TY - THES A1 - Mies, Jan T1 - Ansa-Verbindungen von Pianostuhlkomplexen der Übergangsmetalle und Alkinanaloge Verbindungen des Bors — Darstellung und Reaktivitätsstudien T1 - Ansa-halfsandwich complexes of piano stool transition metal complexes and alkyne-type compounds of boron - synthesis and reactivity studies N2 - Im Rahmen dieser Arbeit konnten im Ersten Teil durch Anwendung verschiedener Synthesestrategien neuartige ansa-Halbsandwichkomplexe der sechsten, achten und zehnten Gruppe der Übergangsmetalle synthetisiert und umfassend charakterisiert werden. Die dargestellten Verbindungen wurden in Reaktivitätsstudien auf ihr Verhalten gegenüber Chalkogenen, sowie gegenüber niedervalenten späten Übergangsmetallkomplexen untersucht. Weiterhin wurden die erhalten Komplexe auf ihrer Eignung als mögliche Vorstufen für metallhaltige Polymere hin untersucht. Dabei wurden verschiedene Polymerisationsmethoden wie thermische, katalytische oder anionische induzierte Ringöffnungsreaktion eingesetzt und die erhaltenen Polymere mit Hilfe der Gelpermeations-Chromatographie auf ihr Molekulargewicht bzw. auf ihre Polydisperisität hin untersucht. Im zweiten Teil dieser Arbeit konnten verschiedene neuartige Basenaddukte von Tetrabromdiboran(4) dargestellt und charakterisiert werden. Durch schrittweise Reduktion gelang die Synthese basenstabilisierter neutraler Diborene auf einer bisher unbekannten Syntheseroute. Durch die erschöpfende Reduktion von [B2Br4(IDip)2] konnte erstmals ein basenstabilisiertes Diborin außerhalb einer inerten Edelgasmatrix isoliert und charakterisiert werden. Zum Verständnis der Bindungssituation sowie der Konstitution in Lösung und Festkörper wurden umfangreiche physikochemische und theoretische Studien angefertigt. Die erhaltenen Daten belegen die Synthese von [B2(IDip)2] mit einer Bindungsordnung von drei entlang der zentralen B2-Einheit. Es wurden umfangreiche Reaktivitätsstudien gegenüber verschiedenen Substraten durchgeführt. Die Umsetzung von [B2(IDip)2] mit CO lieferte ein basenstabilisiertes Bis-boralacton, bei dessen Bildung eine gänzlich unbekannte CO-Verknüpfungsreaktion auftritt, welche für Hauptgruppenelementverbindungen bisher nicht beobachtet werden konnte. Im Zuge mechanistischer Studien gelang der Nachweis eines Reaktionsintermediates. Weiterhin zeigt das Diborin [B2(IDip)2] (140) eine interessante Koordinationschemie gegenüber Kupfer(I)-Verbindungen. Dabei gelang die Darstellung von tri- und dinuklearen Kupfer(I)-Komplexen von [B2(IDip)2]. Diese wurden durch multinukleare NMR-Spektroskopie sowie mit Hilfe der Röntgenstrukturanalyse umfassend charakterisiert. N2 - Within the scope of this work, novel base adducts of phospanes and NHC ligands with tetrabromodiborane(4) were synthesized and fully characterized. Subsequent two electron-reduction of the latter yields novel base stabilized diborenes. Full reduction of [B2Br4(IDip)2] with four equivalents of sodium naphthalenide, yielded the diboryne [B2(IDip)2] which is the first example of a triply-bound B2 unit stable at ambient temperature. Crystallographic and spectroscopic characterizations confirmed that the latter is a halide-free linear system containing a boron-boron triple bond. In the course of reactivity studies of the diboryne towards various substrates a novel coupling reaction between [B2(IDip)2] and 4 CO-molecules was be observed, leading to a base-stabilized bis(bora)lactone which was isolated and fully characterized. Furthermore, an intermediat of the reaction pathway incorporating a single CO-molecule was isolated and characterized by X-ray diffraction and multinuclear NMR. Reactions with coinage-metal precusors lead to di and trinuclear coordination compounds. The geometry of both complexes were investigated by X-ray diffraction and multinuclear NMR. The bonding situation was studied by DFT-calculations. ... KW - Bor KW - Halbsandwich-Verbindungen KW - Dreifachbindung KW - Bor KW - Diborin KW - Ansa