TY - THES A1 - Awad, Eman Da'as T1 - Modulation of insulin-induced genotoxicity in vitro and genomic damage in gestational diabetes T1 - Modulation der Insulin-induzierten Genotoxizität in vitro und Genomschäden bei Frauen mit Gestationsdiabetes N2 - Diabetes mellitus is a global health problem, where the risk of diabetes increases rapidly due to the lifestyle changes. Patients with type II diabetes have many complications with increased risk of morbidity and mortality. High levels of insulin may lead to DNA oxidation and damage. Several studies proposed that hyperinsulinemia may be an important risk factor for various types of cancer. To investigate insulin signaling pathway inducing oxidative stress and genomic damage, pharmaceutical and natural compounds which can interfere with the insulin pathway including PI3K inhibitors, resveratrol, lovastatin, and RAD-001 were selected due to their beneficial effects against metabolic disorder. Thus, the anti-genotoxic potential of these compounds regarding insulin-mediated oxidative stress were investigated in normal rat kidney cells in vitro. Our compounds showed protective effect against genotoxic damage and significantly decreased reactive oxygen specious after treatment of cells with insulin with different mechanisms of protection between the compounds. Thus, these compounds may be attractive candidates for future support of diabetes mellitus therapy. Next, we explored the link between gestational diabetes mellitus and genomic damage in cells derived from human blood. Moreover, we investigated the influence of estradiol, progesterone, adrenaline and triiodothyronine on insulin-induced genomic damage in vitro. First, we studied the effect of these hormones in human promyelocytic leukemia cells and next ex vivo with non-stimulated and stimulated peripheral blood mononuclear cells. In parallel, we also measured the basal genomic damage using three conditions (whole blood, non-stimulated and stimulated peripheral blood mononuclear cells) in a small patient study including non-pregnant controls with/without hormonal contraceptives, with a subgroup of obese women, pregnant women, and gestational diabetes affected women. A second-time point after delivery was also applied for analysis of the blood samples. Our results showed that GDM subjects and obese individuals exhibited higher basal DNA damage compared to lower weight nonpregnant or healthy pregnant women in stimulated peripheral blood mononuclear cells in both comet and micronucleus assays. On the other hand, the DNA damage in GDM women had decreased at two months after birth. Moreover, the applied hormones also showed an influence in vitro in the enhancement of the genomic damage in cells of the control and pregnant groups but this damage did not exceed the damage which existed in obese and gestational diabetes mellitus patients with high level of genomic damage. In conclusion, insulin can induce genomic damage in cultured cells, which can be modulated by pharmaceutical and naturals substances. This may be for future use in the protection of diabetic patients, who suffer from hyperinsulinemia during certain disease stages. A particular form of diabetes, GDM, was shown to lead to elevated DNA damage in affected women, which is reduced again after delivery. Cells of affected women do not show an enhanced, but rather a reduced sensitivity for further DNA damage induction by hormonal treatment in vitro. A potential reason may be an existence of a maximally inducible damage by hormonal influences. N2 - Diabetes mellitus stellt eine globales Gesundheitsproblem dar, das aufgrund der sich ändernden Lebensführung rapide ansteigt. Bei Patienten mit Diabetes Typ II kommt es verstärkt zu Komplikationen, was eine erhöhte Morbidität und Mortalität zur Folge hat. Ein hoher Insulinspiegel kann zur DNA-Oxidation und damit zu DNA-Schäden führen. Diverse Studien postulieren, dass Hyperinsulinämie ein entscheidender Risikofaktor für verschiedene Krebserkrankungen darstellt. Zur Untersuchung des Insulin- Signaltransduktionsweg, über den oxidativer Stress und daraus resultierender Genomschäden induziert werden, wurden aus diversen Pharmazeutika und Naturstoffen, welche den Insulin-Signalweg beeinträchtigen, PI3K Inhibitoren, Resveratrol, Lovastatin und RAD-001 aufgrund ihrer positiven Effekte bei Stoffwechselerkrankungen, ausgewählt. Mit diesen Verbindungen wurde die anti-Genotoxizität (Schutzwirkung) hinsichtlich des durch Insulin induzierten oxidativen Stresses und Genomschadens in einer primären Nierenzelllinie der Ratte in vitro untersucht. Unsere Ergebnisse zeigten protektive Effekte der ausgewählten