in erster Linie auf einer Wechsellagerung wasserdurchlässiger und wasserstauender geologischer Schichten. Zu Hanginstabilitäten kommt es bevorzugt in Verbindung mit synthetischem Schichtfallen, steilen Hängen und erhöhten Niederschlägen. Rezente Massenbewegungen treten verstärkt in alten Rutsch- und/oder Hangschuttgebieten auf, da sich dort unkonsolidierte Rutschmassen leicht remobilisieren lassen. Das Ziel der vorliegenden Arbeit ist es, ein fundiertes Verständnis über Ursachen, Ablauf, Ausprägung und Prozesse von charakteristischen Massenbewegungen sowie dem aktuellen Aufbau der damit verbundenen Schichtstufenhänge in Nordbayern zu erlangen, um daraus grundlegende Einschätzungen zur Stabilität der Rutschgebiete treffen zu können. Neben den rutschungsrelevanten geologischen Schichten sind in diesem Zusammenhang insbesondere der Aufbau, die Eigenschaften und Charakteristika der Rutschmassen von besonderer Wichtigkeit, da besonders die bodenmechanischen und bodenphysikalischen Eigenschaften einen entscheidenden Faktor in Bezug auf die Hangstabilität darstellen. Entsprechend steht die umfassende Analyse dieser Sedimente im Fokus der Studien. Die Arbeiten betrachten dabei drei Hänge im fränkischen Schichtstufenland, an denen in der jüngeren Vergangenheit Massenbewegungen auftraten. Ein weiteres zentrales Auswahlkriterium war die Lage der Gebiete in den Schichtstufen der Fränkischen Alb und der westlich vorgelagerten Keuperstufe, wobei hinsichtlich Typ und Verbreitung möglichst charakteristische Massenbewegungen für die jeweilige Region ausgewählt wurden. Bei Ebermannstadt stand demnach die sog. Werkkalkstufe der Weißjura-Kalke im Fokus, nahe Wüstendorf die Sandsteine des Braunjura und bei Gailnau an der Frankenhöhe die Sandsteine des mittleren (Gips-) Keupers. Die Untersuchungen der Rutschungen und ihrer Sedimentcharakteristika erfolgte anhand eines speziell konzipierten Multimethodenansatzes mit zahlreichen, multiskaligen Gelände- und Laboranalysen. Neben klassischen, geomorphologischen Kartierungen an der Oberfläche wurden die sedimentologisch-morphologischen Verhältnisse des oberflächennahen Untergrundes in der Vertikalen durch geophysikalische Sondierungen analysiert. Eine Einschätzung der hydrologischen Verhältnisse der Rutschmassen erfolgte auf Basis von Messdaten aus Bodenfeuchtemonitoringsystemen, die an allen Untersuchungsstandorten installiert wurden. Für die bodenphysikalischen und -mechanischen Eigenschaften der Sedimente wurden Korngrößen, Konsistenzgrenzen, Plastizität, Gefüge und Lagerungsdichte untersucht und durch Tonmineralanalysen ergänzt. Die mikromorphologische Analyse von Dünnschliffen aus Rutschungssedimenten und den darin enthaltenen Deformationsstrukturen erweiterten den Gesamtansatz, ermöglichten neuartige Einblicke in die innere Architektur von Rutschmassen und erlaubten die Rekonstruktion von Bewegungsabläufen. Durch die Arbeiten konnten an den Standorten Ebermannstadt und Gailnau komplexe, vielschichtige Massenbewegungen nachgewiesen werden. In der Rutschung bei Wüstendorf wurden nahezu ausschließlich unkonsolidierte Sedimente feinerer Korngrößen in einem Fließprozess verlagert. Primär erfolgte bei allen Rutschungen nachweislich die Remobilisierung alter Hangsedimente, wobei darüber hinaus auch stets bisher stabile Areale mit in die Bewegung einbezogen wurden. Der sedimentologische Aufbau der Rutschmassen ist speziell im Falle großer und komplexer Rutschungen mitunter extrem heterogen. Im Zuge der Arbeiten konnten interne Makrostrukturen der Sedimentablagerungen, wie beispielsweise Rotationsflächen oder die Lage von Schollen detektiert werden. Trotz geophysikalisch und visuell auffälliger Beimischungen von Grobschutt, entfallen die größten Mengenanteile aber stets auf die veränderlich feste Feinmaterialfraktion. Im Rahmen der mikromorphologischen Untersuchungen der Sedimentdünnschliffe konnten auch in diesen Sedimenten zahlreiche Deformationsstrukturen nachgewiesen werden. Die Arbeit unterstreicht insgesamt die Bedeutung dieser bindigen Bestandteile für die (Re)Mobilisierung von Sedimentablagerungen. Die Stabilität des Feinmaterials steht dabei in engem Zusammenhang mit der hydraulischen Leitfähigkeit und dem Eintrag von Wasser, welches zu wechselnden Steifigkeiten der Sedimente führt. Im Falle erhöhter Bodenwassergehalte konnte eine Plastifizierung der Feinkornfraktion ermittelt werden. Kommt es zu einer starken Durchnässung des Untergrundes, führt dies zu einer Plastifizierung der tonigen Lagen und einer entsprechenden Reduktion der Scherfestigkeit, was letztlich zum Auslösen von Massenbewegungen führt. Neben den geologisch-sedimentologischen Voraussetzungen impliziert dies auch eine hohe Bedeutung der Niederschlagscharakteristika in Bezug auf das Auslösen rezenter Massenbewegungen. Die Bodenwassergehalte unterliegen im Jahresverlauf einer deutlichen saisonalen Variabilität. Während der Sommermonate wurden einheitlich niedrige Feuchtigkeitswerte im oberflächennahen Untergrund verzeichnet, was in erster Linie auf den Einfluss der Vegetation zurückzuführen ist. Auch sommerliche Starkregenereignisse besitzen unter diesen Bedingungen lediglich eine reduzierte Wirkung auf die Durchfeuchtung des Bodens. Demgegenüber erfolgt während der kalten Jahreszeit ein signifikanter Anstieg der Bodenwassergehalte. Neben den Regenfällen kommt vor allem der Schneeschmelze eine essentielle Bedeutung zu, da sie für eine zusätzliche und anhaltende Durchfeuchtung der Schichten besonders im Spätwinter bzw. Frühjahr sorgt. Entsprechend besteht vor allem während der Monate Februar bis April eine erhöhte Disposition für Rutschungen in Nordbayern. Im Hinblick auf die Niederschlagssummen gingen den Rutschungen in den Untersuchungsgebieten zwar keine besonders extremen Ereignisse, aber durchaus deutlich überdurchschnittliche Niederschlagssummen voraus, weshalb unter Berücksichtigung der im Zuge des Klimawandels ansteigenden Winterniederschläge von einer generell verstärkten Rutschungsaktivität auszugehen ist. Vergleiche mit den Daten aus zahlreichen Übersichtskartierungen von Rutschungen aus den fränkischen Schichtstufengebieten verdeutlichen, dass die ermittelten Ergebnisse auf eine Vielzahl der verzeichneten Rutschungen übertragbar sind. N2 - Mass movements are considered common natural hazards in Germany. Nevertheless, the endangerments of slope instabilities are frequently neglected. This applies particularly for low mountain areas such as the cuesta landscape in southwestern Germany, although the slopes are highly prone to landslides. In this region the susceptibility for mass movements is mainly based on a bipartite geological structure with permeable and impermeable layers. These conditions, in combination with layer dipping, steep slope gradients and high precipitation rates lead to slope failures and therefore mass movements. Recent mass movements frequently appear in slope areas containing old slide masses or debris accumulations due to a remobilization of unconsolidated sediments. This work aims to collect precise information on triggers, movements, characteristics and processes of landslides in northern Bavaria in order to achieve a profound knowledge on the specific slope and sediment stabilities. Besides relevant geological layers, characteristics and structures of landslide sediment deposits are of great importance in this context, as those factors tend to control the stability of a slope in general. Therefore, the main focus of this work is set on a comprehensive analysis of these sediments. Studies were carried out on three slopes of the Franconian cuesta, which were affected by landslides in the recent past. Further criteria for their selection were an equally spatial distribution on the cuesta of the Franconian Alb and the hills of the Frankenhöhe. Additionally, the selected objects represent characteristic mass movements for their specific region, especially in terms of the type of movement. In accordance with these prerequisites, study areas are located near Ebermannstadt (Franconian Alb) for investigating the Upper Jurassic limestone layers of the Oxfordian, near Wüstendorf (Franconian Alb) in terms of Middle Jurassic sandstone layers (Aalenian) and near Gailnau (Frankenhöhe) for the Late Triassic sandstones of the Carnian. The landslide and its sediment characteristics were investigated using a multiscale and multimethod approach containing different investigations both in the field and in the laboratory. Classical geomorphological mappings investigated the morphology of the landslides and the adjacent slopes. Geophysical soundings provide a vertical insight into the architecture of the subsurface. Soil moisture monitoring systems were installed in all three study areas, aiming to address the hydrological conditions of the slide masses. In order to determine soil physical and basic mechanical characteristica, the respective grain size, Atterberg limits, plasticity, structure and bulk density were obtained, complemented by an analysis of clay minerals. Furthermore, micromorphological analyses of deformation structures in thin sections of landslide sediments provide an additional element for studying the inner architecture of the slide masses and for reconstructing specific mass movement processes. The investigations proved the existence of complex landslides in Ebermannstadt and Gailnau, consisting of different types of movement processes in specific areas of the slope. Near Wüstendorf, a flowing process relocated fine grained and mostly unconsolidated sediments. All movements primarily remobilized old slope sediments, however, movements also affected previously undisturbed layers adjacent to the former accumulations. In case of those large and complex landslides, the specific accumulations provide a very heterogeneous sedimentology. Investigations revealed the existence of internal macrostructures, such as rotational slip surfaces or slide blocks in the sediment accumulations. Although blocks and debris were visible and detected by geophysical soundings, slide masses were still dominated by fine grained material. During micromorphological analyses of thin sections, several deformation structures were determined in those clayey and silty sediments. The studies generally emphasize the importance of this cohesive fine material concerning a potential (re)mobilization of slope sediments. Depending on the specific hydraulic conductivity of their cohesive sediments, solidity of slide masses is subject to change under varying amounts of water intake. An increased inflow of water leads to more plastic conditions and behaviours of the unconsolidated slide mass. An increasing plastification of the clayey components causes a decrease of shear strength, which results in mass movements. This implies the importance of hydrological parameters and the relevance of precipitation characteristics beside the typical geological-sedimentological factors for triggering mass movements. Over the course of one year, soil water contents show a significant seasonal variability. Generally low values during summers indicate a strong influence of vegetation in the surface near layers. Under these circumstances, even heavy rainfalls generate a significantly reduced effect on soil moisture. The highest soil water contents were generally obtained during winter, not only because of rainfalls without the hampering of vegetation, but because of snow melting. Between February and April, snow melting provides an important additional input of water for the subsurface. This results in an increased disposition for mass movements in northern Bavaria during these months. In the case of the investigated landslides, precipitation rates in the months before the events unveiled above average precipitation rates but no extraordinary (high) values. Nonetheless, with regard to climate change and the effects of higher precipitation sums, especially in winter, this leads to the expectation of an increasing landslide activity. As characteristics of other landslide areas, which were mapped along the Franconian cuesta, revealed, most results obtained during this study are comparable to numerous landslide objects in this region. KW - Geografikum KW - Massenbewegungen KW - Hangstabilität KW - Fränkischens Schichtstufenland Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-139140 ER - TY - THES A1 - Lama, Anu Kumari T1 - Understanding Institutional Adaptation to Climate Change: Social Resilience and Adaptive Governance Capacities of the Nature Based Tourism Institutions in the Annapurna Conservation Area, Nepal T1 - Verständnis für institutionelle Anpassungen an den Klimawandel: Soziale Resilienz und adaptive Governance-Kapazitäten der Naturtourismus-Institutionen in der Annapurna Conservation Area, Nepal N2 - The global-local sustainable development and climate change adaptation policy, and the emerging political discourse on the value of local Adaptation, have positioned the local institutions and their governance space within the strategic enclaves of multilevel governance system. Such shifts have transformed the context for sustainable Nature Based Tourism (NBT) development and adaptation in Nepal in general, and its protected areas, in particular. The emerging institutional adaptation discourse suggests on the need to link tourism development, adaptation and governance within the sustainability concept, and also to recognize the justice and inclusive dimensions of local adaptation. However, sociological investigation of institutional adaptation, particularly at the interface between sustainability, justice and inclusive local adaptation is an undertheorized research topic. This exploratory study examined the sociological process of the institutional adaptation, especially the social resilience and adaptive governance capacities of the NBT institutions, in 7 Village Development Committees of the Mustang district, a popular destination in the Annapurna Conservation Area, Nepal. Using the sphere (a dynamic social space concept) and quality of governance as the analytical framework, the integrative adaptation as the methodological approach and the case study action research method, the study investigated and generated a holistic picture on the state of the social resilience and adaptive governance capacities of the NBT institutions. The findings show institutional social resilience capacities to be contingent on socio-political construction of adaptation knowledge and power. Factors influencing such constructions among NBT institutions include: the site and institutions specific political, economic and environmental dispositions; the associated socio-political processes of knowledge constructions and volition action; and the social relationships and interaction, operating within the spheres and at multiple governance levels. The adaptive governance capacities hinge on the institutional arrangements, the procedural aspects of adaptation governance and the governmentality. These are reflective of the diverse legal frameworks, the interiority perspective of the decision making and governance practices of the NBT institutions. In conclusion, it is argued that effective local adaptation in the Mustang district is contingent on the adaptation and institutional dynamics of the NBT institutions, consisting of the cognitive, subjective, process and procedural aspects of the adaptation knowledge production and its use. N2 - Die Politik im Bereich der nachhaltigen Entwicklung und der Anpassung an den Klimawandel sowie der Diskurs über die diesbezüglichen Adaptionsnotwendigkeiten auf lokaler Maßstabsebene, tangieren die Institutionen vor Ort und deren Position im Rahmen eines multi-skalaren Governance. Durch diese Umgewichtung wurden die Rahmenbedingungen für den Naturtourismus in Nepal verändert, insbesondere in den Schutzgebieten. Der sich daraus ergebende Governance-Diskurs hinsichtlich der institutionellen Anpassung betont die Notwendigkeit, Regionalentwicklung allgemein und speziell die Entwicklung des Naturtourismus im Sinne des Nachhaltigkeitskonzepts ganzheitlich zu betrachten. Sowohl die Dimension der Gerechtigkeit wie auch die Inklusivität lokaler Adaptionsnotwendigkeiten gilt es somit gleichrangig zu würdigen. Die sozialwissenschaftliche Erforschung der institutionellen Anpassung an der Schnittstelle zwischen Nachhaltigkeit, Gerechtigkeit und inklusive der lokalen institutionellen Adaptionsnotwendigkeiten, stellt bisher ein theoretisch unzureichend erfasstes Thema dar. Diese explorative Studie untersucht diesen sozialwissenschaftlichen Prozess der institutionellen Anpassung, insbesondere die soziale Resilienz und die adaptiven Governance-Kapazitäten der Naturtourismus-Institutionen in sieben Dorfentwicklungskomitees des Mustang Distrikts, einer beliebten Destination in der Annapurna Conservation Area, Nepal. Den Analyserahmen stellen der Wirkungsbereich (innerhalb eines dynamischen sozialen Raumes) und die Qualität des multi-skalaren Governance-Regimes dar. Methodologisch auf dem Ansatz der integrativen Anpassung basierend, wird die Forschungsmethode der „case study action research“ gewählt. Die Arbeit analysiert dabei den Status der sozialen Resilienz und adaptiven Goverance-Kapazitäten der örtlichen Naturtourismus-Institutionen, mit dem Ziel, ein ganzheitliches Bild derselben zu präsentieren. Die Ergebnisse zeigen, dass die Kapazität im Bereich der sozialen Resilienz bedingt wird durch die sozio-politische Konstruktion von Wissen und Macht. Zu den Faktoren, welche diese Konstruktionen bei den Naturtourismus-Institutionen im Annapurna-Gebiet Nepals beeinflussen, zählen unter Anderem: orts- und institutionenspezifische politische, ökonomische und umweltbezogene Bedingungen; die darauf beruhenden sozio-politischen Prozesse der Wissenskonstruktion, sowie soziale Beziehungen und Interaktionen, die innerhalb des dynamischen sozio-politischen Raumes und des Governance auf verschiedenen Maßstabsebenen wirksam sind. Die adaptiven Governance-Kapazitäten hängen u.a. vom institutionellen Aufbau und den verfahrenstechnischen Aspekten der politischen Steuerung der lokalen Institutionen ab. Sie spiegeln unterschiedliche rechtliche Rahmenbedingungen, die Innenperspektive der Entscheidungsfindung und die Governance-Praktiken der Naturtourismus-Institutionen wider. Zusammenfassend wird argumentiert, dass effektive lokale Klimawandel-Adaption im Mustang Distrikt Nepals abhängig ist von den spezifischen institutionellen Dynamiken der Naturtourismus-Institutionen, welche sich aus den kognitiven, subjektiven, prozess- und verfahrensorientierten Aspekten der Generierung von Adaptions-Wissen und seiner konkreten Anwendung zusammensetzt. T3 - Würzburger Geographische Arbeiten - 115 KW - Annapurna Conservation Area KW - Annapurna Conservation Area KW - Klimaänderung KW - Tourismus KW - Governance KW - Mustang District KW - Sustainable Nature Based Tourism Development Institutions KW - Social Resilience KW - Integrative Institutional Adaptation Assessment Framework KW - Case Study Action Research KW - Naturtourismus KW - Adaptive Governance KW - Protected areas KW - Nepal KW - Nachhaltigkeit KW - Regionalentwicklung KW - Klimawandel Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-131351 SN - 978-3-95826-034-4 (print) SN - 978-3-95826-035-1 (online) SN - 0510-9833 (print) SN - 2194-3656 (online) PB - Würzburg University Press CY - Würzburg ER - TY - THES A1 - Vogt, Gernot T1 - Future changes and signal analyses of climate means and extremes in the Mediterranean Area deduced from a CMIP3 multi-model ensemble T1 - Zukünftige Veränderungen und Signalanalysen klimatischer Mittelwerte und Extremereignisse im Mittelmeerraum abgeleitet aus einem Multi-Modell Ensemble der CMIP3-Datenbank N2 - Considering its social, economic and natural conditions the Mediterranean Area is a highly vulnerable region by designated affections of climate change. Furthermore, its climatic characteristics are subordinated to high natural variability and are steered by various elements, leading to strong seasonal alterations. Additionally, General Circulation Models project compelling trends in specific climate variables within this region. These circumstances recommend this region for the scientific analyses conducted within this study. Based on the data of the CMIP3 database, the fundamental aim of