Halbsandwich Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-93652 ER - TY - THES A1 - Bertsch, Stefanie T1 - Photolytisch und thermisch induzierte Transmetallierung von Aminoborylenkomplexen T1 - Photolytically and thermally induced transmetallation of amino borylene complexes N2 - Aminoborylenkomplexe der Gruppe 6 [(OC)5M=BN(SiMe3)2] (M = Cr, Mo, W) reagieren mit Übergangsmetallkomplexen unter Transfer der Boryleneinheit bzw. in Transmetallierungsreaktionen und bilden dabei neuartige Borylenkomplexe. In dieser Dissertation wird die Synthese, Charakterisierung und Reaktivität der auf diesem Wege dargestellten Verbindungen - unter anderem Hydridoborylenkomplexe, Bis(borylen)komplexe und borylensubstituierte MOLPs - beschrieben. N2 - Amino borylene complexes of group 6 [(OC)5M=BN(SiMe3)2] (M = Cr, Mo, W) undergo reactions with transition metal complexes to form novel borylene complexes. These reactions can be viewed either as borylene transfer or as transmetallation reactions. In this thesis the syntheses, characterizations and reactivities of these novel compounds – amongst others hydridoborylene complexes, bis(borylene) complexes and borylene substituted MOLPs - is reported. KW - Borylene KW - Übergangsmetallkomplexe KW - Transmetallierung KW - Aminoborylenkomplexe KW - Borylentransfer Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-106797 ER - TY - THES A1 - Matthes, Philipp Robert T1 - Neue Ln-N-Koordinationspolymere und MOFs als Hybridmaterialien für effektive Lumineszenz und neuartige Phosphore T1 - New Ln-N-coordination polymers and MOFs as hybrid materials for effective luminescence and new phosphors N2 - In der vorliegenden Arbeit wird die Darstellung und Charakterisierung von Komplexen, Koordinationspolymeren und MOFs auf der Basis von dreiwertigen Lanthanidchloriden und verschiedenen verbrückenden Azin- und Diazin-Liganden beschrieben. Ziel war es neuartige Koordinationspolymere mit effektiven Photolumineszenzeigenschaften zu generieren. Es konnten 44 neue organisch-anorganische Hybridmaterialien präsentiert werden. Der Fokus der Arbeit lag neben der strukturellen Charakterisierung auf der Bestimmung der Photolumineszenzeigenschaften und der Betrachtung der thermischen Eigenschaften der Verbindungen. Bei solvothermalen Reaktionen von wasserfreien Lanthanidchloriden mit den Liganden 4,4‘-Bipyridin (bipy) und Pyridin (py) konnten die dinuklearen Komplexe [Ln2Cl6(bipy)(py)6] mit Ln = Y, Pr, Nd, Sm-Yb, die strangartigen Koordinationspolymere 1∞[LnCl3(bipy)(py)2]·(py) mit Ln = Gd-Er, Yb und 1∞[Lu2Cl5(bipy)2 (py)4]1∞[LuCl4(bipy)], sowie das 2D-Netzwerk 2∞[Ce2Cl6(bipy)4]·(py) synthetisiert und mithilfe der Röntgeneinkristallstrukturanalyse charakterisiert werden. Spektroskopische Untersuchungen an den Verbindungen ergaben außergewöhnliche Photolumineszenzeigenschaften auf der Basis von Ln3+-Ionen mit Emissionen im UV-VIS und NIR-Bereich. Im Falle des dinuklearen Komplexes konnten mithilfe der Ionen Y3+, Gd3+, Tb3+ und Eu3+ Lichtemission in den RGB-Grundfarben generiert werden. Der Einfluss salzsaurer Bedingungen führt zur Bildung der pyridiniumhaltigen Nebenphasen [Hpy]1∞[LnCl4(bipy)] mit Ln = Y, Tb), Yb, Lu, [Hpy]22∞[Sm2Cl8(bipy)3]·2(py) und [Hdpa] [EuCl4(dpa)]. Unter der Verwendung einer Schmelzsyntheseroute wurden die Verbindungen 3∞[La2Cl6(bipy)5] ·4(bipy) 2∞[Ln2Cl6(bipy)3]·2(bipy) mit Ln = Nd, Sm-Dy, Er, Yb und eine Dotierreihe mit Ln = Gd2-x-yEuxTy (x,y = 0-1), welche vor einigen Jahren im Arbeitskreis von Prof. Müller-Buschbaum et al. entdeckt wurden, dargestellt. Der Fokus der Arbeit lag hierbei auf der Bestimmung der Photolumineszenzeigenschaften der Netzwerke, wobei vor allem bei der Dotierreihe unter der Verwendung von Ln3+-zentrierter Emission ein stufenloses Farbtuning der Emissionsfarbe von grün nach rot erreicht werden konnte. Zusätzlich wurden an diesen Verbindungen systematische Untersuchungen zur strukturellen Aufklärung, der bei höheren Temperaturen entstehenden Netzwerk- und Gerüstverbindungen, durchgeführt. Hierbei