Substanzen hinsichtlich genotoxischer Schäden sowie einen signifikanten Rückgang reaktiver Sauerstoffspezies bei insulinbehandelten Zellen, wobei der Wirkmechanismus zwischen den Substanzen jedoch unterschiedlich war. Somit handelt es sich bei den untersuchten Stoffen um äußerst interessante Verbindungen, die in der Zukunft Diabetes mellitus Therapien unterstützen könnten. Außerdem untersuchten wir den Zusammenhang zwischen Schwangerschaftsdiabetes und Genomschäden in humanen Blutzellen. Dafür verwendeten wir neben humanen HL-60 Zellen nicht stimulierte sowie mit Hilfe von Phytohemagglutinin (PHA) zur Aufnahme des Zellzyklus stimulierte periphere mononukleäre Blutzellen von gesunden sowie von Gestationsdiabetes betroffenen Probandinnen. Wir analysierten zunächst den Einfluss von Östradiol, Progesteron, Adrenalin und Triiodthyronin auf den Genomschaden dieser Zellen in vitro.. Parallel dazu bestimmten wir in die basalen Genomschäden im Vollblut, in nicht stimulierten sowie in PHA-stimulierten peripheren mononukleären Blutzellen. Diese Studie schloss nicht-schwangere Frauen mit bzw. ohne Einnahme hormoneller Kontrazeptiva sowie je eine Subgruppen mit übergewichtigen Frauen, gesunden schwangeren Frauen und Frauen mit Schwangerschaftsdiabetes ein. Bei Schwangeren wurde einige Zeit nach der Entbindung eine zweite Blutuntersuchung durchgeführt. Wir konnten zeigen, dass Frauen mit Schwangerschaftsdiabetes sowie übergewichtige Frauen im Vergleich zu normalgewichtigen, nicht-schwangeren Frauen sowie gesunden schwangeren Frauen mehr basale DNA-Schäden sowohl im Comet-Assay als auch im Mikrokern-Test in stimulierten peripheren mononuklearen Zellen aufweisen. Des Weiteren sanken die DNA-Schäden bei Frauen mit Schwangerschaftsdiabetes zwei Monate nach der Geburt. Darüber hinaus verstärkten die verwendeten Hormone in vitro die zellulären Genomschäden, jedoch überstiegen sie nicht die größere Menge an DNA-Schäden, welche bei übergewichtigen Frauen bzw. Frauen mit Schwangerschaftsdiabetes nachgewiesenen wurden. Zusammenfassend lässt sich feststellen, dass Insulin Zellschäden in vitro induzieren kann, die jedoch durch Pharmazeutika und Naturstoffen reguliert werden können. Diese Erkenntnis könnte zukünftig Diabetespatienten helfen, die an Hyperinsulinämie leiden. Schwangerschaftsdiabetes, eine besondere Form des Diabetes, führt zu erhöhten DNASchäden bei betroffenen Frauen, die sich nach der Geburt jedoch wieder verringern. Die Zellen betroffener Frauen zeigen keine erhöhte, sondern vielmehr eine verminderte Sensitivität für weiteren DNA-Schäden durch hormonelle Behandlung in vitro. Eine mögliche Erklärung dafür könnte sein, dass eine maximal induzierbare Zahl an DNASchäden, die durch hormonelle Einflüsse bzw. daraus resultierenden Aktivierungen von Signalkaskaden hervorgerufen werden können, existiert. KW - Gestationsdiabetes KW - DNA-Schäden KW - Insulin KW - Gestational diabetes KW - DNA damage Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-161866 ER - TY - THES A1 - Kodandaraman, Geema T1 - Influence of insulin-induced oxidative stress in genotoxicity and disease T1 - Einfluss von insulininduziertem oxidativem Stress auf Genotoxitität und Krankheit N2 - Hormones are essential components in the body and their imbalance leads to pathological consequences. T2DM, insulin resistance and obesity are the most commonly occurring lifestyle diseases in the past decade. Also, an increased cancer incidence has been strongly associated with obese and T2DM patients. Therefore, our aim was to study the influence of high insulin levels in accumulating DNA damage in in vitro models and patients, through the induction of oxidative stress. The primary goal of this study was to analyze the genotoxicity induced by the combined action of two endogenous hormones (insulin and adrenaline) with in vitro models, through the induction of micronuclei and to see if they cause an additive increase in genomic damage. This is important for multifactorial diseases having high levels of more than one hormone, such as metabolic syndrome and conditions with multiple pathologies (e.g., T2DM along with high stress levels). Furthermore, the combination of insulin and the pharmacological inhibition of the tumor suppressor gene: PTEN, was to be tested in in vitro models for their genotoxic effect and oxidative stress inducing potential. As the tumor suppressor gene: PTEN is downregulated in PTEN associated syndromes and when presented along with T2DM and insulin resistance, this may increase the potential to accumulate genomic damage. The consequences of insulin action were to be further elucidated by following GFP-expressing