TY - THES A1 - Geier, Bettina T1 - Kernspintomografische Natriumbildgebung in Haut und Muskel T1 - Magnetic resonance imaging of sodium in skin and muscle N2 - Die vorliegende Arbeit untersucht den Natriumgehalt verschiedener Kompartimente des Körpers mittels Magnetresonanztomographie (= MRT). Die Korrelation zwischen erhöhtem Salzkonsum und arterieller Hypertonie ist bereits umfangreich analysiert worden. Für das Verständnis der pathophysiologischen Zustände und deren Regulation, ist eine Quantifizierung von Natriumkonzentrationen in verschiedenen Gewebearten bedeutsam. Die exakte Messung von Natriumkonzentrationen im menschlichen Gewebe ist derzeit experimentell. Im Rahmen der hier vorgelegten Arbeit wurden die Natriumkonzentrationen von Haut und Skelettmuskel mittels 23Na Magnetresonanztomographie (= 23 Na MRT) im menschlichen Körper quantifiziert. Natriummessungen wurden bei Patienten mit primärem Hyperaldosteronismus (= PHA), bei Patienten mit essentieller Hypertonie (= EH), sowie einer gesunden Kontrollgruppe vorgenommen. Die Ergebnisse zeigten, dass Haut und Skelettmuskel Speicherorgane für Natrium im menschlichen Körper darstellen. Durch gezielte Therapie waren die Natriumkonzentrationen in beiden Speicherorganen modulierbar N2 - The present work investigates the sodium content of different compartments of the body by means of magnetic resonance imaging (= MRI). The correlation between increased salt consumption and arterial hypertension has already been extensively analyzed. For the understanding of pathophysiological states and their regulation, quantification of sodium concentrations in different tissue types is significant. Accurate measurement of sodium concentrations in human tissues is currently experimental. In the work presented here, sodium concentrations of skin and skeletal muscle were quantified using 23Na - magnetic resonance imaging (= 23 Na-MRI) in the human body. Sodium measurements were made in patients with primary hyperaldosteronism (= PHA), in patients with essential hypertension (= EH), and in a healthy control group. The results showed that skin and skeletal muscle are storage organs for sodium in the human body. Sodium concentrations in both storage organs could be modulated by targeted therapy. KW - Natrium-23 KW - Kernspintomografie KW - Haut KW - Muskel KW - MRI KW - sodium-23 KW - Skin KW - Muscle Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-249429 ER - TY - THES A1 - Richter, Julian Alexander Jürgen T1 - Wave-CAIPI for Accelerated Dynamic MRI of the Thorax T1 - Beschleunigte Dynamische MR-Bildgebung des Thorax mit wave-CAIPI N2 - In summary, the wave-CAIPI k-space trajectory presents an efficient sampling strategy for accelerated MR acquisitions. Using wave-CAIPI in parallel imaging reconstructions leads to a reduced noise level in the reconstructed images, compared to the Cartesian standard trajectory. This effect could be quantified by means of noise and SNR calculations. An SNR gain can be traded for a reduced scan time, i.e., additional undersampling, or for an enhanced image quality, keeping scan time constant. Acceleration of MR imaging is especially important in dynamic applications, since these examinations are inherently time-consuming. The impact of wave-CAIPI sampling on image quality and its potential for scan time reduction was investigated for two dynamic applications: self-gated dynamic 3D lung MRI during free breathing and cardiac 4D flow MRI. Dynamic 3D Lung MRI By employing wave-CAIPI sampling in self-gated, free-breathing dynamic 3D lung MRI for the purpose of radiotherapy treatment planning, the image quality of accelerated scans could be enhanced. Volunteer examinations were used to quantify image quality by means of similarity between accelerated and reference images. To this end, the normalized mutual information and the root-mean-square error were chosen as quantitative image similarity measures. The wave-CAIPI sampling was shown to exhibit superior quality, especially for short scan times. The values of the normalized mutual information were (10.2 +- 7.3)% higher in the wave-CAIPI case -- the root-mean-square error was (18.9 +- 13.2)% lower on average. SNR calculations suggest an average SNR benefit of around 14% for the wave-CAIPI, compared to Cartesian sampling. Resolution of the lung in 8 breathing states can be achieved in only 2 minutes. By using the wave-CAIPI k-space trajectory, precise tumor delineation and assessment of respiration-induced displacement is facilitated. Cardiac 4D Flow MRI In 4D flow MRI, acceleration of the image acquisition is essential to incorporate the corresponding scan protocols into clinical routine. In this work, a retrospective 6-fold acceleration of the image acquisition was realized. Cartesian and wave-CAIPI 4D flow examinations of healthy volunteers were used to quantify uncertainties in flow parameters for the respective sampling schemes. By employing wave-CAIPI sampling, the estimated errors in flow parameters in 6-fold accelerated scans could be reduced by up to 55%. Noise calculations showed that the noise level in 6-fold accelerated 4D flow acquisitions with wave-CAIPI is 43% lower, compared to Cartesian sampling. Comparisons between Cartesian and wave-CAIPI 4D flow examinations with a prospective acceleration factor R=2 revealed small, but partly statistically significant discrepancies. Differences between 2-fold and 6-fold accelerated wave-CAIPI scans are comparable to the differences between Cartesian and wave-CAIPI examinations at R=2. Wave-CAIPI 4D flow acquisitions of the aorta could be performed with an average, simulated scan time of under 4 minutes, with reduced uncertainties in flow parameters. Important visualizations of hemodynamic flow patterns in the aorta were only slightly affected by undersampling in the wave-CAIPI case, whereas for Cartesian sampling, considerable discrepancies were observed. N2 - Die wave-CAIPI k-Raum Trajektorie stellt eine effiziente Methode für beschleunigte MRT Akquisitionen dar. Die Benutzung der wave-CAIPI Trajektorie anstelle der kartesischen Standardmethode in der parallelen Bildgebung führt zu einem reduzierten Rausch-Niveau in den rekonstruierten Bildern. Dieser Effekt kann durch Berechnungen des Rauschpegels und des Signal-zu-Rausch Verhältnisses (SNR) quantifiziert werden. Das höhere Signal-zu-Rausch Verhältnis kann genutzt werden, um entweder die Akquisition durch eine höhere Unterabtastung zu beschleunigen, oder um die Bildqualität zu verbessern. Die Beschleunigung von MRT Akquisitionen ist besonders in dynamischen Anwendungen wichtig, da diese Untersuchungen inhärent sehr zeitaufwendig sind. Der Einfluss der wave-CAIPI Methode auf die Bildqualität und das Beschleunigungspotenzial der Messung wurde in dieser Arbeit sowohl für selbst-navigierte, dynamische 3D Lungenbildgebung, als auch für 4D Fluss MRTs des Herzens untersucht Dynamische 3D Lungen MRT Durch die Verwendung der wave-CAIPI Samplingmethode konnte die Bildqualität von selbst-navigierten, dynamischen 3D Lungen MRTs bei freier Atmung verbessert werden. Eine wichtige Anwendung dieser Technik liegt im Bereich der Strahlentherapieplanung. Dabei wurde im Rahmen einer Probandenstudie die Bildqualität anhand der Ähnlichkeit zwischen beschleunigten Bildern und den jeweiligen Referenzen quantifiziert. Zu diesem Zweck wurden die normalized mutual information und der root-mean-square error als quantitative Maße gewählt. Es konnte gezeigt werden, dass -- besonders bei kurzen Akquisitionszeiten -- die wave-CAIPI Methode zu besserer Bildqualität führte, verglichen mit dem kartesischen Standard. Berechnungen der normalized mutual information ergaben im Mittel (10.2 +- 7.3)% höhere Werte für die wave-CAIPI Methode -- der root-mean-square error war (18.9 +- 13.2)% geringer. Darüber hinaus lieferte die wave-CAIPI ein um etwa 14% höheres mittleres SNR. In 2 Minuten konnte die Atembewegung der Lunge in 8 Atemzustände aufgelöst werden. Eine präzise Tumor-Abgrenzung und die Evaluierung von respirationsinduzierten Tumorbewegungen wird durch die Verwendung der wave-CAIPI Methode vereinfacht. 4D Fluss Herz MRT Die Beschleunigung von 4D Fluss MRTs ist essentiell, um solche Untersuchungen in die klinische Routine zu integrieren. In der präsentierten Arbeit wurde eine 6-fache retrospektive Beschleunigung realisiert. 