konnten Kondensationsprodukte wie 3∞[LaCl3(bipy)], 2∞[Ln3Cl9(bipy)3] mit Ln = Pr, Sm, 2∞[Ho2Cl6(bipy)2] und 2∞[Gd2Cl6(qtpy)(bpy)]·(bipy) strukturell aufgeklärt werden. Die Übertragung der solvothermalen Syntheseroute unter der Verwendung von Pyridin auf die gegenüber bipy verlängerten Azin-Liganden Dipyridylethen (dpe) bzw. –ethan (dpa) erwies sich als erfolgreich und resultierte in eine Erweiterung der Strukturchemie durch die Darstellung der lumineszierenden Koordinations-polymere 2∞[La2Cl6(dpe)3(py)2]·(dpe), 1∞[LnCl3(dpe)(py)2]·0.5(dpe)0.5(py) mit Ln = Eu, Gd, Er, 2∞[LaCl3(dpa)2]·(dpa) und 1∞[LnCl3(dpa)(py)2]·0.5(dpa)0.5(py) mit Ln = Gd, Er. Eine Verkürzung des bipy-Liganden in Form der Di-Azinen wie Pyrazin (pyz), Pyrimidin (pym) und Pyridazin (pyd) und deren Umsetzung mit LnCl3 führte zur Bildung von Komplexen und polymeren Strukturen wie 3∞[LaCl3(pyz)], [Ln2Cl6(pyz)(py)6]·2(pyz) mit Ln = Sm, Er, 1∞[Sm2Cl6(μ-pym)2(pym)3]·(pym), [Er2Cl6(pym)6] und [ErCl3(η-pyd)(pyd)2] mit Lumineszenzeigenschaften auf der Basis der jeweiligen Liganden und Ln3+-Ionen. N2 - The present work is about the synthesis and characterization of complexes, coordination polymers and MOFs based on trivalent lanthanidechlorides and different bridging azine and diazine ligands. The creation of new coordination polymers with effective photoluminescent properties was a main goal of this thesis. Therefore, 44 new organic-inorganic hybrid-materials are presented in this work. Main focus of investigation was on structural characterization and determination of photoluminescence and thermal properties of the synthesized compounds. Solvothermal reactions of anhydrous lanthanidechlorides with the ligand 4,4‘-bipyridine (bipy) and pyridine (py) lead to dinuclear complexes [Ln2Cl6(bipy)(py)6] with Ln = Y, Pr, Nd, Sm-Yb, strand-like coordination polymers 1∞[LnCl3(bipy)(py)2]·(py) with Ln = Gd-Er, Yb and 1∞[Lu2Cl5(bipy)2(py)4]1∞[LuCl4(bipy)] and also 2D-networks like 2∞[Ce2Cl6(bipy)4]·(py) could be obtained and characterized by single-crystal-X-ray-stucture-determination. Spectroscopic investigations revealed extraordinary photoluminescence properties based on Ln3+-ions with light emission in the UV-VIS and NIR range. Especially the dinuclear complexes containing Y3+, Gd3+, Eu3+ and Tb3+ ions showed the RGB basic colors, allowing color tuning in the visible range. The influence of hydrochloric conditions lead to the formation of the pyridinium containing side phases [Hpy]1∞[LnCl4(bipy)] with Ln = Y, Tb, Yb, Lu, [Hpy]22∞[Sm2Cl8(bipy)3]·2(py) and [Hdpa]1∞[EuCl4(dpa)]. Furthermore, the compounds 3∞[La2Cl6(bipy)5]·4(bipy), 2∞[Ln2Cl6(bipy)3]·2(bipy) with Ln = Nd, Sm-Dy, Er, Yb and a solid solution with Ln = Gd2-x-yEuxTy (x,y = 0-1), which were discovered in the research group of Prof. Müller-Buschbaum et al., were synthesized by using a melt-synthesis route. Hereby, the emphasis was on the investigation of photoluminescence properties of the networks, most notably the color tuning properties based on Ln3+centered emission of the solid solution in the color range from green to red. Additionally, systematic investigations were performed on the networks for the determination of high-temperature dependent structural changes, leading to the structural characterization of the structural condensation products 3∞[LaCl3(bipy)], 2∞[Ln3Cl9(bipy)3] with Ln = Pr, Sm, 2∞[Ho2Cl6(bipy)2] and 2∞[Gd2Cl6(qtpy)(bipy)]·(bipy). The transfer of the solvothermal reaction route with the use of pyridine as solvent on the ligands dipyridylethene (dpe) and -ethane (dpa) was successful, also leading to luminescent coordination polymers in 2∞[La2Cl6(dpe)3(py)2]·(dpe), 1∞[LnCl3(dpe)(py)2]·0.5(dpe)0.5(py) wih Ln = Eu, Gd, Er, 2∞[LaCl3(dpa)2]·(dpa) and 1∞[LnCl3(dpa)(py)2]·0.5(dpa)0.5(py) with Ln = Gd, Er. The shortening of the bipy ligand by using diazines, like pyrazine (pyz), pyrimidine (pym) and pyridazine (pyd) as connector ligands, resulted in the extension of coordination compounds based on