cells in live cell-imaging to observe the ability of insulin, to induce micronuclei and replicative stress. Finally, the detrimental potential of high insulin levels in obese patients with hyperinsulinemia and pre-diabetes was to be studied by analyzing markers of oxidative stress and genomic damage. In summary, the intention of this work was to understand the effects of high insulin levels in in vitro and in patients to understand its relevance for the development of genomic instability and thus an elevated cancer risk. N2 - In-vitro-Genotoxizitätsstudien mit hohen Konzentrationen von Insulin und die Kombination mit Adrenalin zeigten keinen additiven Anstieg der Mikrokernzahl. Der Insulinrezeptor und der AKT-Signalweg waren in den insulinvermittelten Genomschaden involviert. Die endogenen ROS-Quellen, Mitochondrien und NOX, waren an dem insulinvermittelten DNA-Schaden beteiligt. Hohe Konzentrationen von mitochondrialen ROS alleine, verursacht durch einen Komplex III Mitochondrien-Inhibitor, führten zu Zytotoxizität, aber nicht zu einer Zunahme des Genomschadens. Daher ist die durch das NOX-Enzym vermittelte ROS-Produktion wahrscheinlich der gemeinsame Faktor des genotoxischen Signalweges von Insulin und Adrenalin. Die Überstimulation des NOX-Enzyms führte zu einer Sättigung der zellulären biologischen Effekte und fehlender Additivität bei der Induktion von Genomschaden. Dies könnte jedoch unter physiologischen Bedingungen anders sein, da die Hormonspiegel niedriger sind und die ROS-Quellen nicht durch jedes einzelne der Hormone bereits maximal genutzt und daher erschöpft werden. Damit könnte die Möglichkeit eines additiven Genomschadens in vivo bestehen. Die Rolle des AKT-Signalwegs bei der Insulin-vermittelten genomischen Schädigung ist bereits etabliert und hier wurde nun die Funktion des negativen Regulatorproteins PTEN untersucht. Die Ergebnisse zeigten, dass die PTEN Inhibierung nicht nur zu einer erhöhten Genotoxizität durch MN-Induktion führte, sondern auch zur Beeinträchtigung der mitochondrialen Funktion. Obwohl kein Anstieg von ROS nach PTEN-Inhibierung beobachtet wurde, könnte die mitochondriale Dysfunktion zur metabolischen Imbalance sowie zur Zunahme des Genomschadens führen. Dies könnte insbesondere bei Patienten mit bestimmten PTEN-assoziierten Syndromen und Krebserkrankungen, die eine defekte PTEN-vermittelte Tumorsuppressorfunktion, DNA-Reparaturdefekte und kompromittierte antioxidative Abwehrmechanismen aufweisen, eine wichtige Rolle spielen. Wenn diese Patienten zusätzlich von Hyperinsulinämie betroffen sind, könnte eine Akkumulation von Genomschaden erfolgen und das Risiko zur Krebsentstehung wäre erhöht. Der Mechanismus der Genomschadensinduktion durch Insulin wurde bisher mit einer ROS-vermittelten DNA-Oxidation in Verbindung gebracht, aber noch nicht mit der mitogenen Signalgebung. Bei dieser beschleunigte das mitogene Potential des Insulins die Zellteilung und verursachte einen leichten replikativen Stress. Der milde replikative Stress könnte der Kontrolle durch die mitotischen Checkpoint-Proteine entgehen und zu Chromosomen-Fehlverteilungen und Chromosomenbrüchen führen. Dieser Effekt wurde in der Krebszelllinie Hela in Form von multipolaren Spindeln und Mikronuklei beobachtet und es ist nicht klar ob normale Zellen mit effizienterer Kontrolle dies verhindern könnten. Insgesamt könnte ein durch hohe Insulinspiegel vermittelter Schaden im Kontext anderer Komorbiditäten wie etwa PTEN Syndromen, metabolischem Syndrom oder Adipositas zu einer Akkumulation von DNA-Schäden führen. Schließlich zeigte die Analyse von Proben adipöser Patienten eine Zunahme von DNA-Schaden und oxidativem Stress im Vergleich zu den gesunden Kontrollen. Der Anstieg des DNA-Schadens war am höchsten in der Untergruppe der Patienten mit Insulinresistenz. Hoher Insulinspiegel bedeutet somit ein Risiko vom erhöhten oxidativen Stress und Genomschaden, insbesondere in Kombination mit Komorbiditäten. Erschwert wird das Verständnis dieser multifaktoriellen Zusammenhänge durch das komplexe Zusammenspiel von oxidativem Stress und seiner zellulären Regulation in vielen physiologischen sowie pathophysiologischen Prozessen. Daneben ist es eine Herausforderung, Genomschäden bei den geringen Wirkspiegeln hormoneller Effekte zu detektieren. Weitere Untersuchungen der komplexen Insulin-vermittelten Genomschadenswege werden notwendig sein, um mögliche Risiken der Hyperinsulinämie bei Erkrankungen wie Stoffwechselkrankheiten, Diabetes Typ 2 und Adipositas besser zu charakterisieren. KW - Insulin KW - Genotoxicity KW - Micronucleus Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-242005 ER -