this study is a detailed investigation of the total variability and the accompanied uncertainty, which superpose these trends, in the projections of temperature, precipitation and sea-level pressure by GCMs and their specific realizations. Special focus in the whole study is dedicated to the German model ECHAM5/MPI-OM. Following this ambition detailed trends and mean values are calculated and displayed for meaningful time periods and compared to reanalysis data of ERA40 and NCEP. To provide quantitative comparison the mentioned data are interpolated to a common 3x3° grid. The total amount of variability is separated in its contributors by the application of an Analysis of Variance (ANOVA). For individual GCMs and their ensemble-members this is done with the application of a 1-way ANOVA, separating a treatment common to all ensemble-members and variability perturbating the signal given by different initial conditions. With the 2-way ANOVA the projections of numerous models and their realizations are analysed and the total amount of variability is separated into a common treatment effect, a linear bias between the models, an interaction coefficient and the residuals. By doing this, the study is fulfilled in a very detailed approach, by considering yearly and seasonal variations in various reasonable time periods of 1961-2000 to match up with the reanalysis data, from 1961-2050 to provide a transient time period, 2001-2098 with exclusive regard on future simulations and 1901-2098 to comprise a time period of maximum length. The statistical analyses are conducted for regional-averages on the one hand and with respect to individual grid-cells on the other hand. For each of these applications the SRES scenarios of A1B, A2 and B1 are utilized. Furthermore, the spatial approach of the ANOVA is substituted by a temporal approach detecting the temporal development of individual variables. Additionally, an attempt is made to enlarge the signal by applying selected statistical methods. In the detailed investigation it becomes evident, that the different parameters (i.e. length of temporal period, geographic location, climate variable, season, scenarios, models, etc…) have compelling impact on the results, either in enforcing or weakening them by different combinations. This holds on the one hand for the means and trends but also on the other hand for the contributions of the variabilities affecting the uncertainty and the signal. While temperature is a climate variable showing strong signals across these parameters, for precipitation mainly the noise comes to the fore, while for sea-level pressure a more differentiated result manifests. In turn, this recommends the distinguished consideration of the individual parameters in climate impact studies and processes in model generation, as the affecting parameters also provide information about the linkage within the system. Finally, an investigation of extreme precipitation is conducted, implementing the variables of the total amount of heavy precipitation, the frequency of heavy-precipitation events, the percentage of this heavy precipitation to overall precipitation and the mean daily intensity from events of heavy precipitation. Each time heavy precipitation is defined to exceed the 95th percentile of overall precipitation. Consecutively mean values of these variables are displayed for ECHAM5/MPI-OM and the multi-model mean and climate sensitivities, by means of their difference between their average of the past period of 1981-2000 and the average of one of the future periods of 2046-2065 or 2081-2100. Following this investigation again an ANOVA is conducted providing a quantitative measurement of the severity of change of trends in heavy precipitation across several GCMs. Besides it is a difficult task to account for extreme precipitation by GCMs, it is noteworthy that the investigated models differ highly in their projections, resulting partially in a more smoothed and meaningful multi-model mean. Seasonal alterations of the strength of this behaviour are quantitatively supported by the ANOVA. N2 - Bezüglich seiner sozialen, wirtschaftlichen und natürlichen Gegebenheiten ist der Mittelmeerraum eine Region, die in Anbetracht des zu erwartenden Klimawandels äußerst anfällig ist. Seine klimatischen Eigenschaften sind hoher natürlicher Variabilität, unterschiedlichen Antriebsmechanismen, sowie einer starken saisonalen Schwankung unterworfen. Zudem projizieren Globale Zirkulationsmodelle für diese Region aussagekräftige Trends für ausgewählte Klimavariablen. Diese Vorraussetzungen machen den Mittelmeerraum zu einem hervorragenden Studienobjekt für diese wissenschaftliche Arbeit. Auf der Basis der CMIP3 Datenbank ist das zu Grunde liegende Ziel dieser Arbeit eine detaillierte Untersuchung der Gesamtvariabilität und der damit einhergehenden Unsicherheit, die in den Projektionen der Globalen Zirkulationsmodelle und deren einzelnen Realisationen die Trends der Variablen Temperatur, Niederschlag und Druck überlagert. Besonderes Augenmerk liegt dabei auf dem deutschen Modell ECHAM5/MPI-OM. Für dieses Ziel werden Trends und Mittelwerte für aussagekräftige Zeitperioden berechnet und graphisch den Reanalysedatensätzen NCEP und ERA40 gegenübergestellt. Um quantitative Vergleiche zu ermöglichen werden die angesprochenen Datensätze auf ein gemeinsames geographisches Gitter von 3x3° interpoliert. Der Gesamtanteil der Variabilität wird in seine Entstehungsquellen durch die Anwendung einer Varianzanalyse (ANOVA) aufgeteilt. Dies wird mit einer 1-Wege Varianzanalyse für einzelne Globale Zirkulationsmodelle und ihre Realisationen durchgeführt, wobei ein Anteil dem Signal entspricht, das in allen Realisationen vorhanden ist und ein Anteil dem Rauschen zugeordnet werden kann, das das Signal überlagert und unterschiedlichen Anfangsbedingungen des Modells geschuldet ist. Durch eine 2-Wege Varianzanalyse werden die unterschiedlichen Realisationen mehrerer Klimamodelle in eine Analyse eingebunden, wobei der Anteil der Gesamtvariabilität wiederum in einen gemeinsamen Signalanteil, einem Anteil des linearen Unterschieds zwischen den verschiedenen Klimamodellen, einem Interaktionskoeffizient und dem Rauschen aufgeteilt werden. Die Anwendung dieser Verfahren wird detailliert ausgeführt, indem die Analysen auf jährlicher und saisonaler Grundlage für unterschiedliche Zeitperioden, nämlich 1961-1990 für den Vergleich mit den Reanalysedatensätzen, 1961-2050 als eine Übergangsperiode zwischen den Szenarien, 2001-2098 als reinen zukünftigen Betrachtungszeitraum und 1901-2098 um eine maximal umfassende Zeitperiode zu erhalten, betrachtet werden. Die statistischen Verfahren werden sowohl für regionale Mittelwerte als auch für einzelne Gitterpunkte berechnet. Für jede dieser Berechnungen werden die SRES Szenarien A1B, A2 und B1 herangezogen. Zudem wird der räumliche Ansatz der ANOVA ebenso durch einen zeitlichen ersetzt, wodurch die zeitliche Entwicklung der einzelnen Variabilitäten dargestellt wird. Des Weiteren wird durch gezielte statistische Methoden versucht, künstlich verstärkte Signale zu detektieren. Durch die detaillierte Untersuchung wird offenkundig, dass die unterschiedlichen Randbedingungen (hier die Länge der Zeitperiode, der geographische Ort, die Bezugsvariable, die Saison, das Szenario, das Modell, etc…) eine entscheidende Rolle für das Ergebnis spielen, indem sie einerseits durch deren unterschiedlicher Kombination es sowohl verstärken als auch glätten können. Dies gilt sowohl für die Mittelwerte und die Trends als auch für die unterschiedlichen Partitionen der Variabilitäten, die wiederum die Unsicherheiten und das Signal beeinflussen. Während Temperatur starke Signale über alle dieser Randbedingungen aufweist, so zeigt sich für Niederschlag hauptsächlich ein starkes Rauschen, während für Druck eine sehr ambivalente Verteilung hervortritt. Dies wiederum beweist, dass dieser differenzierte Ansatz bezüglich der Betrachtung der Abhängigkeit dieser Randebedingungen unabdinglich in Klimafolgestudien und der Modellentwicklung ist, da diese Bedingungen auch Informationen über die Wechselbeziehungen im System beinhalten. Schließlich wird noch die Entwicklung von Extremereignissen hinsichtlich der Niederschlagsmengen von Extremereignissen, der Häufigkeit der Ereignisse von extremen Niederschlagsmengen, dem prozentualen Anteil der Niederschlagsmenge aus Extremereignissen zu der Gesamtniederschlagsmenge und der mittleren täglichen Intensität von Niederschlagsextremereignissen untersucht. Hierbei wird ein Extremereignis als ein Ereignis definiert, das in seiner Menge oberhalb des 95.Perzentils der Menge der Gesamtereignisse liegt. So werden Mittelwerte dieser Variablen für ECHAM5/MPI-OM und über alle Modelle sowie deren Veränderungen zwischen ihren Mittelwerten aus den Zeiträumen der Vergangenheit 1981-2000 und den zukünftigen Perioden von 2046-2065 oder 2081-2100 gezeigt. Der Struktur dieser Studie folgend, wird wiederum eine ANOVA angewendet um eine quantitative Ermessung der Stärke der Veränderung im Erscheinungsbild von Extremniederschlagsereignissen über eine Vielzahl verschiedener Zirkulationsmodelle zu gewinnen. Ungeachtet der schwierigen Tatsache, Extremniederschlagsereignisse aus GCMs abzuleiten, ist es erwähnenswert, dass die betrachteten Modelle stark in ihren Projektionen abweichen, was wiederum zu einem in einem gemäßigten und aussagekräftigerem Multi-Modell Mittelwert führt. Saisonale Unterschiede in diesem Verhalten können durch die ANOVA quantitativ belegt werden. KW - Klimaschwankung KW - Klimaänderung KW - Mittelmeerraum KW - Varianzanalyse KW - Hochschulschrift KW - Climate KW - Climate Change KW - Analysis of Variance KW - ANOVA KW - Mediterranean KW - Signal Noise KW - Uncertainty KW - General Circulation Model KW - Klima KW - Extremwert KW - Modell Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117369 ER - TY - THES A1 - Mutz, Sebastian T1 - Dynamic Statistical Modelling of Climate-Related Mass Balance Changes in Norway T1 - Dynamisch-Statistische Modellierung Klimabedingter Gletschermassenveränderungen in Norwegen N2 - The glaciers in Norway exert a strong influence on Norwegian economy and society. Unlike many glaciers elsewhere and despite ongoing climate change and warming, many of them showed renewed advances and positive net mass changes in the 1980's and 1990's, followed by rapid retreats and mass losses since 2000. This difference in behaviour may be attributed to differences and shifts in the glaciological regime - the differences in the magnitude of impacts of climatic and non-climatic geographical factors on the glacier mass. This study investigates the influence of various atmospheric variables on mass balance changes of a selection of glaciers in Norway by means of Pearson correlation analyses and cross-validated stepwise multiple regression analyses. The analyses are carried out for three time periods (1949-2008, 1949-1988, 1989-2008) separately in order to take into consideration the possible shift in the glaciological regime in the 1980's. The atmospheric variables are constructed from ERA40 and NCEP/NCAR re-analysis datasets and include regional means of seasonal air temperature and precipitation rates and atmospheric circulation indices. The multiple regression models trained in these time periods are then applied to predictors reconstructed from the CMIP3 climate model dataset to generate an estimate for mass changes from the year 1950 to 2100. The temporal overlap of estimates and observations is used for calibration. Finally, observed atmospheric states in seasons that are characterised by a particularly positive or negative mass balance are categorised into time periods of modelled climate by the application of a Bayesian classification procedure. The strongest influence on winter mass balance is exerted by different indices of the North Atlantic Oscillation (NAO), Northern Annular Mode (NAM) and precipitation. The correlation coefficients and explained variances determined from the multiple regression analyses reveal an East-West gradient, suggesting a weaker influence of the NAO and NAM on glaciers underlying a more continental regime. The highest correlation coefficients and explained variances were obtained for the 1989-2008 time period, which might be due to a strong and predominantly positive phase of the NAO. Multi-model ensemble means of the estimates show a mass loss for all three eastern glaciers, while the estimates for the more maritime glaciers are ambivalent. In general, the estimates show a greater sensitivity to the training time period than to the greenhouse gas emission scenarios according to which the climates were simulated. The average net mass change by the end of 2100 is negative for all glaciers except for the northern Engabreen. For many glaciers, the Bayesian classification of observed atmospheric states into time periods of modelled climate reveals a decrease in probability of atmospheric states favouring extremes in winter, and an increase in probability of atmospheric states favouring extreme mass loss in summer for the distant future (2071-2100). This pattern of probabilities for the ablation season is most pronounced for glaciers underlying a continental and intermediate regime. N2 - Gletscher in Norwegen stellen einen starken Einflussfaktor auf Wirtschaft und Gesellschaft dar. Trotz des Klimawandels und Erwärmung kam es zu einem Vorstoß der Gletscher in den späten 1980er und 1990ern, welcher erst ab dem Jahr 2000 durch einen starken Massenverlust abgelöst wurde. Dieses Verhalten lässt sich möglicherweise durch Unterschiede und Veränderungen im glaziologischen Regime erklären, d.h. Unterschiede in der Stärke der Einflüsse von klimatisch und nicht-klimatischen Faktoren auf die Gletschermassenbilanzen. Diese Arbeit untersucht den Einfluss verschiedener atmosphärischer Variablen auf die Massenveränderungen einiger Gletscher in Norwegen mit Hilfe von Korrelationsanalysen und kreuzvalidierten schrittweise multiple Regressionsanalysen. Diese werden für die Zeitabschnitte 1949-2008, 1949-1988 und 1989-2008 separat durchgeführt um den möglichen Regimewechsel in the 1980ern zu berücksichtigen. Die atmosphärischen Variablen werden aus ERA40 und NCEP/NCAR Re-analysen erstellt und beinhalten unter anderem atmosphärische Zirkulationsindizes und regionale Mittel von saisonalem Niederschlag und Temperatur. Die Regressionmodelle werden dann auf die aus den Daten des CMIP3 Klimamodelldatenarchiv rekonstruierten Prädiktoren angewandt um eine Abschätzung der Gletschermassenveränderung für den Zeitraum von 1950 bis 2100 zu erstellen. Die zeitliche Überschneidung von Abschätzungen und Beobachtungen wird zur Eichung genutzt. Zuletzt wird durch einen Bayesischen Klassifizierungsansatz beobachtete atmosphärische Zustände in Jahren, die durch besonders negative oder positive Massenbilanzen geprägt sind, in Zeitabschnitte von modelliertem Klima eingeordnet. Der größte Einfluss auf Wintermassenbilanzen stellt die Nordatlantische Oszillation, Arktische Oszillation und Niederschlagsmittel dar. Die Höhe der Korrelationskoeffizienten und der durch diese Prädiktoren erklärte Varianz der Wintermassenbilanz nimmt für die östlich gelegenen, kontinental geprägteren Gletscher ab. Die stärksten stochastischen Zusammenhänge und höchsten erklärten Varianzen werden aus dem 1989-2008 Zeitabschnitt gewonnen und lassen sich möglicherweise durch eine meist starke und positive Phase der Winter-NAO in diesem Zeitraum erklären. Multi-model Ensemble Means der Abschätzungen der Gletschermassenveränderungen zeigen den größten Massenverlust für die östlich gelegenen, kontinentaleren Gletscher auf. Die Abschätzungen für die eher maritim geprägten Gletscher sind weniger eindeutig. Im Allgemeinen reagieren die Abschätzungen empfindlicher auf die Wahl des Trainingszeitraums für die Regressionsmodelle als auf die Emissionsszenarien der Klimamodellläufe. Im Durchschnitt ist die kumulative Massenbilanz im Jahr 2100 jedoch für fast alle Gletscher negativ. Der nördlich gelegene Engabreen stellt die einzige Ausnahme dar. Die Resultate des Bayesischen Klassifikationsansatzes zeigen eine Abnahme in der Wahrscheinlichkeit für atmospphärischen Zustände, die Minima und Maxima winterlicher Akkumulation begünstigen. Des Weiteren zeigen die Resultate eine Zunahme in der Wahrscheinlichkeit der atmosphärischen Zustände, die starken Massenverlust im Sommer begünstigen. Dies ist besonders bei den Gletschern der Fall, die einem kontinentalen oder Übergangsregime unterliegen. KW - Norwegen KW - Klimatologie KW - Klimaänderung KW - Gletscherschwankung KW - Geschichte 1949-2008 KW - dynamic-statistical KW - statistica modelling KW - glaciers KW - climate change KW - norway KW - statistics KW - bayesian Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-114799 ER - TY - THES A1 - Pollinger, Felix T1 - Bewertung und Auswirkungen der Simulationsgüte führender Klimamoden in einem Multi-Modell Ensemble T1 - Evaluation and effects of the simulation quality of leading climate modes in a multi-model ensemble N2 - Der rezente und zukünftige Anstieg der atmosphärischen Treibhausgaskonzentration bedeutet für das terrestrische Klimasystem einen grundlegenden Wandel, der für die globale Gesellschaft schwer zu bewältigende Aufgaben und Herausforderungen bereit hält. Eine effektive, rühzeitige Anpassung an diesen Klimawandel profitiert dabei enorm von möglichst genauen Abschätzungen künftiger Klimaänderungen. Das geeignete Werkzeug hierfür sind Gekoppelte Atmosphäre Ozean Modelle (AOGCMs). Für solche Fragestellungen müssen allerdings weitreichende Annahmen über die zukünftigen klimarelevanten Randbedingungen getroffen werden. Individuelle Fehler dieser Klimamodelle, die aus der nicht perfekten Abbildung der realen Verhältnisse und Prozesse resultieren, erhöhen die Unsicherheit langfristiger Klimaprojektionen. So unterscheiden sich die Aussagen verschiedener AOGCMs im Hinblick auf den zukünftigen Klimawandel insbesondere bei regionaler Betrachtung, deutlich. Als Absicherung gegen Modellfehler werden üblicherweise die Ergebnisse mehrerer AOGCMs, eines Ensembles an Modellen, kombiniert. Um die Abschätzung des Klimawandels zu präzisieren, wird in der vorliegenden Arbeit der Versuch unternommen, eine Bewertung der Modellperformance der 24 AOGCMs, die an der dritten Phase des Vergleichsprojekts für gekoppelte Modelle (CMIP3) teilgenommen haben, zu erstellen. Auf dieser Basis wird dann eine nummerische Gewichtung für die Kombination des Ensembles erstellt. Zunächst werden die von den AOGCMs simulierten Klimatologien für einige grundlegende Klimaelemente mit den betreffenden klimatologien verschiedener Beobachtungsdatensätze quantitativ abgeglichen. Ein wichtiger methodischer Aspekt hierbei ist, dass auch die Unsicherheit der Beobachtungen, konkret Unterschiede zwischen verschiedenen Datensätzen, berücksichtigt werden. So zeigt sich, dass die Aussagen, die aus solchen Ansätzen resultieren, von zu vielen Unsicherheiten in den Referenzdaten beeinträchtigt werden, um generelle Aussagen zur Qualität von AOGCMs zu treffen. Die Nutzung der Köppen-Geiger Klassifikation offenbart jedoch, dass die prinzipielle Verteilung der bekannten Klimatypen im kompletten CMIP3 in vergleichbar guter Qualität reproduziert wird. Als Bewertungskriterium wird daher hier die Fähigkeit der AOGCMs die großskalige natürliche Klimavariabilität, konkret die hochkomplexe gekoppelte El Niño-Southern Oscillation (ENSO), realistisch abzubilden herangezogen. Es kann anhand verschiedener Aspekte des ENSO-Phänomens gezeigt werden, dass nicht alle AOGCMs hierzu mit gleicher Realitätsnähe in der Lage sind. Dies steht im Gegensatz zu den dominierenden Klimamoden der Außertropen, die modellübergreifend überzeugend repräsentiert werden. Die wichtigsten Moden werden, in globaler Betrachtung, in verschiedenen Beobachtungsdaten über einen neuen Ansatz identifiziert. So können für einige bekannte Zirkulationsmuster neue Indexdefinitionen gewonnen werden, die sich sowohl als äquivalent zu den Standardverfahren erweisen und im Vergleich zu diesen zudem eine deutliche Reduzierung des Rechenaufwandes bedeuten. Andere bekannte Moden werden dagegen als weniger bedeutsame, regionale Zirkulationsmuster eingestuft. Die hier vorgestellte Methode zur Beurteilung der Simulation von ENSO