LnCl3 and diazine building blocks. Therefore, complexes and coordination polymers like 3∞[LaCl3(pyz)], [Ln2Cl6(pyz)(py)6]·2(pyz) with Ln = Sm, Er, 1∞[Sm2Cl6(μ-pym)2(pym)3]·(pym), [Er2Cl6(pym)6] and [ErCl3(η-pyd)(pyd)2] were discovered and characterized. Furthermore, first basic luminescence properties of the used ligands and their interaction with Ln3+-ions were investigated. KW - Lanthanoide KW - Metallorganisches Netzwerk KW - Polymerkomplexe KW - Photolumineszenz KW - Leuchtstoff KW - Lanthanoide KW - MOF KW - Koordinationspolymer KW - Azine / Diazine KW - Photolumineszenz KW - lanthanides KW - coordination polymer KW - metal-organic frameworks KW - photoluminescence KW - azines / diazines Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-109519 ER - TY - THES A1 - Hupp, Florian T1 - Synthese und Reaktivität ausgewählter Platin(0)-Addukte von Gruppe 14/15 Halogeniden T1 - Synthesis and reactivity of selected platinum(0) adducts of group 14/15 halogenides N2 - Im Rahmen dieser Arbeit wurden Addukte zwischen dem elektronenreichen, späten Übergangsmetallkomplex Bisphosphanplatin(0) und Lewis-Säuren aus der Gruppe 14 und 15 dargestellt, sowie deren Reaktivität untersucht. Hier sind insbesondere die Darstellung und Untersuchung kationischer Komplexe zu erwähnen. Es konnten erfolgreich Addukte zwischen homoleptischen Platin(0) und heteroleptischen Platin(0)komplexen mit divalenten Gruppe 14 Chloriden (GeCl2, SnCl2 und PbCl2) dargestellt werden (Schema 50). Die Charakterisierung der Verbindungen [(IMes)(Cy3P)Pt–ECl2] (46–48) und [(Cy3P)2Pt–EX2] (50–53) erfolgte über multinukleare NMR-Spektroskopie und Röntgendiffraktometrie. Für die Stannylen- und Plumbylenaddukte konnten ebenfalls Diplatinaddukte [{(Cy3P)2Pt}2(μ2-EX2)] (54–57) dargestellt werden. Untersuchungen der Monoplatinkomplexe mittels Röntgendiffraktometrie ergaben einen erheblichen Grad der Pyramidalisierung um die Gruppe 14 Zentren. Das Germylenaddukt ist dabei der am höchsten pyramidalisierte Pt=EX2 Komplex, der bisher strukturell untersucht wurde.Die Koordination der Pt(0)einheiten in den Diplatinkomplexen wurde mittels 31P{1H}-NMR-Spektroskopie und UV-Vis-Spektroskopie bei variablen Temperaturen sowie DFT Rechnungen untersucht. Während im Diplatin-Stannylenkomplex 55 beide Pt–Sn-Bindungen stabil sind, verliert der Diplatin-Plumbylenkomplex 57 reversibel ein Pt(0)-Fragment bei hohen Temperaturen (RT). Die quantenchemischen DFT-Analysen des Plumbylens 53 ergaben, dass die berechnete σ-Hinbindung in der Richtung Pt→Pb deutlich stärker ausgeprägt ist und die σ-Rückbindung in der Richtung Pt←Pb kaum Bindungsanteile ausmacht. Somit entspricht der Bindungscharakter in Verbindung 53, wenn überhaupt, nur partiell dem einer Doppelbindung. Die vorherrschende Wechselwirkung ist die Pt→Pb σ-Donation. Transferexperimente bewiesen die erhöhte Lewis-Basizität im heteroleptischen Platin(0)fragment, außerdem konnte erfolgreich in einem Addukt der Ligand (PCy3 vs. IMes) ausgetauscht werden, was die Stabilität der Pt–E-Bindung beweist (Schema 50).Der synthetische Zugang zu niedrig koordinierten Sn- und Pb- Mono- und Dikationen wird allgemein durch die schlechte Löslichkeit und die hohe elektrophile Natur dieser Teilchen eingeschränkt. Durch die Reaktion der Germylen, Stannylen und Plumbylen Monoplatinaddukte (50–53) mit Aluminiumtrihalogeniden gelang es jedoch, solche niedrig koordinierten Monokationen [(Cy3P)2Pt–EX]2[AlX4]2 (64a = Sn, Br; 70a = Pb, Cl) in der Koordinationssphäre von Platin(0) darzustellen. Durch Abstraktion eines weiteren Halogenides mittels AlX3 konnten sogar bisher unbekannte niedervalente Komplexe [(Cy3P)2Pt–E][AlX4]2 (68 = Sn, Br; 75 = Pb, Cl) mit einem dikationischen Zinn- beziehungsweise Bleizentrum in der Koordinationssphäre eines Übergangsmetalles isoliert werden (Schema 51).Da durch die Stellung im Periodensystem kein vakantes p-Orbital vorhanden ist, reagieren Elementverbindungen der Gruppe 15 normalerweise nicht als Lewis-Säuren. Eine Reaktivitätsuntersuchung