4D Fluss Untersuchungen von gesunden Probanden mit der wave-CAIPI und mit der kartesischen Samplingmethode wurden verwendet, um Unsicherheiten in verschiedenen Flussparametern für die beiden Samplingmethoden zu berechnen. Dabei zeigte sich, dass die geschätzten Fehler in den Flussparametern der 6-fach beschleunigten wave-CAIPI Untersuchungen bis zu 55% geringer sind als die Fehler der kartesischen Messungen. Ferner zeigten Rausch-Analysen, dass die beschleunigten wave-CAIPI Aufnahmen ein um 43% geringeres Rausch-Niveau aufweisen. Vergleiche zwischen Flussparametern, die aus 2-fach beschleunigten wave-CAIPI und kartesischen Messungen berechnet wurden, zeigten kleine, aber teilweise statistisch signifikante Unterschiede zwischen den beiden Methoden. Unterschiede zwischen 2-fach und 6-fach beschleunigten wave-CAIPI Aufnahmen sind vergleichbar mit den Unterschieden zwischen der wave-CAIPI Methode und der kartesischen Methode bei R=2. Wave-CAIPI 4D Fluss Aufnahmen des Herzens konnten mit einer mittleren, simulierten Aufnahmezeit von unter 4 Minuten durchgeführt werden. Die effizientere Samplingmethode ermöglichte dabei erheblich reduzierte Unsicherheiten in den berechneten Flussparametern. Wichtige Visualisierungen des Blutflusses in der Aorta wurden im Falle der wave-CAIPI Methode kaum von der Unterabtastung beeinflusst. Hingegen wiesen die Visualisierungen der beschleunigten kartesischen Messungen erhebliche Diskrepanzen auf. KW - Magnetresonanztomographie KW - Lunge KW - Herz KW - Fluss KW - Lung KW - Heart KW - Flow Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-232071 ER - TY - THES A1 - Lohr, David T1 - Functional and Structural Characterization of the Myocardium T1 - Funktionelle und Strukturelle Charakterisierung des Myokardiums N2 - Clinical practice in CMR with respect to cardiovascular disease is currently focused on tissue characterization, and cardiac function, in particular. In recent years MRI based diffusion tensor imaging (DTI) has been shown to enable the assessment of microstructure based on the analysis of Brownian motion of water molecules in anisotropic tissue, such as the myocardium. With respect to both functional and structural imaging, 7T MRI may increase SNR, providing access to information beyond the reach of clinically applied field strengths. To date, cardiac 7T MRI is still a research modality that is only starting to develop towards clinical application. In this thesis we primarily aimed to advance methods of ultrahigh field CMR using the latest 7T technology and its application towards the functional and structural characterization of the myocardium. Regarding the assessment of myocardial microstructure at 7T, feasibility of ex vivo DTI of large animal hearts was demonstrated. In such hearts a custom sequence implemented for in vivo DTI was evaluated and fixation induced alterations of derived diffusion metrics and tissue properties were assessed. Results enable comparison of prior and future ex vivo DTI studies and provide information on measurement parameters at 7T. Translating developed methodology to preclinical studies of mouse hearts, ex vivo DTI provided highly sensitive surrogates for microstructural remodeling in response to subendocardial damage. In such cases echocardiography measurements revealed mild diastolic dysfunction and impaired longitudinal deformation, linking disease induced structural and functional alterations. Complementary DTI and echocardiography data also improved our understanding of structure-function interactions in cases of loss of contractile myofiber tracts, replacement fibrosis, and LV systolic failure. Regarding the functional characterization of the myocardium at 7T, sequence protocols were expanded towards a dedicated 7T routine protocol, encompassing accurate cardiac planning and the assessment of cardiac function via cine imaging in humans. This assessment requires segmentation of myocardial contours. For that, artificial intelligence (AI) was developed and trained, enabling