ist in guter Übereinstimmung mit anderen Ansätzen, ebenso die daraus folgende Bewertung der gesamten Performance der AOGCMs. Das Spektrum des Southern Oscillation-Index (SOI) stellt somit eine aussagekräftige Kenngröße der Modellqualität dar. Die Unterschiede in der Fähigkeit, das ENSO-System abzubilden, erweisen sich als signifikante Unsicherheitsquelle im Hinblick auf die zukünftige Entwicklung einiger fundamentaler und bedeutsamer Klimagrößen, konkret der globalen Mitteltemperatur, des SOIs selbst, sowie des indischen Monsuns. Ebenso zeigen sich signifikante Unterschiede für regionale Klimaänderungen zwischen zwei Teilensembles des CMIP3, die auf Grundlage der entwickelten Bewertungsfunktion eingeteilt werden. Jedoch sind diese Effekte im Allgemeinen nicht mit den Auswirkungen der anthropogenen Klimaänderungssignale im Multi-Modell Ensemble vergleichbar, die für die meisten Klimagrößen in einem robusten multivariaten Ansatz detektiert und quantifiziert werden können. Entsprechend sind die effektiven Klimaänderungen, die sich bei der Kombination aller Simulationen als grundlegende Aussage des CMIP3 unter den speziellen Randbedingungen ergeben nahezu unabhängig davon, ob alle Läufe mit dem gleichen Einfluss berücksichtigt werden, oder ob die erstellte nummerische Gewichtung verwendet wird. Als eine wesentliche Begründung hierfür kann die Spannbreite der Entwicklung des ENSO-Systems identifiziert werden. Dies bedeutet größere Schwankungen in den Ergebnissen der Modelle mit funktionierendem ENSO, was den Stellenwert der natürlichen Variabilität als Unsicherheitsquelle in Fragen des Klimawandels unterstreicht. Sowohl bei Betrachtung der Teilensembles als auch der Gewichtung wirken sich dadurch gegenläufige Trends im SOI ausgleichend auf die Entwicklung anderer Klimagrößen aus, was insbesondere bei letzterem Vorgehen signifikante mittlere Effekte des Ansatzes, verglichen mit der Verwendung des üblichen arithmetischen Multi-Modell Mittelwert, verhindert. N2 - The recent and future increase in atmospheric greenhouse gases will cause fundamental change in the terrestrial climate system, which will lead to enormous tasks and challenges for the global society. Effective and early adaptation to this climate change will benefit hugley from optimal possible estimates of future climate change. Coupled atmosphere-ocean models (AOGCMs) are the appropriate tool for this. However, to tackle these questions, it is necessary to make far reaching assumptions about the future climate-relevant boundary conditions. Furthermore there are individual errors in each climate model. These originate from flaws in reproducing the real climate system and result in a further increase of uncertainty with regards to long-range climate projections. Hence, concering future climate change, there are pronounced differences between the results of different AOGCMs, especially under a regional point of view. It is the usual approach to use a number of AOGCMs and combine their results as a safety measure against the influence of such model errors. In this thesis, an attempt is made to develop a valuation scheme and based on that a weighting scheme, for AOGCMs in order to narrow the range of climate change projections. The 24 models that were included in the third phase of the coupled model intercomparsion project (CMIP3) are used for this purpose. First some fundamental climatologies simulated by the AOGCMs are quantitatively compared to a number of observational data. An important methodological aspect of this approach is to explicitly address the uncertainty associated with the observational data. It is revealed that statements concerning the quality of climate models based on such hindcastig approaches might be flawed due to uncertainties about observational data. However, the application of the Köppen-Geiger classification reveales that all considered AOGCMs are capable of reproducing the fundamental distribution of observed types of climate. Thus, to evaluate the models, their ability to reproduce large-scale climate variability is chosen as the criterion. The focus is on one highly complex feature, the coupled El Niño-Southern Oscillation. Addressing several aspects of this climate mode, it is demonstrated that there are AOGCMs that are less successful in doing so than others. In contrast, all models reproduce the most dominant extratropical climate modes in a satisfying manner. The decision which modes are the most important is made using a distinct approach considering several global sets of observational data. This way, it is possible to add new definitions for the time series of some well-known climate patterns, which proof to be equivalent to the standard definitions. Along with this, other popular modes are identified as less important regional patterns. The presented approach to assess the simulation of ENSO is in good agreement with other approaches, as well as the resulting rating of the overall model performance. The spectrum of the timeseries of the Southern Oscillation Index (SOI) can thus be regarded as a sound parameter of the quality of AOGCMs. Differences in the ability to simulate a realistic ENSO-system prove to be a significant source of uncertainty with respect to the future development of some fundamental and important climate parameters, namely the global near-surface air mean temperature, the SOI itself and the Indian monsoon. In addition, there are significant differences in the patterns of regional climate change as simulated by two ensembles, which are constituted according to the evaluation function previously developed. However, these effects are overall not comparable to the multi-model ensembles’ anthropogenic induced climate change signals which can be detected and quantified using a robust multi-variate approach. If all individual simulations following a specific emission scenario are combined, the resulting climate change signals can be thought of as the fundamental message of CMIP3. It appears to be quite a stable one, more or less unaffected by the use of the derived weighting scheme instead of the common approach to use equal weights for all simulations. It is reasoned that this originates mainly from the range of trends in the SOI. Apparently, the group of models that seems to have a realistic ENSO-system also shows greater variations in terms of effective climate change. This underlines the importance of natural climate variability as a major source of uncertainty concerning climate change. For the SOI there are negative Trends in the multi-model ensemble as well as positive ones. Overall, these trends tend to stabilize the development of other climate parameters when various AOGCMs are combined, whether the two distinguished parts of CMIP3 are analyzed or the weighting scheme is applied. Especially in case of the latter method, this prevents significant effects on the mean change compared to the arithmetic multi-model mean. KW - Modell KW - Klima KW - Statistik KW - Anthropogene Klimaänderung KW - El-Niño-Phänomen KW - multi-model ensemble KW - großskalige Klimavariabilität KW - Gewichtung von Klimamodellen KW - large scale climate variability KW - weighting of climate models KW - Allgemeine atmosphärische Zirkulation KW - Klimatologie KW - Klimaänderung KW - Modellierung KW - Mathematisches Modell Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-97982 ER - TY - THES A1 - Höser, Thorsten T1 - Global Dynamics of the Offshore Wind Energy Sector Derived from Earth Observation Data - Deep Learning Based Object Detection Optimised with Synthetic Training Data for Offshore Wind Energy Infrastructure Extraction from Sentinel-1 Imagery T1 - Globale Dynamik des Offshore-Windenergiesektors abgeleitet aus Erdbeobachtungsdaten - Deep Learning-basierte Objekterkennung, optimiert mit synthetischen Trainingsdaten für die Extraktion von Offshore-Windenergieinfrastrukturen aus Sentinel-1 Bildern N2 - The expansion of renewable energies is being driven by the gradual phaseout of fossil fuels in order to reduce greenhouse gas emissions, the steadily increasing demand for energy and, more recently, by geopolitical events. The offshore wind energy sector is on the verge of a massive expansion in Europe, the United Kingdom, China, but also in the USA, South Korea and Vietnam. Accordingly, the largest marine infrastructure projects to date will be carried out in the upcoming decades, with thousands of offshore wind turbines being installed. In order to accompany this process globally and to provide a database for research, development and monitoring, this dissertation presents a deep learning-based approach for object detection that enables the derivation of spatiotemporal developments of offshore wind energy infrastructures from satellite-based radar data of the Sentinel-1 mission. For training the deep learning models for offshore wind energy infrastructure detection, an approach is presented that makes it possible to synthetically generate remote sensing data and the necessary annotation for the supervised deep learning process. In this synthetic data generation process, expert knowledge about image content and sensor acquisition techniques is made machine-readable. Finally, extensive and highly variable training data sets are generated from this knowledge representation, with which deep learning models can learn to detect objects in real-world satellite data. The method for the synthetic generation of training data based on expert knowledge offers great potential for deep learning in Earth observation. Applications of deep learning based methods can be developed and tested faster with this procedure. Furthermore, the synthetically generated and thus controllable training data offer the possibility to interpret the learning process of the optimised deep learning models. The method developed in this dissertation to create synthetic remote sensing training data was finally used to optimise deep learning models for the global detection of offshore wind energy infrastructure. For this purpose, images of the entire global coastline from ESA's Sentinel-1 radar mission were evaluated. The derived data set includes over 9,941 objects, which distinguish offshore wind turbines, transformer stations and offshore wind energy infrastructures under construction from each other. In addition to this spatial detection, a quarterly time series from July 2016 to June 2021 was derived for all objects. This time series reveals the start of construction, the construction phase and the time of completion with subsequent operation for each object. The derived offshore wind energy infrastructure data set provides the basis for an analysis of the development of the offshore wind energy sector from July 2016 to June 2021. For this analysis, further attributes of the detected offshore wind turbines were derived. The most important of these are the height and installed capacity of a turbine. The turbine height was calculated by a radargrammetric analysis of the previously detected Sentinel-1 signal and then used to statistically model the installed capacity. The results show that in June 2021, 8,885 offshore wind turbines with a total capacity of 40.6 GW were installed worldwide. The largest installed capacities are in the EU (15.2 GW), China (14.1 GW) and the United Kingdom (10.7 GW). From July 2016 to June 2021, China has expanded 13 GW of offshore wind energy infrastructure. The EU has installed 8 GW and the UK 5.8 GW of offshore wind energy infrastructure in the same period. This temporal analysis shows that China was the main driver of the expansion of the offshore wind energy sector in the period under investigation. The derived data set for the description of the offshore wind energy sector was made publicly available. It is thus freely accessible to all decision-makers and stakeholders involved in the development of offshore wind energy projects. Especially in the scientific context, it serves as a database that enables a wide range of investigations. Research questions regarding offshore wind turbines themselves as well as the influence of the expansion in the coming decades can be investigated. This supports the imminent and urgently needed expansion of offshore wind energy in order to promote sustainable expansion in addition to the expansion targets that have been set. N2 - Der Ausbau erneuerbarer Energien wird durch den sukzessiven Verzicht auf fossile Energieträger zur Reduktion der Treibhausgasemissionen, dem stetig steigenden Energiebedarf sowie, in jüngster Zeit, von geopolitischen Ereignissen stark vorangetrieben. Der offshore Windenergiesektor steht in Europa, dem Vereinigten Königreich, China, aber auch den USA, Süd-Korea und Vietnam vor einer massiven Expansion. In den nächsten Dekaden werden die bislang größten marinen Infrastrukturprojekte mit tausenden neu installierten offshore Windturbinen realisiert. Um diesen Prozess global zu begleiten und eine Datengrundlage für die Forschung, für Entscheidungsträger und für ein kontinuierliches Monitoring bereit zu stellen, präsentiert diese Dissertation einen Deep Learning basierten Ansatz zur Detektion von offshore Windkraftanalagen aus satellitengestützten Radardaten der Sentinel-1 Mission. Für das überwachte Training der verwendeten Deep Learning Modelle zur Objektdetektion wird ein Ansatz vorgestellt, der es ermöglicht, Fernerkundungsdaten und die notwendigen Label synthetisch zu generieren. Hierbei wird Expertenwissen über die Bildinhalte, wie offshore Windkraftanlagen aber auch ihre natürliche Umgebung, wie Küsten oder andere Infrastruktur, gemeinsam mit Informationen über den Sensor strukturiert und maschinenlesbar gemacht. Aus dieser Wissensrepräsentation werden schließlich umfangreiche und höchst variable Trainingsdaten erzeugt, womit Deep Learning Modelle die Detektion von Objekten in Satellitendaten erlernen können. Das Verfahren zur synthetischen Erzeugung von Trainingsdaten basierend auf Expertenwissen bietet großes Potential für Deep Learning in der Erdbeobachtung. Deep Learning Ansätze können hierdurch schneller entwickelt und getestet werden. Darüber hinaus bieten die synthetisch generierten und somit kontrollierbaren Trainingsdaten die Möglichkeit, den Lernprozess der optimierten Deep Learning Modelle zu interpretieren. Das in dieser Dissertation für Fernerkundungsdaten entwickelte Verfahren zur Erstellung synthetischer Trainingsdaten wurde schließlich zur Optimierung von Deep Learning Modellen für die globale Detektion von offshore Windenergieanlagen eingesetzt. Hierfür wurden Aufnahmen der gesamten globalen Küstenlinie der Sentinel-1 Mission der ESA ausgewertet. Der abgeleitete Datensatz, welcher 9.941 Objekte umfasst, unterscheidet offshore Windturbinen, Trafostationen und im Bau befindliche offshore Windenergieinfrastrukturen voneinander. Zusätzlich zu dieser räumlichen Detektion wurde eine vierteljährliche Zeitreihe von Juli 2016 bis Juni 2021 für alle Objekte generiert. Diese Zeitreihe zeigt den Start des Baubeginns, die Bauphase und den Zeitpunkt der Fertigstellung mit anschließendem Betrieb für jedes Objekt. Der gewonnene Datensatz dient weiterhin als Grundlage für eine Analyse der Entwicklung des offshore Windenergiesektors von Juli 2016 bis Juni 2021. Für diese Analyse wurden weitere Attribute der Turbinen abgeleitet. In einem radargrammetrischen Verfahren wurde die Turbinenhöhe berechnet und anschließend verwendet, um die installierte Leistung statistisch zu modellieren. Die Ergebnisse hierzu zeigen, dass im Juni 2021 weltweit 8.885 offshore Windturbinen mit insgesamt 40,6 GW Leistung installiert waren. Die größten installierten Leistungen stellen dabei die EU (15,2 GW), China (14,1 GW) und das Vereinigte Königreich (10,7 GW). Von Juli 2016 bis Juni 2021 hat China 13 GW installierte Leistung ausgebaut. Die EU hat im selben Zeitraum 8 GW und das Vereinigte Königreich 5,8 GW offshore Windenergieinfrastruktur installiert. Diese zeitliche Analyse verdeutlicht, dass China der maßgebliche Treiber in der Expansion des offshore Windenergiesektors im untersuchten Zeitraum war. Der abgeleitete Datensatz zur Beschreibung des offshore Windenergiesektors wurde öffentlich zugänglich gemacht. Somit steht er allen Entscheidungsträgern und Stakeholdern, die am Ausbau von offshore Windenergieanlagen beteiligt sind, frei zur Verfügung. Vor allem im wissenschaftlichen Kontext dient er als Datenbasis, welche unterschiedlichste Untersuchungen ermöglicht. Hierbei können sowohl Forschungsfragen bezüglich der offshore Windenergieanlagen selbst, als auch der Einfluss des Ausbaus der kommenden Dekaden untersucht werden. Somit wird der bevorstehende und dringend notwendige Ausbau der offshore Windenergie unterstützt, um neben den gesteckten Zielen auch einen nachhaltigen Ausbau zu fördern. KW - deep learning KW - offshore wind energy KW - artificial intelligence KW - earth observation KW - remote sensing Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-292857 ER - TY - THES A1 - Knöfel, Patrick T1 - Energiebilanzmodellierung zur Ableitung der Evapotranspiration – Beispielregion Khorezm T1 - Optimization of energy balance modelling in order to determine evapotranspiration by developing a physical based soil heat flux approach on the example of Khorezm region in Uzbekistan N2 - Zum Verständnis der komplexen Wechselwirkungen innerhalb des Klimasystems der Erde sind Kenntnisse über den hydrologischen Zyklus und den Energiekreislauf essentiell. Eine besondere Rolle obliegt hierbei der Evapotranspiration (ET), da sie eine wesentliche Teilkomponente beider oben erwähnter Kreisläufe ist. Die exakte Quantifizierung der regionalen, tatsächlichen Evapotranspiration innerhalb der Wasser- und Energiekreisläufe der Erdoberfläche auf unterschiedlichen zeitlichen und räumlichen Skalen ist für hydrologische, klimatologische und agronomische Fragestellungen von großer Bedeutung. Dabei ist eine realistische Abschätzung der regionalen tatsächlichen Evapotranspiration die wichtigste Herausforderung der hydrologischen Modellierung. Besonders die unterschiedlichen räumlichen und zeitlichen Auflösungen von Satelliteninformationen machen die Fernerkundung sowohl für globale als auch regionale hydrologischen Fragestellungen interessant. Zusätzlich zur Notwendigkeit des Prozessverständnisses des Wasserkreislaufs auf globaler Ebene kommt dessen regionale Bedeutung für die Landwirtschaft, insbesondere in Bewässerungssystemen arider Regionen. In ariden Klimazonen übersteigt die Menge der Verdunstung oft bei weitem die Niederschlagsmengen. Aufgrund der geringen Niederschlagsmenge muss in ariden agrarischen Regionen das zum Pflanzenwachstum benötigte Wasser mit Hilfe künstlicher Bewässerung aufgebracht werden. Der jeweilige lokale Bewässerungsbedarf hängt von der Feldfrucht und deren Wachstumsphase, den Klimabedingungen, den Bodeneigenschaften und der Ausdehnung der Wurzelzone ab. Die Evapotranspiration ist als Komponente der regionalen Wasserbilanz eine wichtige Steuerungsgröße und Effizienzindikator für das lokale Bewässerungsmanagement. Die Bewässe-rungslandwirtschaft verbraucht weltweit etwa 70 % der verfügbaren Süßwasservorkom-men. Dies wird als einer der Hauptgründe für die weltweit steigende Wasserknappheit identifiziert. Dabei liegt die Wasserentnahme des landwirtschaftlichen Sektors in den OECD Staaten im Mittel bei etwa 44 %, in den Staaten Mittelasiens bei über 90 %. Bei der Erstellung der vorliegenden Arbeit kam die Methode der residualen Bestimmung der Energiebilanz zum Einsatz. Eines der weltweit am häufigsten eingesetzten und vali-dierten fernerkundlichen Residualmodelle zur ET Ableitung ist das SEBAL-Modell (Surface Energy Balance Algorithm for Land, mit über 40 veröffentlichten Studien. SEBAL eignet sich zur Quantifizierung der Verdunstung großflächiger Gebiete und wurde bisher über-wiegend in der Bewässerungslandwirtschaft eingesetzt. Aus diesen Gründen wurde es für die Bearbeitung der Fragestellungen in dieser Arbeit ausgewählt. SEBAL verwendet physikalische und empirische Beziehungen zur Berechnung der Energiebilanzkomponenten basierend auf Fernerkundungsdaten, bei gleichzeitig minimalem Einsatz bodengestützter Daten. Als Eingangsdaten werden u.a. Informationen über Strahlung, Bodenoberflächentemperatur, NDVI, LAI und Albedo verwendet. Zusätzlich zu SEBAL wurden einige Komponenten der SEBAL