von hypervalenten Lewis-Säuren aus der späten Hauptgruppe mit elektronenreichen späten Übergangsmetallverbindungen stand daher noch aus. Es gelang eine Lewis-Säuren-unterstützte Transformation von Platin(0) und Phosphor(V)fluorid in eine Pt(II)/P(III)-Verbindung der Form trans-[(Cy3P)2Pt(F)(PF3)][PF6] (91) (Schema 52). Die Bildung einer stabilen Pt–PF3 Enheit mit starken σ-/π-Bindungen liefert die Triebkraft der Reaktion. Die Reaktivitätstudien von Antimon(III)halogeniden mit Platin(0)-Komplex ergaben sowohl die Bildung eines zweifach Pt(0)-basenstabiliserten Stiboniumkations, als auch das Produkt der oxidativen Addition. Beide Reaktionen wurden per multinuklearer NMR-Spektroskopie und Röntgendiffraktometrie bestätigt. Die Bildung des Diplatin-Stibeniumkations [{(Cy3P)2Pt}2(μ-SbF2)]+ (94) ist das erste Beispiel für ein MOLP mit einer antimonzentrierten Lewis-Acidität, wohingegen die Bildung des oxidativen Dihalostibanylkomplexes trans-[PtCl(SbCl2)(PCy3)2] (97) das erste Beispiel einer oxidativen Addition einer Sb–X-Bindung an ein Übergangsmetallzentrum ist (Schema 52). N2 - The results of this work can be summarized as follows. Adducts between the electron-rich Lewis-base [(Cy3P)2Pt] (10) and Lewis-acids from groups 14 and 15 were synthesized and their reactivity investigated, especially the formation of cationic species. The adducts were successfully obtained by the reaction of homoleptic and heteroleptic platinum(0)compounds and divalent group 14 chlorides (GeCl2, SnCl2 and PbCl2). The characterization of the compounds (IMes)(Cy3P)Pt–ECl2] (46–48) and [(Cy3P)2Pt–EX2] (50–53) was possible by multinuclear NMR spectroscopy and X-ray crystal diffraction analysis. For the stannylene and plumbylene adducts the bisplatinum analogues [{(Cy3P)2Pt}2(μ2-EX2)] (54–57) could also be isolated (Scheme 1). The Monoplatinum compounds exhibit a large degree of pyramidalization at the Group 14 centers. Compound 3a was found to be the most highly pyramidalized M=ER2 complex ever structurally characterized. The addition of a second platinum moiety was studied by 31P{1H} NMR spectroscopy and UV-Vis spectroscopy at variable temperatures as well as DFT calculations. The Pt-Sn bond of the bisplatinum stannylene complex 55 is robust. Nevertheless, the bisplatinum plumblyene compound complex 57 loses reversibly one Pt fragment at high temperature (RT). DFT calculations of the plumbylene compound 53 showed, that the calculated Pt→Pb σ-bond is much stronger than the calculated Pt←Pb σ-back-bond. Thus the character of the Pt–Pb bonding in the compound 53 corresponds if at all, only partially with that of a double bond. The predominant binding interaction is the Pt→Pb σ-donation. Transfer experiments revealed the higher Lewis-basicity of the heteroleptic platinum(0) vs that of the homoleptic platinum(0) fragments. The stability of the Pt–E bond was confirmed by the ligand exchange PCy3 vs IMes on the adduct compounds. Synthetic access to low-coordinate Pb mono- and dications is in general impeded due to their poor solubility and highly electrophilic nature. However, the electrophilicity of these cations can be tamed by attaching them to electron-rich transition metals. Monostannylene and -plumbylene complexes were treated with AlX3 to afford the cationic platinum complexes [(Cy3P)2Pt–EX]2[AlX4]2 (64a = Sn, Br; 70a = Pb, Cl). The abstraction of another halide with AlX3 led to the isolation of the unprecedented low-valent compounds [(Cy3P)2Pt–E][AlX4]2 (68 = Sn, Br; 75 = Pb, Cl) containing a dicationic tin or lead centre.Since no vacant p-orbital is available, through the position in the periodic table, group 15 compounds react normally not as Lewis-acids. Hence, the reactivity of hypervalent Lewis-acids from the late main group with electron-rich late transition metal complexes are still under investigation. The Lewis-acid supported transformation of bisphosphineplatinum(0) and phosphorus(V)fluoride into the mixed Pt(II)/P(III) compound