rapid automatic generation of cardiac segmentation in clinical data. Using transfer learning, AI models were adapted to cine data acquired using the latest generation 7T system. Methodology for AI based segmentation was translated to cardiac pathology, where automatic segmentation of scar tissue, edema and healthy myocardium was achieved. Developed radiofrequency hardware facilitates translational studies at 7T, providing controlled conditions for future method development towards cardiac 7T MRI in humans. In this thesis the latest 7T technology, cardiac DTI, and AI were used to advance methods of ultrahigh field CMR. In the long run, obtained results contribute to diagnostic methods that may facilitate early detection and risk stratification in cardiovascular disease. N2 - Bei kardiovaskulären Erkrankungen konzentriert sich die kardiale MRT aktuell auf die Gewebecharakterisierung und insbesondere die Herzfunktion. In den letzten Jahren hat sich gezeigt, dass MRT-basierte Diffusions-Tensor-Bildgebung (DTI) die Beurteilung der Mikrostruktur anhand der Analyse der Brownschen Bewegung von Wassermolekülen in anisotropem Gewebe, wie dem Myokardium, ermöglicht. In Bezug auf sowohl die funktionelle als auch die strukturelle Bildgebung kann 7T MRT SNR verbessern und Information messbar machen, die außerhalb der Reichweite von klinisch angewendeten Feldstärken liegt. Heute ist kardiale 7T MRT noch eine Forschungsmodalität, die sich Richtung klinischer Anwendung entwickelt. Hauptziel dieser Dissertation war die Weiterentwicklung von Methoden der kardialen Ultrahochfeld-Bildgebung mittels der neuesten 7T-Technologie und dessen Anwendung für die funktionelle und strukturelle Charakterisierung des Myokardiums. Für die Mikrostrukturcharakterisierung des Myokardiums bei 7T wurde die Durchführbarkeit von ex vivo DTI Messungen von Großtierherzen demonstriert. In solchen Herzen wurde eine Sequenz evaluiert, die für in vivo DTI etabliert wurde. Zudem wurden fixationsbedinge Veränderungen von Diffusionsparametern und Gewebeeigenschaften ermittelt. Die Ergebnisse erlauben den Vergleich von bestehenden und zukünftigen ex vivo Studien und geben Informationen zu Messparametern bei 7T. Der Transfer von etablierten Methoden zu präklinischen Studien in Mäuseherzen demonstrierte, dass ex vivo DTI sensitive Marker für Mikrostruktur-Remodeling nach Subendokard-Schäden liefern kann. In solchen Fällen zeigte Echokardiographie eine leichte diastolische Dysfunktion und eingeschränkte Longitudinalverformung. Komplementäre DTI und Echokardiographie-Daten erweiterten zudem unser Verständnis von Struktur-Funktions-Interaktionen in Fällen von Verlust von kontraktilen Faserbündeln, Fibrose und linksventrikulärem, systolischem Versagen. Für die funktionelle Charakterisierung des Myokardiums bei 7T wurde ein dediziertes 7T-Humanprotokoll erarbeitet, welches akkurate Schichtplanung und die Bestimmung der Herzfunktion mittels Cine-Bildgebung umfasst. Die Herzfunktionsbestimmung erfordert die Segmentierung des Myokards. Hierfür wurde künstliche Intelligenz (KI) entwickelt, die eine schnelle, automatische Herzsegmentierung in klinischen Daten ermöglicht. Mittels Lerntransfer wurden KI-Modelle für Bilder angepasst, die mit der neuesten 7T-Technologie aufgenommen wurden. Methoden für die KI-basierte Segmentierung wurden zudem für die Bestimmung und Segmentierung von Narbengewebe, Ödemen und gesundem Myokard erweitert. Entwickelte Radiofrequenz-Komponenten ermöglichen translationale 7T-Studien, welche kontrollierte Bedingungen für die Methodenentwicklung von kardialen 7T-Anwendungen für den Humanbereich liefern. In dieser Arbeit werden die neueste 7T-Technologie, DTI am Herzen und AI genutzt, um Methoden der kardialen Ultrahochfeld-Bildgebung weiterzuentwickeln. Langfristig erweitern die erzielten Ergebnisse diagnostische Methoden, die Früherkennung und Risikoabschätzung in kardiovaskulären Erkrankungen ermöglichen können. KW - Diffusionsgewichtete Magnetresonanztomografie KW - Künstliche Intelligenz KW - 7T KW - DTI KW - AI KW - Cardiac Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-234486 ER -