Weiterentwicklung METRIC (Mapping Evapotranspiration with Internalized Calibration) verwendet, um die Modellierung der ET vorzunehmen. METRIC überwindet einige Limitierungen des SEBAL Verfahrens und kann beispielsweise auch in stärker reliefierten Regionen angewendet werden. Außerdem ermöglicht die Integration einer gebietsspezifischen Referenz-ET sowie einer Landnutzungsklassifikation eine bessere regionale Anpassung des Residualverfahrens. Unter der Annahme der Bedingungen zum Zeitpunkt der Fernerkundungsaufnahme ergibt sich die Energiebilanz an der Erdoberfläche RN = LvE + H + G. Demnach teilt sich die verfügbare Strahlungsenergie RN in die Komponenten latenter Wärme (LVE), fühlbarer Wärme (H) und Bodenwärme (G) auf. Durch Umstellen der Gleichung kann auf die latente Wärme geschlossen werden. Das wesentliche Ziel der vorliegenden Arbeit ist die Optimierung, Erweiterung und Validierung des ausgewählten SEBAL Verfahrens zur regionalen Modellierung der Energiebilanzkomponenten und der daraus abgeleiteten tatsächlichen Evapotranspiration. Die validierten Modellergebnisse der Gebietsverdunstung der Jahre 2009-2011 sollen anschließend als Grundlage dienen, das Gesamtverständnis der regionalen Prozesse des Wasserkreislaufs zu verbessern. Die Arbeit basiert auf der Datengrundlage von MODIS Daten mit 1 km räumlicher Auflösung. Während die Komponenten verfügbare Strahlungsenergie und fühlbarer Wärmestrom physikalisch basiert ermittelt werden, beruht die Berechnung des Bodenwärmestroms ausschließlich auf empirischen Abschätzungen. Ein großer Nachteil des empirischen Ansatzes ist die Vernachlässigung des zeitlichen Versatzes zwischen Strahlungsbilanz und Bodenwärmestrom in Abhängigkeit der aktuellen Bodenfeuchtesituation. Ein besonderer Schwerpunkt der vorliegenden Arbeit liegt auf der Bewertung und Verbesserung der Modellgüte des Bodenwärmestroms durch Verwendung eines neuen Ansatzes zur Integration von Bodenfeuchteinformationen. Daher wird in der Arbeit ein physikalischer Ansatz entwickelt der auf dem Ansatz der periodischen Temperaturveränderung basiert. Hierbei wurde neben dem ENVISAT ASAR SSM Produkt der TU Wien das operationelle Oberflächenbodenfeuchteprodukt ASCAT SSM als Fernerkundungseingangsdaten ausgewählt. Die mit SEBAL modellierten Energiebilanzkomponenten werden durch eine intensive Validierung mit bodengestützten Messungen bewertet, die Messungen stammen von Bodensensoren und Daten einer Eddy-Kovarianz-Station aus den Jahren 2009 bis 2011. Die Region Khorezm gilt als charakteristisch für die wasserbezogene Problematik der Bewässerungslandwirtschaft Mittelasiens und wurde als Untersuchungsgebiet für diese Arbeit ausgewählt. Die wesentlichen Probleme dieser Region entstehen durch die nach wie vor nicht nachhaltige Land- und Wassernutzung, das marode Bewässerungsnetz mit einer Verlustrate von bis zu 40 % und der Bodenversalzung aufgrund hoher Grundwasserspiegel. Im Untersuchungsgebiet wurden in den Jahren 2010 und 2011 umfangreiche Feldarbeiten zur Erhebung lokaler bodengestützter Informationen durchgeführt. Bei der Evaluierung der modellierten Einzelkomponenten ergab sich für die Strahlungsbi-lanz eine hohe Modellgüte (R² > 0,9; rRMSE < 0,2 und NSE > 0,5). Diese Komponente bildet die Grundlage bei der Bezifferung der für die Prozesse an der Erdoberfläche zur Verfügung stehenden Energie. Für die fühlbaren Wärmeströme wurden ebenfalls gute Ergebnisse erzielt, mit NSE von 0,31 und rRMSE von ca. 0,21. Für die residual bestimmte Größe der latenten Wärmeströmung konnte eine insgesamt gute Modellgüte festgestellt werden (R² > 0,6; rRMSE < 0,2 und NSE > 0,5). Dementsprechend gut wurde die tägliche Evapotranspiration modelliert. Hier ergab sich, nach der Interpolation täglicher Werte, eine insgesamt ausreichend gute Modellgüte (R² > 0,5; rRMSE < 0,2 und NSE > 0,4). Dies bestätigt die Ergebnisse vieler Energiebilanzstudien, die lediglich den für die Ableitung der Evapotranspiration maßgebenden Wärmestrom untersuchten. Die Modellergebnisse für den Bodenwärmestrom konnten durch die Entwicklung und Verwendung des neu entwickelten physikalischen Ansatzes von NSE < 0 und rRMSE von ca. 0,57 auf NSE von 0,19 und rRMSE von 0,35 verbessert werden. Dies führt zu einer insgesamt positiven Einschätzung des Verbesserungspotenzials des neu entwickelten Bodenwärmestromansatzes bei der Berechnung der Energiebilanz mit Hilfe von Fernerkundung. N2 - The understanding of the hydrological and the energy cycles are essential in order to describe the complex interactions within the climate system of the earth. Being recognized as an important component of both, the water and the energy cycle, reliable estimation of actual evapotranspiration and its spatial distribution is one outstanding challenge in this context. Detailed knowledge of land surface fluxes, especially latent and sensible heat components, is important for monitoring the climate and land surface, and for agriculture applications such as irrigation scheduling and water management. The use of remote sensing data to determine actual evapotranspiration (ET) is particularly suitable to provide area based indicators for the evaluation of the efficiency and productivity of irrigation systems as well as sustainability studies. Accurate estimation of evapotranspiration plays an important role in quantification of the water balance at watershed, basin, and regional scale for better planning and managing water resources. For instance, in irrigation systems of arid regions, artificial locations of evapotranspiration have been created. An in-depth process understanding is of paramount importance, as irrigated agriculture consumes about 70 % of the available freshwater resources worldwide, with a significant but unsatisfyingly quantified impact on the water cycle, especially on regional scale. Moreover, an exact quantification of ET inside these artificial ecosystems enables assessments of crop water consumptions and hence about water use efficiency. The withdrawal of water for agricultural use in the countries of Central Asia is more than 90 %. For this thesis the residual methods of energy budget are of interest. One of the most common models dealing with energy budget residual is the Surface Energy Balance Algorithm for Land (SEBAL). SEBAL uses physical and empirical relationships to calculate the energy partitioning with minimum of ground data and atmospheric variables are estimated from remote sensing data. The determination of wet and dry surfaces is necessary to extract threshold values. SEBAL requires remote sensing input data like radiation, surface temperature, NDVI, and albedo. For this thesis an algorithm was developed based on SEBAL, its adaptations METRIC (Mapping Evapotranspiration with Internalized Calibration) and some regional adjustments. METRIC introduces the leaf area index (LAI) and land use classification data to determine the dry and hot surfaces as well as the input of additional meteorological data in order to improve the results of the model. Estimation of latent heat flux (LvE, corresponding to evapotranspiration) with SEBAL is based on assessing the energy balance through several surface properties such as albedo, LAI, NDVI, LST etc. Considering instantaneous condition, the energy balance is written as RN = LvE + H + G. Net radiation energy (RN) is available as the sum of the atmospheric convective fluxes sensible heat flux (H), latent heat flux (LvE) and the soil heat flux (G). The main objective of this thesis is to optimize, improve, and evaluate the existing remote sensing based algorithms for the estimation of actual evapotranspiration. For this purpose the seasonal actual ET was calculated using a partly modified SEBAL. SEBAL was implemented based on MODIS time series to solve the energy balance equation. The applied model has proven practicable for this area and is accepted to fulfil the scientific demands. The SEBAL algorithm is tested and set up for the use of 1km MODIS products. Land surface temperature (LST), emissivity, albedo, Normalized Differenced Vegetation Index (NDVI), and leaf area index (LAI) were combined for modelling the actual ET. Land use classification results were aggregated to 1km MODIS scale. Furthermore, the surface soil moisture products ASCAT SSM and ASAR SSM will be used as input data for the model. In addition to remote sensing data meteorological and ground truth data are used in this study. Meteorological data are wind speed, air temperature, relative humidity, and net radiation. The data is required at time of satellite overpass (about 12 p.m.). RN depends on incoming shortwave radiation, incoming and outgoing longwave radiant fluxes, albedo, emissivity and surface temperature. H is mostly calculated using the aerodynamic resistance between the surface and the reference height in the lower atmosphere (commonly 2 m) above surface. G is usually estimated using an empirical equation. This thesis introduces a modified equation to estimate G using an adjusted form of the thermal conduction equation. This method uses microwave soil moisture products (ASAR-SSM and ASCAT-SSM) as additional input information. The SEBAL modelled energy balance components were intensively validated by field measurements with an eddy covariance system and soil sensors in 2009, 2010, and 2011. The thesis is primarily concerned with the irrigation farming of cotton ecosystems in Central Asia, in particular with the situation within Khorezm Oblast in Uzbekistan. Regional problems of Khorezm are high groundwater levels, soil salinity, and non-sustainable use of land and water. Amongst others, the determination of ground truth data driven by the above mentioned objectives are part of two extensive field campaigns in 2010 and 2011. The validation of the modelled energy balance components leads to a good quality assessment. The model shows very good performance for RN with average model efficiency (NSE) of 0,68 and small relative errors (rRMSE) of about 0,10. For turbulent heat fluxes good results can be achieved with NSE of 0,31 for H and 0,55 for LE, the rRMSE are about 0,21 (H) and 0,18 (LvE). Soil heat flux estimation could be improved using the physically based approach. While the empirical equation leads to negative NSE and rRMSE of about 0,57, the improved approach shows rRMSE of 0,35 and NSE of 0,19. Thus, the improved G estimation can be registered as a valuable contribution for the remote sensing based estimation of energy balance components. N2 - Die Bewässerungslandwirtschaft verbraucht weltweit etwa 70 % der verfügbaren Süßwasservorkommen. Dabei liegt die Wasserentnahme des landwirtschaftlichen Sektors in den Staaten Mittelasiens bei über 90 %. Wichtige Voraussetzungen für die Landwirtschaft sind der Produktionsfaktor Boden und das Klima. Der Wassergehalt und die Temperatur des Bodens bestimmen im Wesentlichen den Anteil der verfügbaren solaren Strahlungsenergie, der in den Boden geleitet wird. Existierende Fernerkundungsansätze verwenden zur Ermittlung des Bodenwärmestroms überwiegend empirische Gleichungen, da zuverlässige flächenhafte Informationen über die Bodenfeuchte bisher aufgrund räumlich unzureichender messtechnischer Bedingungen nicht ermittelt werden können. In der vorliegenden Arbeit wird ein neu entwickelter, physikalisch-basierter Ansatz vorgestellt, der erstmals räumlich hochaufgelöste Bodenfeuchteinformationen aus Radardatensätzen zur Berechnung des Bodenwärmestroms verwendet. Dieser Ansatz wird zur Lösung der Energiebilanz an der Erdoberfläche verwendet, um indirekt auf die tatsächlichen Evapotranspiration zu schließen. Denn eine realistische Quantifizierung der regionalen, tatsächlichen Evapotranspiration als Komponente der regionalen Wasserbilanz ist eine wichtige Steuerungsgröße und ein Effizienzindikator für das lokale Bewässerungsmanagement. T3 - Würzburger Geographische Arbeiten - 120 KW - Evapotranspiration KW - Energiebilanz KW - Mikrometeorologie KW - Bodenfeuchte KW - Fernerkundung KW - Eddy-Kovarianz Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-135669 SN - 978-3-95826-042-9 (Print) SN - 978-3-95826-043-6 (Online) SN - 0510-9833 SN - 2194-3656 N1 - Eingereicht mit dem Titel: Optimierung der Energiebilanzmodellierung zur Ableitung der Evapotranspiration durch Entwicklung eines physikalischen Bodenwärmestromansatzes am Beispiel der Region Khorezm (Usbekistan). N1 - Parallel erschienen als Druckausgabe in Würzburg University Press, 978-3-95826-042-9, 34,90 EUR. PB - Würzburg University Press CY - Würzburg ET - 1. Auflage ER - TY - THES A1 - Ibebuchi, Chibuike Chiedozie T1 - Bias correction of climate model output for Germany T1 - Bias-Korrektur des Klimamodell-Outputs für Deutschland N2 - Regional climate models (RCMs) are tools used to project future climate change at a regional scale. Despite their high horizontal resolution, RCMs are characterized by systematic biases relative to observations, which can result in unrealistic interpretations of future climate change signals. On the other hand, bias correction (BC) is a popular statistical post-processing technique applied to improve the usability of output from climate models. Like every other statistical technique, BC has its strengths and weaknesses. Hence, within the regional context of Germany, and for temperature and precipitation, this study is dedicated to the assessment of the impact of different BC techniques on the RCM output. The focuses are on the impact of BC on the RCM’s statistical characterization, and physical consistency defined as the spatiotemporal consistency between the bias-corrected variable and the simulated physical mechanisms governing the variable, as well as the correlations between the bias-corrected variable and other (simulated) climate variables. Five BC techniques were applied in adjusting the systematic biases in temperature and precipitation RCM outputs. The BC techniques are linear scaling, empirical quantile mapping, univariate quantile delta mapping, multivariate quantile delta mapping that considers inter-site dependencies, and multivariate quantile delta mapping that considers inter-variable dependencies (MBCn). The results show that each BC technique adds value in reducing the biases in the statistics of the RCM output, though the added value depends on several factors such as the temporal resolution of the data, choice of RCM, climate variable, region, and the metric used in evaluating the BC technique. Further, the raw RCMs reproduced portions of the observed modes of atmospheric circulation in Western Europe, and the observed temperature, and precipitation meteorological patterns in Germany. After the BC, generally, the spatiotemporal configurations of the simulated meteorological patterns as well as the governing large-scale mechanisms were reproduced. However, at a more localized spatial scale for the individual meteorological patterns, the BC changed the simulated co-variability of some grids, especially for precipitation. Concerning the co-variability among the variables, a physically interpretable positive correlation was found between temperature and precipitation during boreal winter in both models and observations. For most grid boxes in the study domain and on average, the BC techniques that do not adjust inter-variable dependency did not notably change the simulated correlations between the climate variables. However, depending on the grid box, the (univariate) BC techniques tend to degrade the simulated temporal correlations between temperature and precipitation. Further, MBCn which adjusts biases in inter-variable dependency has the skill to improve the correlations between the simulated variables towards observations. N2 - Regionale Klimamodelle (RCMs) sind Werkzeuge, die verwendet werden, um den zukünftigen Klimawandel auf regionaler Ebene zu prognostizieren. Trotz ihrer hohen horizontalen Auflösung sind RCMs je nach Beobachtung durch systematische Verzerrungen gekennzeichnet, was zu unrealistischen Interpretationen zukünftiger Signale des Klimawandels führen kann. Andererseits ist die Bias-Korrektur (BC) eine beliebte statistische Nachbearbeitungstechnik, die angewendet wird, um die Nutzbarkeit der Ergebnisse von Klimamodellen zu verbessern. Wie jede andere statistische Technik hat BC seine Stärken und Schwächen. Daher widmet sich diese Studie im regionalen Kontext Deutschlands und für Temperatur und Niederschlag der Bewertung der Auswirkungen verschiedener BC-Techniken auf den das RCM-ErtragErgebnis. Die Schwerpunkte liegen auf der Auswirkung von BC auf die statistische Charakterisierung des RCM und auf der physikalischen Konsistenz. Letztere ist, definiert als die räumlich-zeitliche Konsistenz zwischen der systematisch korrigierten Variablen und den simulierten physikalischen Mechanismen, die diese Variable steuern, sowie auf den Korrelationen zwischen der systematisch korrigierten Variablen und anderen (simulierten) Klimavariablen. Fünf BC-Techniken wurden angewendet, um die systematischen Abweichungen in den Temperatur- und Niederschlags-RCM-Ausgaben Ergebnissen anzupassen. Die BC-Techniken sind lineare Skalierung, empirisches Quantil-Mapping, univariates Quantil-Delta-Mapping, sowie multivariates Quantil-Delta-Mapping, das Abhängigkeiten zwischen Standorten berücksichtigt, und multivariates Quantil-Delta-Mapping, das intervariable Abhängigkeiten (MBCn) berücksichtigt. Die Ergebnisse zeigen, dass jede BC-Technik einen Mehrwert bei der Reduzierung der Verzerrungen in den Statistiken der RCM-Ausgabe bringt, und dies, obwohl der Mehrwert von mehreren Faktoren abhängt, wie der zeitlichen Auflösung der Daten, der Wahl der RCM, der Klimavariable, der Region und desr verwendeten Massstabsetrik zur Bewertung der BC-Technik verwendet. Darüber hinaus reproduzierten die rohen RCMs Teile der beobachteten Modi der atmosphärischen Zirkulation in Westeuropa und die beobachteten meteorologischen Temperatur- und Niederschlagsmuster in Deutschland. Nach der BC wurden im Allgemeinen die raumzeitlichen Konfigurationen der simulierten meteorologischen Muster sowie die maßgeblichen großräumigen Mechanismen reproduziert. Auf einer stärker lokalisierten räumlichen Skala änderte der BC jedoch für die einzelnen meteorologischen Muster die simulierte Kovariabilität einiger Gitter, insbesondere für Niederschlag. Bezüglich der Kovariabilität zwischen den Variablen wurde sowohl in Modellen als auch in Beobachtungen eine physikalisch interpretierbare positive Korrelation zwischen Temperatur und Niederschlag im borealen Winter gefunden. Für die meisten Gitterboxen Gitterfelder im Untersuchungsbereich und auch im Durchschnitt änderten die BC-Techniken, die die Abhängigkeit zwischen den Variablen nicht anpassen, die simulierten Korrelationen zwischen den Klimavariablen nicht merklich. Allerdings neigen die (univariaten) BC-Techniken je nach Gitterbox Gitterfeld dazu, die simulierten zeitlichen Korrelationen zwischen Temperatur und Niederschlag zu verschlechtern. Darüber hinaus hat MBCn, das Verzerrungen in der Abhängigkeit zwischen Variablen anpasst, die Fähigkeit, die Korrelationen zwischen den simulierten Variablen gegenüber den Beobachtungen zu verbessern. KW - Bias correction KW - regional climate models KW - Germany KW - physical consistency KW - meteorological patterns KW - Bias-Korrektur KW - Regionale Klimamodelle KW - Deutschland KW - Physikalische Konsistenz KW - Meteorologische Muster Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312647 ER - TY - THES A1 - Üreyen, Soner T1 - Multivariate Time Series for the Analysis of Land Surface Dynamics - Evaluating Trends and Drivers of Land Surface Variables for the Indo-Gangetic River Basins T1 - Multivariate Zeitreihen zur Analyse von Landoberflächendynamiken - Auswertung von Trends und Treibern von Landoberflächenvariablen für Flusseinzugsgebiete der Indus-Ganges Ebene N2 - The investigation of the Earth system and interplays between its components is of utmost importance to enhance the understanding of the impacts of global climate change on the Earth's land surface. In this context, Earth observation (EO) provides valuable long-term records covering an abundance of land surface variables and, thus, allowing for large-scale analyses to quantify and analyze land surface dynamics across various Earth system components. In view of this, the geographical entity of river basins was identified