trans-[(Cy3P)2Pt(F)(PF3)][PF6] (91) was successfully carried out (Scheme 3). The formation of a stable Pt–PF3 unit with strong σ-/π-bonds provides the driving force for the reaction.Extended studies towards the antimony trihalides with platinum(0), revealed the first example of unambiguous, unsupported MOLP chemistry of antimony-centered ligands, as well as the first evidence of an oxidative addition. Both reactions were studied by multinuclear NMR spectroscopy as well as X-ray diffraction analysis. The formation of the cationic stibenium complex [{(Cy3P)2Pt}2(μ-SbF2)]+ (94), is the first example for an unsupported metal-only Lewis pair containing an antimony-centered Lewis acid. In contrast, the dihalostibanyl complex trans-[PtCl(SbCl2)(PCy3)2] (97), is the first example of an oxidative addition of an antimony-halide bond to a transition metal (Scheme 3). KW - Metallorganische Verbindungen KW - Adduktbildung KW - Hauptgruppenelement KW - Platinkomplexe KW - Platinaddukte KW - Metall-zentrierte Lewis-Paare KW - Metal-only Lewis-Pairs KW - Adduct Complex KW - Organometallverbindungen Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-108766 ER - TY - THES A1 - Siedler, Eva T1 - Reaktivitätsstudien an terminalen Alkylborylenkomplexen T1 - Studies on the reactivity of terminal alkyl borylene complexes N2 - Im Rahmen der Dissertation wurde die Reaktivitat des terminalen Mangan-Borylenkomplexes gegenüber verschiedenen polaren Doppelbindungssystemen, koordinativ ungesattigten Übergangsmetallfragmenten sowie Lewis-Basen untersucht. Mithilfe der spektroskopischen und strukturellen Daten der dabei synthetisierten Verbindungen konnten neue Erkenntnisse uber die Natur der Metall-Bor-Bindung erlangt werden. N2 - This work aims to investigate the reactivity of a terminal manganese borylene complex towards a range of polar unsaturated substrates as well as transition metal complexes and Lewis bases. Thereby, discussion of the spectroscopical and structural data of the prepared compounds helps to determine the nature of the metal-boron bond. KW - Borylene KW - Übergangsmetallborylen, Borylentransfer, Basenstabilisiertes Borylen, Metathese KW - Reaktivität Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-93882 ER - TY - THES A1 - Hörl, Christian T1 - Synthese und Reaktivität von heteroaromatisch-substituierten Borolen und Diborenen T1 - Synthesis and reactivity of heteroaromatic-substituted boroles and diborenes N2 - Im Rahmen dieser Arbeit konnten erstmals die Eigenschaften von 1-heteroaromatisch-substituierten, freien Borolen des Typs R′BC4Ph4 untersucht werden. Der Rest R′ wurde unter Verwendung von bekannten Synthesemethoden (Zinn-Bor-Austausch, Salzeliminierung) variiert und die Borolderivate 45 (R′ = Thien-2-yl), 46 (R′ = 5-Methylfuran-2-yl), 47 (R′ = 5-Trimethylsilylthien-2-yl) und 49 (R′ = N-Methylpyrrol-3-yl) erfolgreich synthetisiert und vollständig charakterisiert (Multikern-NMR-Spektroskopie, Elementaranalyse, Röntgenstrukturanalyse am Einkristall). Des Weiteren ist es gelungen, die ersten Bis(borole) mit den heteroaromatischen Brückeneinheiten 2,5-Thienyl (54) und 5,5′-Bithiophen (55) mittels Zinn-Bor-Austausch-Reaktion darzustellen. Die Molekülstruktur von 54 bestätigt dabei nicht nur die erfolgreiche Synthese, sondern auch die coplanare Ausrichtung der drei Ringsysteme zueinander. Anhand von cyclovoltammetrischen Messungen konnte gezeigt werden, dass in diesem -konjugierten Akzeptor-Donor-Akzeptor-System (54) eine ausgeprägte Kommunikation zwischen den beiden Borzentren vorliegt. Dadurch ergeben sich vier irreversible Reduktionsereignisse, die ausgehend von 54, dem Monoanion [54]•−, dem Dianion [54]2−, dem Trianion [54]3− und dem Tetraanion [54]4− zugewiesen werden können. Das Verhalten von 54 gegenüber Reduktion wurde außerdem nicht nur elektrochemisch, sondern auch mithilfe unterschiedlicher Reduktionsmittel analysiert. Die Reduktion mit einem halben Äquivalent des Zwei-Elektronen-Reduktionsmittels Magnesiumanthracen führte dabei zu dem vollständig delokalisierten Monoanion Mg0.5[54], welches ESR-spektroskopisch charakterisiert werden konnte. Die Reduktion mit einem Äquivalent Magnesiumanthracen bzw. zwei Äquivalenten des Ein-Elektronen-Reduktionsmittels CoCp*2 lieferte das Dianion [54]2−, das für den Fall von [CoCp*2]2[54] im Festkörper studiert werden konnte. Die Molekülstruktur belegt, dass es sich bei Dianion [54]2− nicht um ein diradikalisches, sondern ein diamagnetisches, chinoides System handelt, welches auch als Bipolaron beschrieben werden kann. Der Einfluss von heteroaromatischen Substituenten wurde außerdem im Hinblick auf die Synthese neuartiger Basen-stabilisierter Diborene untersucht. Durch reduktive Kupplung geeigneter NHC-stabilisierter Dihalogenborane 77 und 78 (NHC = IMe) konnten die beiden Thienyl-substituierten Diborene 81 und 82 in sehr guten Ausbeuten (81: 82%; 82: 89%) dargestellt werden. UV-Vis-spektroskopische Untersuchungen und quantenchemische Rechnungen belegen, dass das HOMO der Diborene durch die -Bindung der BB-Bindung repräsentiert wird. Im Gegensatz zu den bekannten Aryl-substituierten Diborenen (73, 74) zeigt die Festkörperstruktur von 82 eine coplanare Ausrichtung der Heterocyclen relativ zur BB-Bindungsebene. Dadurch wird die sterische Abschirmung der reaktiven BB-Doppelbindung vermindert und weitere Reaktivitätsuntersuchungen in Analogie zur Reaktivität von CC-Doppelbindungen können durchgeführt werden. N2 - In this thesis, the properties of 1-heteroaromatic-substituted, non-annulated boroles with a R′BC4Ph4 framework have been studied for the first time. The variation of the R′ substituent was achieved with established synthetic procedures (tin-boron exchange, salt elimination) and the borole derivatives 45 (R′ = thien-2-yl), 46 (R′ = 5-methylfuran-2-yl), 47 (R′ = 5-trimethylsilylthien-2-yl) and 49 (R′ = N-methylpyrrol-3-yl) were successfully synthesized and characterized (multinuclear NMR spectroscopy, elemental analysis, single-crystal X-ray diffraction). In addition, the isolation of the first bis(borole)s with the heteroaromatic spacer units 2,5-thienyl (54) and 5,5′-bithiophene (55) via tin-boron exchange reaction was accomplished. The solid-state structure of 54 confirms not only the successful synthesis, but also the coplanar arrangement of the three five-membered rings with respect to each other. The measurement of a cyclic voltammogram for this compound revealed the existence of distinct communication between the two boron atoms in this acceptor-donor-acceptor system (54). Thus, the four irreversible reduction events of 54 were assigned to the formation of the monoanion [54]•−, the dianion [54]2−, the trianion [54]3− and the tetraanion [54]4−. Moreover, the reduction behavior of 54 was analyzed chemically with a selection of diverse reducing agents. The reduction with half an equivalent of the two-electron reducing agent magnesium anthracene results in the fully delocalized monoanion Mg0.5[54], which was characterized by EPR spectroscopy. The dianion [54]2− is accessible via reduction with one equivalent of magnesium anthracene or two equivalents of the one-electron reducing agent CoCp*2. In the case of [CoCp*2]2[54], the molecular structure revealed that the dianion is not a diradical, but rather has a diamagnetic, quinoidal structural motif across the thiophene spacer, which is characteristic of so-called bipolarons. The effect of heteroaromatic substituents was also explored with respect to the synthesis of novel base-stabilized diborenes. After reductive coupling of appropriate NHC-stabilized dihalogen-boranes 77 and 78 (NHC = IMe) the thienyl-substituted diborenes 81 and 82 were isolated in excellent yields (81: 82%; 82: 89%). UV-vis spectroscopy and DFT calculations independently substantiate that the HOMO of the diborenes is represented by the -bond of the BB double bond (Figure 4). In contrast with the common aryl-substituted diborenes (73, 74), the solid-state structure