as particularly suitable for multivariate time series analyses of the land surface, as they naturally cover diverse spheres of the Earth. Many remote sensing missions with different characteristics are available to monitor and characterize the land surface. Yet, only a few spaceborne remote sensing missions enable the generation of spatio-temporally consistent time series with equidistant observations over large areas, such as the MODIS instrument. In order to summarize available remote sensing-based analyses of land surface dynamics in large river basins, a detailed literature review of 287 studies was performed and several research gaps were identified. In this regard, it was found that studies rarely analyzed an entire river basin, but rather focused on study areas at subbasin or regional scale. In addition, it was found that transboundary river basins remained understudied and that studies largely focused on selected riparian countries. Moreover, the analysis of environmental change was generally conducted using a single EO-based land surface variable, whereas a joint exploration of multivariate land surface variables across spheres was found to be rarely performed. To address these research gaps, a methodological framework enabling (1) the preprocessing and harmonization of multi-source time series as well as (2) the statistical analysis of a multivariate feature space was required. For development and testing of a methodological framework that is transferable in space and time, the transboundary river basins Indus, Ganges, Brahmaputra, and Meghna (IGBM) in South Asia were selected as study area, having a size equivalent to around eight times the size of Germany. These basins largely depend on water resources from monsoon rainfall and High Mountain Asia which holds the largest ice mass outside the polar regions. In total, over 1.1 billion people live in this region and in parts largely depend on these water resources which are indispensable for the world's largest connected irrigated croplands and further domestic needs as well. With highly heterogeneous geographical settings, these river basins allow for a detailed analysis of the interplays between multiple spheres, including the anthroposphere, biosphere, cryosphere, hydrosphere, lithosphere, and atmosphere. In this thesis, land surface dynamics over the last two decades (December 2002 - November 2020) were analyzed using EO time series on vegetation condition, surface water area, and snow cover area being based on MODIS imagery, the DLR Global WaterPack and JRC Global Surface Water Layer, as well as the DLR Global SnowPack, respectively. These data were evaluated in combination with further climatic, hydrological, and anthropogenic variables to estimate their influence on the three EO land surface variables. The preprocessing and harmonization of the time series was conducted using the implemented framework. The resulting harmonized feature space was used to quantify and analyze land surface dynamics by means of several statistical time series analysis techniques which were integrated into the framework. In detail, these methods involved (1) the calculation of trends using the Mann-Kendall test in association with the Theil-Sen slope estimator, (2) the estimation of changes in phenological metrics using the Timesat tool, (3) the evaluation of driving variables using the causal discovery approach Peter and Clark Momentary Conditional Independence (PCMCI), and (4) additional correlation tests to analyze the human influence on vegetation condition and surface water area. These analyses were performed at annual and seasonal temporal scale and for diverse spatial units, including grids, river basins and subbasins, land cover and land use classes, as well as elevation-dependent zones. The trend analyses of vegetation condition mostly revealed significant positive trends. Irrigated and rainfed croplands were found to contribute most to these trends. The trend magnitudes were particularly high in arid and semi-arid regions. Considering surface water area, significant positive trends were obtained at annual scale. At grid scale, regional and seasonal clusters with significant negative trends were found as well. Trends for snow cover area mostly remained stable at annual scale, but significant negative trends were observed in parts of the river basins during distinct seasons. Negative trends were also found for the elevation-dependent zones, particularly at high altitudes. Also, retreats in the seasonal duration of snow cover area were found in parts of the river basins. Furthermore, for the first time, the application of the causal discovery algorithm on a multivariate feature space at seasonal temporal scale revealed direct and indirect links between EO land surface variables and respective drivers. In general, vegetation was constrained by water availability, surface water area was largely influenced by river discharge and indirectly by precipitation, and snow cover area was largely controlled by precipitation and temperature with spatial and temporal variations. Additional analyses pointed towards positive human influences on increasing trends in vegetation greenness. The investigation of trends and interplays across spheres provided new and valuable insights into the past state and the evolution of the land surface as well as on relevant climatic and hydrological driving variables. Besides the investigated river basins in South Asia, these findings are of great value also for other river basins and geographical regions. N2 - Die Untersuchung von Erdsystemkomponenten und deren Wechselwirkungen ist von großer Relevanz, um das Prozessverständnis sowie die Auswirkungen des globalen Klimawandels auf die Landoberfläche zu verbessern. In diesem Zusammenhang liefert die Erdbeobachtung (EO) wertvolle Langzeitaufnahmen zu einer Vielzahl an Landoberflächenvariablen. Diese können als Indikator für die Erdsystemkomponenten genutzt werden und sind essenziell für großflächige Analysen. Flusseinzugsgebiete sind besonders geeignet um Landoberflächendynamiken mit multivariaten Zeitreihen zu analysieren, da diese verschiedene Sphären des Erdsystems umfassen. Zur Charakterisierung der Landoberfläche stehen zahlreiche EO-Missionen mit unterschiedlichen Eigenschaften zur Verfügung. Nur einige wenige Missionen gewährleisten jedoch die Erstellung von räumlich und zeitlich konsistenten Zeitreihen mit äquidistanten Beobachtungen über großräumige Untersuchungsgebiete, wie z.B. die MODIS Sensoren. Um bisherige EO-Analysen zu Landoberflächendynamiken in großen Flusseinzugsgebieten zu untersuchen, wurde eine Literaturrecherche durchgeführt, wobei mehrere Forschungslücken identifiziert wurden. Studien untersuchten nur selten ein ganzes Einzugsgebiet, sondern konzentrierten sich lediglich auf Teilgebietsgebiete oder regionale Untersuchungsgebiete. Darüber hinaus wurden transnationale Einzugsgebiete nur unzureichend analysiert, wobei sich die Studien größtenteils auf ausgewählte Anrainerstaaten beschränkten. Auch wurde die Analyse von Umweltveränderungen meistens anhand einer einzigen EO-Landoberflächenvariable durchgeführt, während eine synergetische Untersuchung von sphärenübergreifenden Landoberflächenvariablen kaum unternommen wurde. Um diese Forschungslücken zu adressieren, ist ein methodischer Ansatz notwendig, der (1) die Vorverarbeitung und Harmonisierung von Zeitreihen aus mehreren Quellen und (2) die statistische Analyse eines multivariaten Merkmalsraums ermöglicht. Für die Entwicklung und Anwendung eines methodischen Frameworks, das raum-zeitlich übertragbar ist, wurden die transnationalen Einzugsgebiete Indus, Ganges, Brahmaputra und Meghna (IGBM) in Südasien, deren Größe etwa der achtfachen Fläche von Deutschland entspricht, ausgewählt. Diese Einzugsgebiete hängen weitgehend von den Wasserressourcen des Monsunregens und des Hochgebirges Asiens ab. Insgesamt leben über 1,1 Milliarden Menschen in dieser Region und sind zum Teil in hohem Maße von diesen Wasserressourcen abhängig, die auch für die größten zusammenhängenden bewässerten Anbauflächen der Welt und auch für weitere inländische Bedarfe unerlässlich sind. Aufgrund ihrer sehr heterogenen geographischen Gegebenheiten ermöglichen diese Einzugsgebiete eine detaillierte sphärenübergreifende Analyse der Wechselwirkungen, einschließlich der Anthroposphäre, Biosphäre, Kryosphäre, Hydrosphäre, Lithosphäre und Atmosphäre. In dieser Dissertation wurden Landoberflächendynamiken der letzten zwei Jahrzehnte anhand von EO-Zeitreihen zum Vegetationszustand, zu Oberflächengewässern und zur Schneebedeckung analysiert. Diese basieren auf MODIS-Aufnahmen, dem DLR Global WaterPack und dem JRC Global Surface Water Layer sowie dem DLR Global SnowPack. Diese Zeitreihen wurden in Kombination mit weiteren klimatischen, hydrologischen und anthropogenen Variablen ausgewertet. Die Harmonisierung des multivariaten Merkmalsraumes ermöglichte die Analyse von Landoberflächendynamiken unter Nutzung von statistischen Methoden. Diese Methoden umfassen (1) die Berechnung von Trends mittels des Mann-Kendall und des Theil-Sen Tests, (2) die Berechnung von phänologischen Metriken anhand des Timesat-Tools, (3) die Bewertung von treibenden Variablen unter Nutzung des PCMCI Algorithmus und (4) zusätzliche Korrelationstests zur Analyse des menschlichen Einflusses auf den Vegetationszustand und die Wasseroberfläche. Diese Analysen wurden auf jährlichen und saisonalen Zeitskalen und für verschiedene räumliche Einheiten durchgeführt. Für den Vegetationszustand wurden weitgehend signifikant positive Trends ermittelt. Analysen haben gezeigt, dass landwirtschaftliche Nutzflächen am meisten zu diesen Trends beitragen haben. Besonders hoch waren die Trends in ariden Regionen. Bei Oberflächengewässern wurden auf jährlicher Ebene signifikant positive Trends festgestellt. Auf Pixelebene wurden jedoch sowohl regional als auch saisonal Cluster mit signifikant negativen Trends identifiziert. Die Trends für die Schneebedeckung blieben auf jährlicher Ebene weitgehend stabil, jedoch wurden in Teilen der Einzugsgebiete zu bestimmten Jahreszeiten signifikant negative Trends beobachtet. Die negativen Trends wurden auch für höhenabhängige Zonen festgestellt, insbesondere in hohen Lagen. Außerdem wurden in Teilen der Einzugsgebiete Rückgänge bei der saisonalen Dauer der Schneebedeckung ermittelt. Darüber hinaus ergab die Untersuchung des multivariaten Merkmalsraums auf kausale Zusammenhänge auf saisonaler Ebene erstmals Aufschluss über direkte und indirekte Relationen zwischen EO-Landoberflächenvariablen und den entsprechenden Einflussfaktoren. Zusammengefasst wurde die Vegetation durch die Wasserverfügbarkeit, die Oberflächengewässer durch den Abfluss und indirekt durch den Niederschlag sowie die Schneebedeckung durch Niederschlag und Temperatur mit räumlichen und saisonalen Unterschieden kontrolliert. Zusätzliche Analysen wiesen auf einen positiven Zusammenhang zwischen dem menschlichen Einfluss und den zunehmenden Trends in der Vegetationsfläche hin. Diese sphärenübergreifenden Untersuchungen zu Trends und Wechselwirkungen liefern neue und wertvolle Einblicke in den vergangenen Zustand von Landoberflächendynamiken sowie in die relevanten klimatischen und hydrologischen Einflussfaktoren. Neben den untersuchten Einzugsgebieten in Südasien sind diese Erkenntnisse auch für weitere Einzugsgebiete und geographische Regionen von großer Bedeutung. KW - Multivariate Analyse KW - Zeitreihe KW - Fernerkundung KW - Geographie KW - Multivariate Time Series KW - River Basins KW - Earth Observation KW - Remote Sensing Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-291941 ER - TY - THES A1 - Bangelesa, Freddy Fefe T1 - Impacts of climate variability and change on Maize (\(Zea\) \(mays\)) production in tropical Africa T1 - Auswirkungen von Klimavariabilität und Veränderungen auf die Mais (\(Zea\) \(mays\)) Produktion im tropischen Afrika N2 - Climate change is undeniable and constitutes one of the major threats of the 21st century. It impacts sectors of our society, usually negatively, and is likely to worsen towards the middle and end of the century. The agricultural sector is of particular concern, for it is the primary source of food and is strongly dependent on the weather. Considerable attention has been given to the impact of climate change on African agriculture because of the continent’s high vulnerability, which is mainly due to its low adaptation capac- ity. Several studies have been implemented to evaluate the impact of climate change on this continent. The results are sometimes controversial since the studies are based on different approaches, climate models and crop yield datasets. This study attempts to contribute substantially to this large topic by suggesting specific types of climate pre- dictors. The study focuses on tropical Africa and its maize yield. Maize is considered to be the most important crop in this region. To estimate the effect of climate change on maize yield, the study began by developing a robust cross-validated multiple linear regression model, which related climate predictors and maize yield. This statistical trans- fer function is reputed to be less prone to overfitting and multicollinearity problems. It is capable of selecting robust predictors, which have a physical meaning. Therefore, the study combined: large-scale predictors, which were derived from the principal component analysis of the monthly precipitation and temperature; traditional local-scale predictors, mainly, the mean precipitation, mean temperature, maximum temperature and minimum temperature; and the Water Requirement Satisfaction Index (WRSI), derived from the specific crop (maize) water balance model. The projected maize-yield change is forced by a regional climate model (RCM) REMO under two emission scenarios: high emission scenario (RCP8.5) and mid-range emission scenario (RCP4.5). The different effects of these groups of predictors in projecting the future maize-yield changes were also assessed. Furthermore, the study analysed the impact of climate change on the global WRSI. The results indicate that almost 27 % of the interannual variability of maize production of the entire region is explained by climate variables. The influence of climate predictors on maize-yield production is more pronounced in West Africa, reaching 55 % in some areas. The model projection indicates that the maize yield in the entire region is expected to decrease by the middle of the century under an RCP8.5 emission scenario, and from the middle of the century to the end of the century, the production will slightly recover but will remain negative (around -10 %). However, in some regions of East Africa, a slight increase in maize yield is expected. The maize-yield projection under RCP4.5 remains relatively unchanged compared to the baseline period (1982-2016). The results further indicate that large-scale predictors are the most critical drivers of the global year-to-year maize-yield variability, and ENSO – which is highly correlated with the most important predictor (PC2) – seems to be the physical process underlying this variability. The effects of local predictors are more pronounced in the eastern parts of the region. The impact of the future climate change on WRSI reveals that the availability of maize water is expected to decrease everywhere, except in some parts of eastern Africa. N2 - Weil die Folgen des Klimawandels die Lebensgrundlagen aller Lebewesen beeinträchtigen, ist der Klimawandel ein sehr relevantes Thema des 21. Jahrhunderts. Seine negativen Effekte betreffen bereits viele Sektoren unserer Gesellschaft und die Prognosen zeigen, dass sich die Auswirkungen des Klimawandels Mitte und Ende dieses Jahrhunderts ver- schärfen werden. Die Landwirtschaft ist besonders betroffen, denn sie ist sehr abhängig vom Klima. Da die Landwirtschaft als Hauptnahrungsquelle der Menschen gilt, ist es erforderlich sich mit den Problemen des Klimawandels rechtzeitig zu beschäftigen, um in der Zukunft die Ernährung der Menschheit gewährleisten zu können. Viele Forscher beschäftigen sich mit den Folgen des Klimawandels in der Landwirtschaft. Besonders in Afrika wurde viel geforscht, weil die Landwirtschaft in Afrika sich technisch schlecht anpassen kann, um die Schwierigkeiten, die mit dem Klimawandel einhergehen, zu über- winden. Mehrere Studien wurden durchgeführt, um die Auswirkungen des Klimawan- dels in Afrika zu bewerten. Aufgrund der unterschiedlichen verwendeten statistischen Methoden, Modellierungen der Umweltprozesse oder Ertragsdaten sind die Ergebnisse teilweise kontrovers. Diese Studie versucht, einen wesentlichen Beitrag zum Einfluss des Klimawandels auf die Landwirtschaft in Westafrika zu leisten, indem sie spezifis- che Methoden vorschlägt, um das Klima der Zukunft projizieren zu können. Diese Studie behandelt Maiserträge in den Tropen Afrikas, da Mais dort die wichtigste Nutzpflanze ist. Um die Auswirkungen des Klimawandels auf den Maisertrag abzuschätzen, wurde ein Regressionsmodell (aus dem Englischen: robust cross-validated multiple) entwickelt, das Klimaprädiktoren und Maiserträge koppelt. Diese entwickelte statistische Übertra- gungsfunktion ist zuverlässiger bei Schwierigkeiten mit der Überanpassung und der Mul- tikollinearität. Außerdem ist sie auch in der Lage robuste Prädiktoren mit physikalischer Bedeutung auszuwählen. Deshalb wurden in der Studie großräumige und lokale Prädik- toren kombiniert. Erstere entstammen der Analyse der Komponenten des monatlichen Niederschlags und der Temperatur, letztere basieren basieren auf den mittleren und Ex- tremtemperaturen sowie dem mittleren Niederschlag. Zusätzlich zu den Prädiktoren wurde ein Index der Wasserbedarfsdeckung (Water Requirement Satisfaction Index, WRSI) verwendet, der auf einem Wasserhaushaltsmodell der Nutzpflanzen basiert. Die erwartete Mais-Ertragsänderung wird mithilfe eines regionalen Klimamodells (RCM) REMO für die Emissionsszenarien RCP8.5 und RCP4.5 simuliert. Die einzelnen Effekte der Prädiktoren- Gruppen bei der Prognose der zukünftigen Mais-Ertragsänderungen wurden ebenfalls bewertet. Darüber hinaus analysierte die Studie die Auswirkungen des Klimawandels auf den WSRI. Durchschnittlich zeigen die Ergebnisse eine jährliche Maisproduktionsän- derung von ca. 27 % in der gesamten Region. Diese Änderung, die in Westafrika mit ca. 55 % stärker ausgeprägt ist, ist eine Folge des Klimawandels. Die Simulationen des Mod- ells anhand von RCP8.5-Emissionsszenario zeigen auch, dass der Maisertrag der gesamten Region voraussichtlich bis Mitte des Jahrhunderts abnehmen wird. Danach findet eine geringe Ertragserhöhung statt, die jedoch um ca. 10 % unter der ursprünglichen Menge liegt. Im Gegensatz zu Westafrika wird in einigen Regionen Ostafrikas wird ein leichter Anstieg des Maisertrags simuliert. Die Mais-Ertragsprognose für die gesamte Region mittels RCP4.5 bleibt relativ unverändert im Vergleich zum ursprünglichen Ertrag. Die Ergebnisse zeigen weiterhin, dass die großräumigen Prädiktoren die wichtigste Rolle bei den globalen jährlichen Maisertragsschwankungen spielen. ENSO ist stark mit dem wichtigsten Prädiktor korreliert, was auf den physikalischen Prozess hinweist, der diese Ertragsänderung erklärt. Die Relevanz der lokalen Prädiktoren ist in den östlichen Re- gionen Afrikas stärker ausgeprägt. Sie beeinflussen den WRSI, sodass der Maisertrag im Verhältnis zur Wasserverfügbarkeit voraussichtlich überall abnehmen wird. Ausgenom- men sind einigen Regionen Ostafrikas. KW - Climate change KW - Food security KW - Modelling Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259347 ER - TY - THES A1 - Karama, Alphonse T1 - East African Seasonal Rainfall prediction using multiple linear regression and regression with ARIMA errors models T1 - Vorhersage des saisonalen Niederschlags in Ostafrika mit multipler linearer Regression und Regression mit ARIMA-Fehlermodellen N2 - The detrimental impacts of climate variability on water, agriculture, and food resources in East Africa underscore the importance of reliable seasonal climate prediction. To overcome this difficulty RARIMAE method were evolved. Applications RARIMAE in the literature shows that amalgamating different methods can be an efficient and effective way to improve the forecasts of time series under consideration. With these motivations, attempt have been made to develop a multiple linear regression model (MLR) and a RARIMAE models for forecasting seasonal rainfall in east Africa under the following objectives: 1. To develop MLR model for seasonal rainfall prediction in East Africa. 2. To develop a RARIMAE model for seasonal rainfall prediction in East Africa. 3. Comparison of model's efficiency under consideration In order to achieve the above objectives, the monthly precipitation data covering the period from 1949 to 2000 was obtained from Climate Research Unit (CRU). Next to that, the first differenced climate indices were used as predictors. In the first part of this study, the analyses of the rainfall fluctuation in whole Central- East Africa region which span over a longitude of 15 degrees East to 55 degrees East and a latitude of 15 degrees South to 15 degrees North was done by the help of maps. For models’ comparison, the R-squared values for the MLR model are subtracted from the R-squared values of RARIMAE model. The results show positive values which indicates that R-squared is improved by RARIMAE model. On the other side, the root mean square errors (RMSE) values of the RARIMAE model are subtracted from the RMSE values of the MLR model and the results show negative value which indicates that RMSE is reduced by RARIMAE model for training and testing datasets. For the second part of this study, the area which is considered covers a longitude of 31.5 degrees East to 41 degrees East and a latitude of 3.5 degrees South to 0.5 degrees South. This region covers Central-East of the Democratic Republic of Congo (DRC), north of Burundi, south of Uganda, Rwanda, north of Tanzania and south of Kenya. Considering a model constructed based on the average rainfall time series in this region, the long rainfall season counts the nine months lead of the first principal component of Indian sea level pressure (SLP_PC19) and the nine months lead of Dipole Mode Index (DMI_LR9) as selected predictors for both statistical and predictive model. On the other side, the short rainfall season counts the three months lead of the first principal component of Indian sea surface temperature (SST_PC13) and the three months lead of Southern Oscillation Index (SOI_SR3) as predictors for predictive model. For short rainfall season statistical model SAOD current time series (SAOD_SR0) was added on the two predictors in predictive model. By applying a MLR model it is shown that the forecast can explain 27.4% of the total variation and has a RMSE of 74.2mm/season for long rainfall season while for the RARIMAE the forecast explains 53.6% of the total variation and has a RMSE of 59.4mm/season. By applying a MLR model it is shown that the forecast can explain 22.8% of the total variation and has a RMSE of 106.1 mm/season for short rainfall season predictive model while for the RARIMAE the forecast explains 55.1% of the total variation and has a RMSE of 81.1 mm/season. From such comparison, a significant rise in R-squared, a decrease of RMSE values were observed in RARIMAE models for both short rainfall and long rainfall season averaged time series. In terms of reliability, RARIMAE outperformed its MLR counterparts with better efficiency and accuracy. Therefore, whenever the data suffer from autocorrelation, we can go for MLR with ARIMA error, the ARIMA error part is more to correct the autocorrelation thereby improving the variance and productiveness of the model. N2 - Die nachteiligen Auswirkungen der Klimavariabilität auf Wasser, Landwirtschaft und Nahrungsressourcen in Ostafrika unterstreichen die Bedeutung einer zuverlässigen saisonalen Klimavorhersage. Um diese Schwierigkeit zu überwinden, wurden die Regression mit ARIMA-Fehlern (RARIMAE)-Methoden entwickelt. Die Anwendungen RARIMAE in der Literatur zeigen, dass die Zusammenführung verschiedener Methoden ein effizienter und effektiver Weg sein kann, um die Vorhersagen der betrachteten Zeitreihen zu verbessern. Aus dieser Motivation heraus wurde versucht, ein multiples lineares Regressionsmodell (MLR) und ein RARIMAE-Modell zur Vorhersage saisonaler Niederschläge in Ostafrika unter folgenden Zielsetzungen zu entwickeln: 1. Entwicklung eines MLR-Modells für die Vorhersage der saisonalen Regenfälle in Ostafrika. 2. Entwicklung eines RARIMAE-Modells für die saisonale Niederschlagsvorhersage in Ostafrika. 3. Vergleich der betrachteten Modelleffizienz Um die oben genannten Ziele zu erreichen, wurden die monatlichen Niederschlagsdaten für den Zeitraum von 1949 bis 2000 von der Climate Research Unit (CRU) bezogen. Daneben wurden die ersten differenzierten Klimaindizes als Prädiktoren verwendet. Im ersten Teil dieser Studie wurden die Niederschlagsschwankungen in der gesamten Region Zentral-Ostafrika, die sich über einen Längengrad von 15 Grad Ost bis 55 Grad Ost und einen Breitengrad von 15 Grad Süd bis 15 Grad Nord erstrecken, analysiert mit Hilfe von Karten gemacht. Für den Modellvergleich werden die Erklärte Varianz-Werte für das MLR-Modell von den R-Quadrat-Werten des RARIMAE-Modells abgezogen. Die Ergebnisse zeigen positive Werte, was darauf hinweist, die Erklärte Varianz durch das RARIMAE-Modell verbessert wird. Auf der anderen Seite werden die Root-Mean-Square-Error-Werte (RMSE) des RARIMAE-Modells von den RMSE-Werten des MLR-Modells subtrahiert und die Ergebnisse zeigen einen negativen Wert, der darauf hinweist, dass der RMSE durch das RARIMAE-Modell für Trainings- und Testdatensätze reduziert wird. Für den zweiten Teil dieser Studie umfasst das betrachtete Gebiet einen Längengrad von 31,5 Grad Ost bis 41 Grad Ost und einen Breitengrad von 3,5 Grad Süd bis 0,5 Grad Süd. Diese Region umfasst den Zentral-Osten der Demokratischen Republik Kongo (DRC), nördlich von Burundi, südlich von Uganda, Ruanda, nördlich von Tansania und südlich von Kenia. Betrachtet man ein Modell, das auf der Grundlage der durchschnittlichen Niederschlagszeitreihen in dieser Region erstellt wurde, zählt die lange Regensaison den neunmonatigen Vorsprung der ersten Hauptkomponente des indischen Meeresspiegeldrucks (SLP_PC19) und den neunmonatigen Vorsprung des Dipolmodus-Index (DMI_LR9) als ausgewählte Prädiktoren für statistische und prädiktive Modelle. Auf der anderen Seite zählt die kurze Regenzeit den dreimonatigen Vorsprung der ersten Hauptkomponente der indischen Meeresoberflächentemperatur (SST_PC13) und den dreimonatigen Vorsprung des Southern Oscillation Index (SOI_SR3) als Prädiktoren für das Vorhersagemodell. Für das statistische Modell der kurzen Regenzeit wurde die aktuelle SAOD-Zeitreihe (SAOD_SR0) zu den beiden Prädiktoren im Vorhersagemodell hinzugefügt. Durch die Anwendung eines MLR-Modells wird gezeigt, dass die Vorhersage 27,4 % der Gesamtvariation erklären kann und einen RMSE von 74,2 mm/Saison für eine lange Regenzeit hat, während die Vorhersage für RARIMAE 53,6% der Gesamtvariation erklärt und einen RMSE von 59,4 mm/Saison hat. Durch die Anwendung eines MLR-Modells wird gezeigt, dass die Vorhersage 22,8% der Gesamtvariation erklären kann und einen RMSE von 106,1 mm/Saison für das Vorhersagemodell für kurze Regenzeiten hat, während die Vorhersage für RARIMAE 55,1% der Gesamtvariation erklärt und a RMSE von 81,1 mm/Saison. Aus einem solchen Vergleich wurde ein signifikanter Anstieg die Erklärte Varianz und eine Abnahme der RMSE-Werte in RARIMAE-Modellen sowohl für die gemittelten Zeitreihen für kurze Regenfälle als auch für lange Regenzeiten beobachtet. In Bezug auf die Zuverlässigkeit übertraf RARIMAE seine MLR-Pendants mit besserer Effizienz und Genauigkeit. Wenn die Daten unter Autokorrelation leiden, können wir uns daher für MLR mit ARIMA-Fehler entscheiden. Der ARIMA-Fehlerteil dient mehr dazu, die Autokorrelation zu korrigieren, wodurch die Varianz und Produktivität des Modells verbessert wird. KW - Regression KW - Niederschlag KW - Telekonnektion KW - Precipitation KW - ARIMA KW - Teleconnection Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-251831 ER - TY - THES A1 - Engelbauer, Manuel T1 - Global assessment of recent UNESCO Biosphere Reserve quality enhancement strategies and interlinkages with other UNESCO labels T1 - Globale Bewertung der jüngsten Strategien zur Qualitätssteigerung von UNESCO-Biosphärenreservaten und deren Verknüpfungen mit anderen UNESCO-Labeln N2 - In 1995, the Second International Biosphere Reserve Congress in Seville resulted in a set of new regulations that spurred a significant paradigm shift in the UNESCO Man and Bio-sphere (MAB) Programme, reconceptualizing the research programme as a modern instrument for the dual mandate of nature conservation and sustainable development. But almost 20 years later, a large proportion of biosphere reserves designated before 1996 still did not comply with the new regulations. In 2013, the International Coordination Council of the MAB Programme announced the ‘Exit Strategy’ to assess, monitor and improve the quality of the World Network of Biosphere Reserves. However, the strategy also meant that 266 biosphere reserves in 76 member states were faced with the possibility of exclusion from the world network. This study presents a global assessment of the challenges that result from the Exit Strategy and the Process of Excellence and Enhancement that follows. Specifically, it investigates the differences in quality management strategies and the periodic review processes of various biosphere reserves, the effects of those quality management strategies on the MAB Programme and on the 76 directly affected member states, and the interlinkages between the MAB Programme and other UNESCO designations for nature conservation: the natural World Heritage Sites and the Global Geoparks. Semi-structured expert interviews were conducted with 31 participants in 21 different countries, representing all UN regions. To showcase the diversity of the World Network of Bio-sphere Reserves, 20 country-specific case studies are presented, highlighting the challenges of implementing the biosphere reserve concept and, more specifically, the periodic review process. Information gleaned from the experts was transcribed and evaluated using a qualitative content analysis method. The results of this study demonstrate major differences worldwide in the implementation biosphere reserves, especially in the case of the national affiliation of the MAB Programme, the legal recognition of biosphere reserves in national legislation, the usage of the term ‘bio-sphere reserve’ and the governance structures of the biosphere reserves. Of those represented by the case studies, the four countries with the highest number of voluntary biosphere reserves withdrawals after 2013, Australia, Austria, Bulgaria and the United States of America, show that the Exit Strategy contributed to the streamlining and quality enhancement of the world network. The biosphere reserves in those countries were strictly nature conservation areas without human settlements and were designated as such in the 1970s and 1980s. Only post-Seville biosphere reserves remain in those countries. Some experts have pointed out that there appears to be competition for political attention and funding between the three UNESCO labels for nature conservation. While a combination of the designation of biosphere reserves and World Heritage Sites in one place is favoured by experts, Global Geoparks and Biosphere Reserves are seen as being in competition with each other. This study concludes that quality enhancement strategies were fundamental to improving the credibility and coherence of the MAB Programme. Most pre-Seville biosphere reserves were adapted or the member states were encouraged to withdraw them voluntarily. Challenges in implementing the Exit Strategy were not unique to individual countries but applied equally to all member states with pre-Seville sites. Over the course of the quality enhancement process, many UNESCO member states have become more involved with the MAB Programme, which has led to rejuvenation of the national biosphere reserves network in many countries. N2 - Im Jahr 1995 führte der zweite internationale Kongress für Biosphärenreservate in Sevilla zu einer Reihe neuer Richtlinien, die einen bedeutenden Paradigmenwechsel im UNESCO-Programm „Der Mensch und die Biosphäre“ (MAB) einleiteten und das bestehende For-schungsprogramm in ein modernes Instrument für das doppelte Mandat des Naturschutzes und der nachhaltigen Entwicklung entwickelte. Doch fast 20 Jahre später entsprach ein gro-ßer Teil der vor 1996 ausgewiesenen Biosphärenreservate immer noch nicht den neuen Vorschriften. Im Jahr 2013 verkündete der Internationale Koordinierungsrat des MAB-Programms die „Exit-Strategie“ zur Evaluierung, Monitoring und Qualitätsverbesserung des Weltnetzes der Biosphärenreservate. Die Exit-Strategie bedeutete jedoch auch, dass 266 Biosphärenreservate in 76 Mitgliedsstaaten mit der Möglichkeit des Ausschlusses aus dem Weltnetz konfrontiert wurden. Diese Studie präsentiert eine globale Bewertung der Herausforderungen, die sich aus der Exit-Strategie und dem darauffolgenden Prozess der Exzellenz und Aufwertung ergeben. Es werden insbesondere die Unterschiede in den Qualitätsmanagementstrategien und den pe-riodischen Überprüfungsprozessen der verschiedenen Biosphärenreservate, die Auswir-kungen dieser Qualitätsmanagementstrategien auf das MAB-Programm und auf die 76 di-rekt betroffenen Mitgliedsstaaten sowie die Verflechtungen zwischen dem MAB-Programm und anderen UNESCO-Naturschutzsiegeln untersucht: die Weltnaturerbestätten und die Globalen Geoparks. Es wurden halbstrukturierte Experteninterviews mit 31 Teilnehmern aus 21 verschiede-nen Ländern geführt, die alle UN-Regionen repräsentieren. Um die Vielfalt des Weltnetzes der Biosphärenreservate zu veranschaulichen, werden 20 länderspezifische Fallstudien vor-gestellt, in denen die Herausforderungen bei der Umsetzung des Biosphärenreservatskon-zepts und insbesondere des periodischen Überprüfungsprozesses beleuchtet werden. Die von den Experten gesammelten Informationen wurden transkribiert und mit Hilfe einer qualitativen Inhaltsanalyse ausgewertet. Die Ergebnisse dieser Studie zeigen, dass es weltweit große Unterschiede bei der Imple-mentierung von Biosphärenreservaten gibt, insbesondere was die nationale Zuständigkeit für das MAB-Programm, die rechtliche Verankerung von Biosphärenreservaten in der na-tionalen Gesetzgebung, die Verwendung des Begriffs „Biosphärenreservat“ und die Gover-nancestrukturen der Biosphärenreservate betrifft. Von den Fallbeispielländern dieser Ar-beit zeigen die vier Nationen mit den meisten freiwilligen Rücknahmen von Biosphä-renreservaten aus dem Weltnetzwerk nach 2013, nämlich Australien, Österreich, Bulgarien und die Vereinigten Staaten von Amerika, dass die Exit-Strategie zur Vereinheitlichung und Qualitätsverbesserung des Weltnetzes beigetragen hat. Die Biosphärenreservate in diesen Ländern waren reine Naturschutzgebiete ohne menschliche Besiedlung und wurden in den 1970er und 1980er Jahren als solche ausgewiesen. In diesen Ländern gibt es nur noch Bio-sphärenreservate, die den Qualitätsstandards nach der Konferenz von Sevilla im Jahr 1995 entsprechen. Einige Experten haben darauf hingewiesen, dass es zwischen den drei UNE-SCO-Naturschutzsiegeln einen Wettbewerb um politische Aufmerksamkeit und Finanzie-rung gibt. Während eine Kombination von Biosphärenreservaten und Weltnaturerbe-stätten an einem Ort von Experten favorisiert wird, werden Globale Geoparks und Biosphä-renreservate als miteinander konkurrierend angesehen. Diese Arbeit kommt zu dem Schluss, dass die eingeführten Strategien zur Qualitätsver-besserung von grundlegender Bedeutung waren, um die Glaubwürdigkeit und Kohärenz des MAB-Programms zu verbessern. Die meisten Biosphärenreservate aus der ersten Gene-ration vor der Sevilla-Konferenz wurden angepasst oder die Mitgliedsstaaten wurden ermu-tigt, diese freiwillig aus dem Weltnetzwerk zurückzuziehen. Die Herausforderungen bei der Umsetzung der Exit-Strategie waren nicht auf einzelne Länder beschränkt, sondern betra-fen alle Mitgliedstaaten mit Biosphärenreservaten aus der Zeit vor Sevilla gleichermaßen. Im Zuge der Qualitätssteigerung haben sich viele UNESCO-Mitgliedstaaten stärker im MAB-Programm engagiert, was in vielen Ländern zu einer Belebung der nationalen Bio-sphärenreservatsnetzwerke geführt hat. N2 - The Seville Strategy spurred a signifi cant paradigm shift in UNESCO’s MAB Programme, re-conceptualising the research programme as a modern tool for the dual mandate of nature conservation and sustainable development. However, many biosphere reserves failed to comply with the new regulations and in 2013 the ‘Exit Strategy’ was announced to improve the quality of the global network. This study presents a global assessment of the implementation of the quality enhancement strategies, highlighting signifi cant differences worldwide through 20 country-specifi c case studies. It concludes that the strategies have been fundamental in improving the credibility and coherence of the MAB Programme. Challenges in the implementation were not unique to individual countries but were common to all Member States with pre-Seville sites, and in many states the process has led to a rejuvenation of national biosphere reserve networks. KW - Naturschutz KW - Nature Conservation KW - Quality Management KW - Biosphere Reserves KW - UNESCO designations KW - Sustainable Development KW - Qualitätsmanagement KW - Biosphärenreservat KW - Nachhaltigkeit Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-286538 SN - 978-3-95826-196-9 SN - 978-3-95826-197-6 N1 - Parallel erschienen als Druckausgabe bei Würzburg University Press, ISBN 978-3-95826-196-9, 31,80 Euro. PB - Würzburg University Press CY - Würzburg ER - TY - THES A1 - Ziegler, Katrin T1 - Implementierung von verbesserten Landoberflächenparametern und -prozessen in das hochaufgelöste Klimamodell REMO T1 - Implementation of improved land surface parameters and processes for the high-resolution climate model REMO N2 - Das Ziel dieser Arbeit war neue Eingangsdaten für die Landoberflächenbeschreibung des regionalen Klimamodells REMO zu finden und ins Modell zu integrieren, um die Vorhersagequalität des Modells zu verbessern. Die neuen Daten wurden so in das Modell eingebaut, dass die bisherigen Daten weiterhin als Option verfügbar sind. Dadurch kann überprüft werden, ob und in welchem Umfang sich die von jedem Klimamodell benötigten Rahmendaten auf Modellergebnisse auswirken. Im Zuge der Arbeit wurden viele unterschiedliche Daten und Methoden zur Generierung neuer Parameter miteinander verglichen, denn neben dem Ersetzen der konstanten Eingangswerte für verschiedene Oberflächenparameter und den damit verbundenen Änderungen wurden als zusätzliche Verbesserung auch Veränderungen an der Parametrisierung des Bodens speziell in Hinblick auf die Bodentemperaturen in REMO vorgenommen. Im Rahmen dieser Arbeit wurden die durch die verschiedenen Änderungen ausgelösten Auswirkungen für das CORDEX-Gebiet EUR-44 mit einer Auflösung von ca. 50km und für das in dem darin eingebetteten neu definierten Deutschlandgebiet GER-11 mit einer Auflösung von ca. 12km getestet sowie alle Änderungen anhand von verschiedenen Beobachtungsdatensätzen validiert. Die vorgenommenen Arbeiten gliederten sich in drei Hauptteile. Der erste Teil bestand in dem vom eigentlichen Klimamodell unabhängigen Vergleich der verschiedenen Eingangsdaten auf unterschiedlichen Auflösungen und deren Performanz in allen Teilen der Erde, wobei ein besonderer Fokus auf der Qualität in den späteren Modellgebieten lag. Unter Berücksichtigung der Faktoren, wie einer globalen Verfügbarkeit der Daten, einer verbesserten räumlichen Auflösung und einer kostenlosen Nutzung der Daten sowie verschiedener Validationsergebnissen von anderen Studien, wurden in dieser Arbeit vier neue Topographiedatensätze (SRTM, ALOS, TANDEM und ASTER) und drei neue Bodendatensätze (FAOn, Soilgrid und HWSD) für die Verwendung im Präprozess von REMO aufbereitet und miteinander sowie mit den bisher in REMO verwendeten Daten verglichen. Auf Grundlage dieser Vergleichsstudien schieden bei den Topographiedaten die verwendeten Datensatz-Versionen von SRTM, ALOS und TANDEM für die in dieser Arbeit durchgeführten REMO-Läufe aus. Bei den neuen Bodendatensätzen wurde ausgenutzt, dass diese verschiedenen Bodeneigenschaften für unterschiedliche Tiefen als Karten zur Verfügung stellen. In REMO wurden bisher alle benötigten Bodenparameter abhängig von fünf verschiedenen Bodentexturklassen und einer zusätzlichen Torfklasse ausgewiesen und als konstant über die gesamte Modellbodensäule (bis ca. 10m) angenommen. Im zweiten Teil wurden auf Basis der im ersten Teil ausgewählten neuen Datensätze und den neu verfügbaren Bodenvariablen verschiedene Sensitivitätsstudien über das Beispieljahr 2000 durchgeführt. Dabei wurden verschiedene neue Parametrisierungen für die bisher aus der Textur abgeleiteten Bodenvariablen und die Parametrisierung von weiteren hydrologischen und thermalen Bodeneigenschaften verglichen. Ferner wurde aufgrund der neuen nicht über die Tiefe konstanten Bodeneigenschaften eine neue numerische Methode zur Berechnung der Bodentemperaturen der fünf Schichten in REMO getestet, welche wiederum andere Anpassungen erforderte. Der Test und die Auswahl der verschiedenen Datensatz- und Parametrisierungsversionen auf die Modellperformanz wurde in drei Experimentpläne unterteilt. Im ersten Plan wurden die Auswirkungen der ausgewählten Topographie- und Bodendatensätze überprüft. Der zweite Plan behandelte die Unterschiede der verschiedenen Parametrisierungsarten der Bodenvariablen hinsichtlich der verwendeten Variablen zur Berechnung der Bodeneigenschaften, der über die Tiefe variablen oder konstanten Eigenschaften und der verwendeten Berechnungsmethode der Bodentemperaturänderungen. Durch die Erkenntnisse aus diesen beiden Experimentplänen, die für beide Untersuchungsgebiete durchgeführt wurden, ergaben sich im dritten Plan weitere Parametrisierungsänderungen. Alle Änderungen dieses dritten Experimentplans wurden sukzessiv getestet, sodass der paarweise Vergleich von zwei aufeinanderfolgenden Modellläufen die Auswirkungen der Neuerung im jeweils zweiten Lauf widerspiegelt. Der letzte Teil der Arbeit bestand aus der Analyse von fünf längeren Modellläufen (2000-2018), die zur Überprüfung der Ergebnisse aus den Sensitivitätsstudien sowie zur Einschätzung der Performanz in weiteren teilweise extremen atmosphärischen Bedingungen durchgeführt wurden. Hierfür wurden die bisherige Modellversion von REMO (id01) für die beiden Untersuchungsgebiete EUR-44 und GER-11 als Referenzläufe, zwei aufgrund der Vergleichsergebnisse von Experimentplan 3 selektierte Modellversionen (id06 und id15a für GER-11) sowie die finale Version (id18a für GER-11), die alle vorgenommenen Änderungen dieser Arbeit enthält, ausgewählt. Es stellte sich heraus, dass sowohl die neuen Topographiedaten als auch die neuen Bodendaten große Differenzen zu den bisherigen Daten in REMO haben. Zudem änderten sich die von diesen konstanten Eingangsdaten abgeleiteten Hilfsvariablen je nach verwendeter Parametrisierung sehr deutlich. Dies war besonders gut anhand der Bodenparameter zu erkennen. Sowohl die räumliche Verteilung als auch der Wertebereich der verschiedenen Modellversionen unterschieden sich stark. Eine Einschätzung der Qualität der resultierenden Parameter wurde jedoch dadurch erschwert, dass auch die verschiedenen zur Validierung herangezogenen Bodendatensätze für diese Parameter deutlich voneinander abweichen. Die finale Modellversion id18a ähnelte trotz der umfassenden Änderungen in den meisten Variablen den Ergebnissen der bisherigen REMO-Version. Je nach zeitlicher und räumlicher Aggregation sowie unterschiedlichen Regionen und Jahreszeiten wurden leichte Verbesserungen, aber auch leichte Verschlechterungen im Vergleich zu den klimatologischen Validationsdaten festgestellt. Größere Veränderungen im Vergleich zur bisherigen Modellversion konnten in den tieferen Bodenschichten aufgezeigt werden, welche allerdings aufgrund von fehlenden Validationsdaten nicht beurteilt werden konnten. Für alle 2m-Temperaturen konnte eine tendenzielle leichte Erwärmung im Vergleich zum bisherigen Modelllauf beobachtet werden, was sich einerseits negativ auf die ohnehin durchschnittlich zu hohe Minimumtemperatur, aber andererseits positiv auf die bisher zu niedrige Maximumtemperatur des Modells in den betrachteten Gebieten auswirkte. Im Niederschlagssignal und in den 10m-Windvariablen konnten keine signifikanten Änderungen nachgewiesen werden, obwohl die neue Topographie an manchen Stellen im Modellgebiet deutlich von der bisherigen abweicht. Des Weiteren variierte das Ranking der verschiedenen Modellversionen jeweils nach dem angewendeten Qualitätsindex. Um diese Ergebnisse besser einordnen zu können, muss berücksichtigt werden, dass die neuen Daten für Modellgebiete mit 50 bzw. 12km räumlicher Auflösung und der damit verbundenen hydrostatischen Modellversion getestet wurden. Zudem sind vor allem in Fall der Topographie die bisher enthaltenen GTOPO-Daten (1km Auflösung) für die Aggregation auf diese gröbere Modellauflösung geeignet. Die bisherigen Bodendaten stoßen jedoch mit 50km Auflösung bereits an ihre Grenzen. Zusätzlich ist zu beachten, dass nicht nur die Mittelwerte dieser Daten, sondern auch deren Subgrid-Variabilität als Variablen im Modell für verschiedene Parametrisierungen verwendet werden. Daher ist es essentiell, dass die Eingangsdaten eine deutlich höhere Auflösung bereitstellen als die zur Modellierung definierte Auflösung. Für lokale Klimasimulationen mit Auflösungen im niedrigen Kilometerbereich spielen auch die Vertikalbewegungen (nicht-hydrostatische Modellversion) eine wichtige Rolle, die stark von der Topographie sowie deren horizontaler und vertikaler Änderungsrate beeinflusst werden, was die in dieser Arbeit eingebauten wesentlich höher aufgelösten Daten für die zukünftige Weiterentwicklung von REMO wertvoll machen kann. N2 - The main aim of this work was to find new input data sets for the land surface description of the regional climate model REMO and to integrate them into the model in order to improve the predictive quality of the model. The new data sets have been incorporated into the model in such a way that the previous data are still available as an option for the model run. This allows to check whether and to what extent the boundary data required by each climate model have an impact on the model results. In this study comparisons of many different data sets and methods for generating new parameters are included. In addition to replacing the constant input values for different surface parameters and the associated changes, changes were also made for the parameterization of the soil, especially with regard to the soil temperatures in REMO. The effects of different changes which were made in this study were analysed for the CORDEX region EUR-44 with a resolution of 50km and for a newly defined German area GER-11 with a resolution of 12km. All changes were validated with different observational data sets. The work process was divided into three main parts. The first part was independent of the actual climate model and included the comparison of different input data sets at different resolutions and their performance in all parts of the world. Taking into account factors such as global availability of the data, improved spatial resolution and free use of the data, as well as various validation results from other studies, four new topography data sets (SRTM, ALOS, TANDEM and ASTER) and three new soil data sets (FAOn, Soilgrid and HWSD) were processed for the usage by REMO and compared with each other and with the data sets previously used in REMO. Based on these comparative studies of the topographical data sets the SRTM, ALOS and TANDEM data set versions were excluded from the further usage in REMO in this study. For the new soil data sets the fact that they provide different soil properties for different depths as maps has been taken advantage of. In the previous REMO versions, all required soil parameters so far have been determined depending on five different soil texture classes with an additional peat class and assumed to be constant over the entire model soil column (up to approximately 10m). In the second part, several sensitivity studies were tested for the year 2000 based on the new data sets selected in the first part of the analysis and on the new available soil variables. Different new parameterizations for soil variables previously derived from the soil texture now based on the sand, clay and organic content of the soil as well as new parameterizations of further hydrological and thermal properties of soil were compared. In addition, due to the new non-constant soil properties, a new numerical method for calculating the soil temperatures of the five layers in the model was tested, which in turn necessitated further adjustments. The testing and selection of the different data sets and parameterization versions for the model according to performance was divided into three experimental plans. In the first plan, the effects of the selected topography and soil data sets were examined. The second plan dealt with the differences between the different types of parameterization of the soil variables in terms of the variables used to calculate the properties, the properties variable or constant over depth, and the method used to calculate the changes in soil temperature. The findings of these two experimental plans, which were carried out for both study areas, led to further parameterization changes in the third plan. All changes in this third experimental plan were tested successively, so the pairwise comparison of two consecutive model runs reflects the impact of the innovation in the second run. The final part of the analysis consists of five longer model runs (2000-2018), which were carried out to review the results of the sensitivity studies and to assess the performance under other, sometimes extreme, atmospheric conditions. For this purpose, the previous model version of REMO (id01) for the two study areas (EUR-44 and GER-11) served as reference runs. Two new model versions (GER-11 of id06 and id15a) were selected on the basis of the comparison results of the third experimental plan and the final version (GER-11 of id18a) which contains all changes made in this work was also chosen for a detailed analysis. Taken together the results show that both the new topography data and the new soil data differ crucially from the previous data sets in REMO. In addition, the auxiliary variables derived from these constant input data change significantly depending on the parameterization used, especially for the soil parameters. Both the spatial distribution and the range of values of the different model versions differ greatly. However, a quality assessment of the parameterization is difficult because different soil data sets used for the validation of the parameters also differ significantly. The final model version (id18a) is similar to the results of the previous REMO version in most variables, despite the extensive changes of the input data and parametrizations. Depending on temporal and spatial aggregation as well as different regions and seasons, slight improvements have been observed, but also slight deterioration compared to the climatological validation data. In the deeper soil layers larger changes could be identified compared to the previous model version, which could not be assessed due to a lack of validation data. Overall, there was also a slight warming of all 2m temperatures compared to the previous model run, which on the one hand has a negative effect on the already too high minimum temperature, but on the other hand has a positive effect on the previously too low maximum temperature of the model in the study areas. No significant changes could be detected in the precipitation signal and in the 10m wind variables, although the new topography differs significantly from the previous topography at some points in the test area. Furthermore, the ranking of the different model versions varied according to the quality index applied. To evaluate the results it has to be considered that the new data were tested for model regions with 50 and 12km spatial resolution and the associated hydrostatic model version. The so far already included data are suitable for aggregation to this coarser model resolution, especially in the case of topography (GTOPO with 1km resolution). However, the previous soil data already reach their limits with 50km resolution. In addition, it should be noted that not only the mean values of these data, but also their subgrid variability are used as variables in the model for different parameterizations. Therefore, it is essential that the input data provide a significantly higher resolution than the resolution defined for modeling. Vertical fluxes (non-hydrostatic model version) play an important role in local climate simulations with resolutions in the low kilometre range, which are strongly influenced by the topography and its horizontal and vertical change rate, which may make the much higher resolution data incorporated in this work valuable for the future development of REMO. KW - Klimamodell KW - Datenanalyse KW - Modellierung KW - Topographie KW - Klimamodellierung KW - REMO KW - Vergleich verschiedener Modellparameterisierungen KW - Bodenparameter KW - Topographiedaten KW - parametrizations Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-261285 ER - TY - THES A1 - Abel, Daniel Karl-Joseph T1 - Weiterentwicklung der Bodenhydrologie des regionalen Klimamodells REMO T1 - Further development of the soil hydrology in the regional climate model REMO N2 - Die Bodenfeuchte stellt eine essenzielle Variable für den Energie-, Feuchte- und Stoffaustausch zwischen Landoberfläche und Atmosphäre dar. Ihre Auswirkungen auf Temperatur und Niederschlag sind vielfältig und komplex. Die in Klimamodellen verwendeten Schemata zur Simulation der Bodenfeuchte, auch bodenhydrologische Schemata genannt, sind aufgrund des Ursprungs der Klimamodelle aus Wettermodellen jedoch häufig sehr stark vereinfacht dargestellt. Bei Klimamodellen, die Simulationen mit einer groben Auflösung von mehreren Zehner- oder Hunderterkilometern rechnen, können viele Prozesse vernachlässigt werden. Da die Auflösung der Klimamodelle jedoch stetig steigt und mittlerweile beim koordinierten Projekt regionaler Klimamodelle CORDEX-CORE standardmäßig bei 0.22° Kantenlänge liegt, müssen auch höher aufgelöste Daten und mehr Prozesse simuliert werden. Dies gilt erst recht mit Blick auf konvektionsauflösende Simulationen mit wenigen Kilometern Kantenlänge. Mit steigenden Modellauflösungen steigt zugleich die Komplexität und Differenziertheit der Fragestellungen, die mit Hilfe von Klimamodellen beantwortet werden sollen. An diesem Punkt setzt auch das Projekt BigData@Geo an, in dessen Rahmen die vorliegende Arbeit entstand. Ziel dieses Projektes ist es, hochaufgelöste Klimainformationen für den bayerischen Regierungsbezirk Unterfranken für Akteure aus der Land- und Forstwirtschaft sowie dem Weinbau zur Verfügung zu stellen. Auf diesen angewandten und grundlegenden Anforderungen und Zielsetzungen basierend, bedarf auch das in dieser Arbeit verwendete regionale Klimamodell REMO (Version 2015) der weiteren Entwicklung. So ist das Hauptziel der Arbeit das bestehende einschichtige bodenhydrologische Schema durch ein mehrschichtiges zu ersetzen. Der Vorteil mehrerer simulierter Bodenschichten besteht darin, dass nun die vertikale Bewegung des Wassers in Form von Versickerung und kapillarem Aufstieg simuliert werden kann. Dies geschieht auf der Basis bodenhydrologischer Parameter, deren Wert in Abhängigkeit vom Boden und der Bodenfeuchte über die Wasserrückhaltekurve bestimmt wird. Für diese Kurve existieren verschiedene Parametrisierungen, von denen die Ansätze von Clapp-Hornberger und van Genuchten verwendet wurden. Außerdem kann die Bodenfeuchte nun bis zu einer Tiefe von circa 10 m beziehungsweise der Tiefe des anstehenden Gesteins simuliert werden. Damit besteht im Gegensatz zum vorherigen Schema, dessen Tiefe auf die Wurzeltiefe beschränkt ist, die Möglichkeit, dass Wasser auch unterhalb der Wurzeln zur Verfügung stehen kann und somit die absolute im Boden verfügbare Wassermenge zunimmt. Die Schichtung erlaubt darüber hinaus die Verdunstung aus unbewachsenem Boden lediglich auf Basis des in der obersten Schicht verfügbaren Wassers. Ein weiterer Prozess, der dank der Schichtung und der weiter unten erläuterten Datensätze neu parametrisiert werden kann, ist die Infiltration. Für die Verwendung des Schemas sind Informationen über bodenhydrologische Parameter, die Wurzeltiefe und die Tiefe bis zum anstehenden Gestein erforderlich. Entsprechende Datensätze müssen hierfür aufbereitet und in das Modell eingebaut werden. Bezüglich der Wurzeltiefe wurden drei sich bezüglich der Tiefe, der Definition und der verfügbaren Auflösung stark voneinander unterscheidende Datensätze verglichen. Letztendlich wird die Wurzeltiefe aus dem mit einer anderen REMO-Version gekoppelten Vegetationsmodul iMOVE verwendet, da zukünftig eine Kopplung dieses Moduls mit dem mehrschichtigen Boden geplant ist und die Wurzeltiefen damit konsistent sind. Zudem ist die zugrundeliegende Auflösung der Daten hoch und es werden maximale Wurzeltiefen berücksichtigt, die besonders wichtig für die Simulation von Landoberfläche-Atmosphäre-Interaktionen sind. Diese Vorteile brachten die anderen Datensätze nicht mit. In der finalen Modellversion werden für die Tiefe bis zum anstehenden Gestein und die Korngrößenverteilungen die Daten von SoilGrids verwendet. Ein Vergleich mit anderen Bodendatensätzen fand in einer parallel laufenden Dissertation statt (Ziegler 2022). Bei SoilGrids ist hervorzuheben, dass die Korngrößenverteilungen in einer hohen räumlichen Auflösung (1 km^2 oder höher) und mit mehreren vertikalen Schichten vorliegen. Gegenüber dem ursprünglich in REMO verwendeten Datensatz mit einer Kantenlänge von 0.5° und ohne vertikale Differenzierung ist dies eine starke Verbesserung der Eingangsdaten. Dazu kommt, dass die Korngrößenverteilungen die Verwendung kontinuierlicher Pedotransferfunktionen statt fünf diskreter Texturklassen, denen für die bodenhydrologischen Parameter fixe Tabellenwerte zugewiesen werden, ermöglichen. Dies führt zu einer deutlich besseren Differenzierung des heterogenen Bodens. Im Rahmen der Arbeit wurden insgesamt 19 Simulationen für Europa und ein erweitertes Deutschlandgebiet mit Auflösungen von 0.44° beziehungsweise 0.11° für den Zeitraum 2000 bis 2018 gerechnet. Dabei zeigte sich, dass die Einführung des mehrschichtigen Bodenschemas gegenüber dem einschichtigen Schema zu einer Verringerung der Bodenfeuchte in der Wurzeltiefe führt. Nichtsdestotrotz nimmt die absolute Wassermenge des Bodens durch die Berücksichtigung des Bodens unterhalb der Wurzelzone zu. Bezogen auf die einzelnen Schichten wird die Bodenfeuchte damit zwar unterschätzt, im Laufe der Modellentwicklung kann jedoch eine Verbesserung im Vergleich zu ERA5 erzielt werden. Das neue Schema führt zu einer Verringerung der Evapotranspiration, die über alle Schritte der Modellentwicklung und besonders während der Sommermonate auftritt. Im Vergleich zu Validationsdaten von ERA5 und GLEAM zeigt sich, dass dies eine Verbesserung dieser Größe bedeutet, die sowohl in der Fläche als auch beim Fehler und in der Verteilung auftritt. Gleiches lässt sich für den Oberflächenabfluss sagen. Hierfür implementierte Schemata (Philip, Green-Ampt), die anders als das standardmäßig verwendete Improved-Arno-Schema bodenhydrologische Parameter berücksichtigen, konnten eine weitere Verbesserung im Flachland zeigen. In Gebirgsregionen nahm der Fehler durch die nicht enthaltene Berücksichtigung der Hangneigung jedoch zu, sodass in der finalen Modellversion auf das Improved-Arno-Schema zurückgegriffen wurde. Die Temperatur steigt durch die ursprüngliche Version des mehrschichtigen Schemas zunächst an, was zu einer Über- statt der vorherigen Unterschätzung gegenüber E-OBS führt. Die Modellentwicklung resultiert zwar in einer Reduzierung der Temperatur, jedoch fällt diese zu stark aus, sodass der Temperaturfehler letztendlich größer als in der einschichtigen Modellversion ist. Da die Evapotranspiration jedoch maßgeblich verbessert wurde, kann dieser Fehler eventuell auf ein übermäßiges Tuning der Temperatur zurückgeführt werden. Die Betrachtung von Hitzeereignissen am Beispiel der Sommer 2003 und 2018 hat gezeigt, dass die Modellentwicklung dazu beiträgt, diese Ereignisse besser als das einschichtige Schema zu simulieren. Zwar trifft dies nicht auf das räumliche Verhalten der mittleren Temperatur zu, jedoch auf deren zeitlichen Verlauf. Hinzu kommt die bessere Simulation der täglichen Extrem- und besonders der Minimaltemperatur, was zu einer Erhöhung der täglichen Temperaturspanne führt. Diese wird von Klimamodellen in der Regel zu stark unterschätzt. Durch die Berücksichtigung der vertikalen Wasserflüsse hat sich jedoch auch gezeigt, dass noch enormes Entwicklungspotenzial mit Blick auf (boden)hydrologische Prozesse besteht. Dies gilt in besonderem Maße für zukünftige Simulationen mit konvektionserlaubender Auflösung. So sollten subskalige Informationen des Bodens und der Orographie berücksichtigt werden. Dies dient einerseits der Repräsentation vorliegender Heterogenitäten und kann andererseits, wie am Beispiel der Infiltrationsschemata dargelegt, zur Verbesserung bestehender Prozesse beitragen. Da die simulierte Drainage durch das mehrschichtige Bodenschema im gleichen Maße zu- wie der Oberflächenabfluss abnimmt und das Wasser dem Modell in der Folge nicht weiter zur Verfügung steht, sollte zukünftig auch Grundwasser im Modell berücksichtigt werden. Eine Vielzahl von Studien konnte einen Mehrwert durch die Implementierung dieser Variable und damit verbundener Prozesse feststellen. Mittelfristig ist jedoch insgesamt die Kopplung an ein hydrologisches Modell zu empfehlen, um die bei hochauflösenden Simulationen relevanten Prozesse angemessen repräsentieren zu können. Hierfür bieten sich beispielsweise ParFlow oder mHM an. Insgesamt ist festzuhalten, dass das mehrschichtige Bodenschema einen Mehrwert liefert, da schwer zu simulierende und in der Postprozessierung zu korrigierende Variablen wie die Evapotranspiration und der Oberflächenabfluss deutlich besser modelliert werden können als mit dem einschichtigen Schema. Dies gilt auch für die Extremtemperaturen. Beides ist klar auf die Schichtung des Bodens und damit einhergehender Prozesse zurückzuführen. Bezüglich der Daten zeigt sich, dass die Wurzeltiefe, die Berücksichtigung von SoilGrids und die vertikale Bodeninformation für die weitere Optimierung verantwortlich sind. Darüber hinaus ist der höhere Informationsgehalt, der anhand der geschichteten Bodenfeuchte zur Verfügung steht, ebenfalls als Mehrwert einzustufen. N2 - Soil moisture is an essential variable for the exchange of energy, moisture, and substances between the land surface and the atmosphere. Its effects on temperature and precipitation are diverse and complex. However, the schemes used in climate models to simulate soil moisture, also called soil hydrological schemes, are often very simplified due to the origin of climate models from weather models. In climate models, which compute simulations at coarse resolutions of tens or hundreds of kilometers of edge length, many processes can be neglected. However, the resolution of those models is steadily increasing and now generally has 0.22° in the recently published coordinated project of regional climate models called CORDEX-CORE. As a consequence, higher resolved data and more processes have to be simulated. This is even more true with respect to convection-permitting simulations having edge lengths of a few kilometers. With increasing model resolutions, the complexity and differentiation of questions to be answered by the use of climate models increases as well. This is also the case of the BigData@Geo-project, in which framework this thesis was written. The aim of this project is to provide high-resolution climate information for the Bavarian administrative district of Lower Franconia for stakeholders from agriculture, forestry, and viticulture. Due to these applied and basic requirements and objectives, there is also the need of model development for the regional climate model REMO (version 2015) used in this work. Thus, the main goal of this thesis is to replace the existing singlelayer soil hydrological scheme by a multilayer one. The advantage of multiple simulated soil layers is that the vertical movement of water, thus percolation and capillary rise, can now be simulated. This is done on the basis of soil hydrological parameters, those value is determined by the water retention curve as a function of soil texture and soil moisture. Various parameterizations have been developed for this curve, whereas the one of Clapp-Hornberger and van Genuchten were used herein. Additionally, the soil moisture can now be simulated to a depth of approximately 10 m or the bedrock's depth, respectively. Thus, in contrast to the previous scheme, which depth is limited to the rooting depth, there is the possibility that water is also available below the root zone. Hence, the absolute amount of water in the root zone is increased. Furthermore, the layering allows evaporation from bare soil based only on the water available in the uppermost layer. Another process, that can be reparameterized due to the layering and the data sets explained subsequently, is infiltration. To use the new scheme, information on soil hydrological parameters, rooting depth, and the depth to bedrock is required. For this purpose, appropriate data sets have to be prepared and implemented into the model. Regarding the rooting depth, three data sets with different depths, definitions, and resolutions were compared. Finally, the rooting depth from the vegetation module iMOVE, coupled with another REMO version, is used since a coupling between iMOVE and the multilayer soil scheme is planned in the future. With this, the rooting depths are consistent. In addition, the underlying resolution of the data is high and maximum rooting depths are considered, which are particularly important for simulating land surface-atmosphere interactions. These advantages were not provided by the other data sets. In the final model version, SoilGrids data are used for the depth to bedrock and grain size distributions. A comparison with other soil data sets was done in a parallel thesis (Ziegler 2022). For SoilGrids, it should be underlined that the grain size distributions enable the use of continuous pedotransfer functions instead of five discrete texture classes for the soil hydrological parameters. This leads to a much better differentiation of the heterogeneous soil. For this thesis, 19 simulations were calculated for Europe and an extended German region with resolutions of 0.44° and 0.11°, respectively, covering the period of 2000 to 2018. The implementation of the multilayer soil scheme leads to a decrease in root zone soil moisture compared to the singlelayer scheme. Nevertheless, the absolute amount of soil moisture increases by the consideration of soil below the root zone. Related to the individual layers, the soil moisture is thus underestimated, but in the process of model development an improvement can be achieved compared to ERA5. Furthermore, the new scheme results in a reduction of evapotranspiration that occurs across all model development steps and is especially present during summer. When compared to validation data from ERA5 and GLEAM, this is shown to be an improvement that occurs in space as well as bias and distribution. The same was found for surface runoff. Schemes implemented for this purpose (Philip, Geen-Ampt), which differ from the defaultly used Improved-Arno scheme by taking hydrlogical parameters into account, were able to show a further improvement in lowlands. In mountainous regions, however, the bias increased due to the not included consideration of slopes. Consequently, the final model version uses the Improved-Arno scheme. Temperature initially increases through the original version of the multilayer scheme, resulting in an overestimation instead of the previous underestimation by the singlelayer soil relative to E-OBS. Although the model development leads to a reduction in temperature, this reduction turns out to be too large, so that the temperature bias is ultimately higher than in the singlelayer model version. However, since evapotranspiration has been significantly improved, this error can possibly be attributed to a temperature overtuning. The analysis of heat events investigating the summers of 2003 and 2018 has shown that the model development leads to an improved simulation of these events compared to the singlelayer scheme. While this is not true for the spatial behavior of the mean temperature, there is a clear improvement of its temporal one. Additionally, the better simulation of daily extreme temperatures, especially its minimum, leads to an increase of the daily temperature range. This is usually underestimated too much by climate models. The consideration of vertical water fluxes has shown that there is still enormous potential for model development with regard to (soil) hydrological processes. This is especially true for future simulations with convection-permitting resolution. Thus, subgrid information of the soil and the orography should be considered. On the one hand, this serves to represent existing heterogeneities and, on the other hand, can contribute to the improvement of existing processes, as shown by the example of infiltration schemes. Since the simulated drainage increases due to the multilayer soil scheme to the same extent as the surface runoff decreases, the water is subsequently no longer available to the model. Therefore, groundwater should also be considered in the model. A number of studies have found an added value from integrating this variable and related processes. In the medium term, however, coupling to a hydrological model is generally recommended in order to be able to adequately represent the processes relevant in high-resolution simulations. ParFlow or mHM, for example, are suitable for this purpose. Overall, it can be noted that the multilayer soil scheme provides an added value because variables like evapotranspiration and surface runoff, that are difficult to simulate and subsequently to be bias adjusted in postprocessing, are modeled much better than using the singlelayer scheme. This is also true for extreme temperatures. Both improvements are caused by the soil layering and associated processes. Regarding the data, it can be seen that the rooting depth, the consideration of SoilGrids, and the vertical soil information is are responsible for the further optimization. In addition, the higher information content available by representing the layered soil moisture can also be classified as an added value. KW - Klima KW - Modell KW - Klimamodell KW - Modellentwicklung KW - Bodenhydrologie KW - Bodenfeuchte KW - Landoberfläche-Atmosphäre Interaktion KW - climate model KW - model development KW - soil hydrology KW - soil moisture KW - land surface-atmosphere interaction Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-311468 ER - TY - THES A1 - Keupp, Luzia Esther T1 - Hochaufgelöste Erfassung zukünftiger Klimarisiken für Land- und Forstwirtschaft in Unterfranken T1 - High resolution assessment of future climate risks for agriculture and forestry in Lower Franconia N2 - Das Klima und seine Veränderungen wirken sich direkt auf die Land- und Forstwirtschaft aus. Daher ist die Untersuchung der zukünftigen Klimarisiken für diese Sektoren von hoher Relevanz. Dies ist auch und vor allem für den schon heute weiträumig trockheitsgeprägten und vom Klimawandel besonders betroffenen nordwestbayerischen Regierungsbezirk Unterfranken der Fall, dessen Gebiet zu über 80 % land- oder forstwirtschaftlich genutzt wird. Zur Untersuchung der Zukunft in hoher räumlicher Auflösung werden Projektionen von regionalen Klimamodellen genutzt. Da diese jedoch Defizite in der Repräsentation des beobachteten Klimas der Vergangenheit aufweisen, sollte vor der weiteren Verwendung eine Anpassung der Daten erfolgen. Dies geschieht in der vorliegenden Arbeit am Beispiel des regionalen Klimamodells REMO im Bezug auf klimatische Kennwerte für Trockenheit, Starkniederschlag, Hitze sowie (Spät-)Frost, die alle eine hohe land- und forstwirtschaftliche Bedeutung besitzen. Die Datenanpassung erfolgt durch zwei verschiedene Ansätze. Zum Einen wird eine Biaskorrektur der aus Globalmodell-angetriebenen REMO-Daten berechneten Indizes durch additive und multiplikative Linearskalierung sowie empirische und parametrische Verteilungsanpassung durchgeführt. Zum Anderen wird ein exploratives Verfahren auf Basis von Model Output Statistics angewandt: Lokale und großräumige atmosphärische Variablen von REMO mit Reanalyseantrieb, die eine zeitliche Korrespondenz zu den Beobachtungen aufweisen, dienen als Prädiktoren für die Aufstellung von Transferfunktionen zur Simulation der Indizes. Diese Transferfunktionen werden sowohl mithilfe Multipler Linearer Regression als auch mit verschiedenen Generalisierten Linearen Modellen konstruiert. Sie werden anschließend genutzt, um Analysen auf Basis von biaskorrigierten Globalmodell-angetriebenen REMO-Prädiktoren durchzuführen. Sowohl für die Biaskorrektur als auch die Model Output Statistics wird eine Kreuzvalidierung durchgeführt, um die Ergebnisse unabhängig vom jeweiligen Trainingszeitraum zu untersuchen und die jeweils besten Varianten zu finden. Werden beide Verfahren mit ihren Unterkategorien für den gesamten historischen Modellzeitraum verglichen, so weist für alle Monat-Kennwert-Kombinationen eine der beiden Verteilungskorrekturen die besten Ergebnisse auf. Die Zukunftsprojektionen unter Verwendung der jeweils erfolgreichsten Methode zeigen im regionalen Durchschnitt für das 21. Jahrhundert negative Trends der (Spät-)Frost- und Eis- sowie positive Trends der Hitzetagehäufigkeit. Winterliche Starkregenereignisse nehmen hinsichtlich ihrer Anzahl zu, im Sommer verstärkt sich die Trockenheit. Die Hinzunahme zwei weiterer regionaler Klimamodelle bestätigt die allgemeinen Zukunftstrends, jedoch ergeben sich beim Spätfrost Widersprüche, wenn dieser hinsichtlich der thermisch abgegrenzten Vegetationsperiode definiert wird. Zusätzlich werden die Model Output Statistics auf gleiche Weise mit bodennahen Prädiktoren zur Simulation von Erträgen aus Acker- und Weinbau wiederholt. Die Güte kann aufgrund mangelnder Beobachtungsdatenlänge nur anhand der Reanalyse-angetriebenen REMO-Daten abgeschätzt werden, ist hierbei jedoch deutlich besser als im Bezug auf die Kennwertsimulation. Die Zukunftsprojektionen von REMO sowie drei weiterer Regionalmodelle zeigen im Mittel über alle Landkreise Unterfrankens steigende Winter- sowie sinkende Sommerfeldfruchterträge. Hinsichtlich der Frankenweinerträge widersprechen sich die Ergebnisse der drei Klassen Weiß-, Rot- und Gesamtwein insofern, als dass REMO und ein weiteres Modell negative Weiß- und Rotweinertragstrends, jedoch positive Gesamtweinertragstrends simulieren. Die zwei anderen verwendeten Modelle führen durch positive Trendvorzeichen für den Weißwein zu insgesamt kohärenten Ergebnissen. Die Resultate im Bezug auf die land- und forstwirtschaftlich relevanten klimatischen Kennwerte bedeuten, dass Anpassungsmaßnahmen gegenüber Hitze sowie im Speziellen gegenüber Trockenheit in Zukunft im ohnehin trockenheitsgeprägten Unterfranken an Bedeutung gewinnen werden. Auch die unsicheren Projektionen im Bezug auf die Spätfrostgefahr müssen im Blick behalten werden. Die Trends der Feldfruchterträge deuten in die gleiche Richtung, da Sommergetreide eine höhere Trockenheitsanfälligkeit besitzen. Die unklaren Ergebnisse der Weinerträge hingegen lassen keine eindeutigen Schlüsse zu. Der starke anthropogene Einfluss auf die Erntemengen sowie die großen Unterschiede der Rebsorten hinsichtlich der klimatischen Eignung könnten ein Grund hierfür sein. N2 - There is a direct impact of climate and its modifications on agriculture and forestry. For this reason, analyzing future climate risks concerning these sectors is highly important. This is also and particularly the case for the northwestern Bavarian administrative district of Lower Franconia, which is characterized by dry conditions even today and which is especially affected by climate change. Additionally, more than 80 % of its area is used for agriculture or forestry. To study future conditions in high spatial resolutions, projections of regional climate models are used. As these show deficits in the representation of the observed climate of the past, an adaption of the data should happen before application. In the study at hand, this is done using the example of the regional climate model REMO regarding climatic indices for dryness, heavy precipitation, and heat as well as (late) frost, all of which are of high agricultural and silvicultural relevance. Adaption of the data is handled via two different approaches. On the one hand, a bias correction of the indices calculated from REMO data based on global climate model output is done using additive and multiplicative linear scaling as well as empirical and parametric distribution adaption. On the other hand, an explorative technique based on model output statistics is applied: Local and large-scale atmospheric variables of REMO run with reanalysis data, possessing a temporal correspondence with observations, are used as predictors for the derivation of transfer functions for simulating the indices. The transfer functions are constructed by means of Multiple Linear Regression as well as different Generalized Linear Models. Subsequently, they are used for analyses based on bias corrected REMO predictors run with global climate model data. Both bias correction and model output statstics are performed in a cross-validated manner for examining the results independently from the training period and finding the best alternative for each situation. When comparing both methods with their subcategories for the entire historical model period, for all month-index-combinations one of the distribution correction techniques exhibits the best results. Future projections using the most successful method for each situation show negative trends of (late) frost and ice as well as positive trends of heat day occurence for the 21st century. The number of heavy precipitation days increases in winter, dryness amplifies in summer. When taking into consideration two additional regional climate models, the general future trends are confirmed. Nevertheless, discrepancies result regarding late frost when the respective vegetation period is demarcated based on temperature in contrast to monthly delineation. Additionally, model output statistics are repeated in the same manner using near-surface predictors for simulating yield of agriculture and viticulture. Estimation of quality can only be performed on the basis of reanalysis-run REMO data as the duration of the observational data is too short. However, the respective results show a much better performance than for the index simulations. Averaging all rural districs of Lower Franconia, future projections of REMO as well as three additional regional models show rising yields for winter as well as falling yields for summer crops. With respect to the yield of Franconian wine, the results of the three analyzed classes of white, red and total wine disagree as REMO and one additional model simulate negative white and red wine, but positive total wine yields. More consistent results are achieved using the other models, which project positive trend signs for white wine. The outcomes concerning climatic indices of agricultural and silvicultural relevance imply a future gain of importance of adaption measures towards heat and particularly dryness in Lower Franconia which is already drought-affected today. Furthermore, uncertainty in the projections of late frost has to be kept in mind. The resulting trends of agricultural yield point along the same lines as summer crops are more drought-sensitive. However, the ambiguity of the wine yield results impede precise conclusions. A reason for this could be the strong anthropogenic influence on yields as well as the great differences between grape varieties regarding their climatic suitability. KW - Klima KW - Landwirtschaft KW - Forstwirtschaft KW - Unterfranken KW - Klima / Modell KW - regionale Klimamodelle KW - CORDEX KW - Biaskorrektur KW - Model Output Statistics KW - Klimarisiken KW - Klimamodell Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-347350 ER -