of 82 exhibits a coplanar alignment of the heterocyclic substituents with respect to the BB bond plane. Thus, the steric shielding of the reactive BB double bond is significantly reduced and enables further reactivity studies in analogy to the well-known reactivity of CC double bonds. KW - Borole KW - Borheterocyclen KW - Heteroaromaten KW - Diboren KW - Boryl Anion KW - Heteroaromaten KW - Bor Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-94391 ER - TY - THES A1 - Mailänder, Lisa T1 - Darstellung neuer Borheterocyclen durch Umsetzung von Borolen mit 1,3-dipolaren Reagenzien T1 - Synthesis of new boron heterocycles by reaction of boroles with 1,3-dipolar reagents N2 - Darstellung neuer Borheterocyclen durch Umsetzung von Borolen mit 1,3-dipolaren Reagenzien. Bei der Usetzung von Borolen mit Aziden, Diazoalkanen und Nitronen kam es zu Ringerweiterungsreaktionen und zur Bildung von neuen Borheterocyclen (z.B. 1,2-Azaborinine, 1,2-Azaborinin-substituierte Azofarbstoffe, Boracyclohexadiene, Oxazaborocine). N2 - Synthesis of new boron heterocycles by reaction of boroles with 1,3-dipolar reagents KW - Borole KW - Heterocyclische Verbindungen KW - Dipol <1,3-> KW - Ringerweiterungsreaktionen Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127147 ER - TY - THES A1 - Kramer, Thomas T1 - Übergangsmetall-Bor-Wechselwirkungen in Boryl- und Boridkomplexen T1 - Transitionmetal-Boron-Interactions in Boryl and Boride Complexes N2 - Durch Untersuchungen zur Reaktivität von Boryl- und Boridverbindungen konnten deren Bindungssituationen aufgeklärt und neuartige Koordinationsmotive von Übergangsmetall-Bor-Verbindungen erhalten werden. Die erhaltenen Verbindungen wurden mittels NMR-Spektroskopie, IR-Spektroskopie, Elementaranalyse und Röntgendiffraktometrie untersucht und zusätzlich wurden DFT-Rechnungen angefertigt. An verschieden substituierten Eisenborylkomplexen wurden Reaktivitätsuntersuchungen gegenüber Halogenidabstraktionsmitteln und Reduktionsmitteln durchgeführt und im Falle der Boridkomplexe wurden Verbindungen mit bis dato unbekanntem Strukturmotiv erhalten. N2 - Investigations into the reactivities of boryl and boride complexes provided insight into their bonding and led to previously unknown coordination motifs for transition-metal-boron complexes. The resulting compounds were analyzed via NMR spectroscopy, IR spectroscopy, elemental analyses and crystal structure analyses. Their electronic structures were investigated by theoretical calculations using DFT methods. The reactivities of substituted iron boryl complexes toward halogenide abstracting and reducing reagents were studied and, in case of the boride complexes, novel structural motifs were dentified. KW - Übergangsmetall KW - Mehrkernige Komplexe KW - Borylgruppe KW - Dimerisierung KW - Übergangsmetall-Borverbindungen KW - Borchemie KW - Boridkomplexe KW - Isonitrilinsertion KW - Boride KW - Borylkomplexe Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112222 ER - TY - THES A1 - Dück, Klaus T1 - Synthese, Untersuchung und Polymerisation neuartiger Sandwichkomplexe T1 - Synthesis, Investigation and Polymerization of new Sandwich Compounds N2 - In dieser Dissertation werden die Ergebnisse zur Synthese und Polymerisation gespannter Manganoarenophane vorgestellt. Weiterhin wird die Reaktivität von Bis(benzol)titan und die Synthese von ansa-Verbindungen dieses Komplexes, sowie Untersuchungen zu deren Eigenschaften beschrieben. Zum Vergeleich wird auch der Komplex Bis(mesityl)titan untersucht. Die Polymerisation von zinnverbrückten, gespannten Vanadium-Sandwichkomplexen und die Untersuchungen der paramagnetischen Eigenschaften ist ebenso in dieser Dissertationsschrift beschrieben. Zusätzlich wird die Synthese heteroleptischer Sandwichkomplexe des Scandiums und Yttriums dargestellt, sowie deren Ringsubstitution. Die Vorarbeiten zur Synthese heteroleptischer Sandwichkomplexe der Lanthanoide bildet ebenso einen Bestandteil dieser Schrift, wie die Synthese von ansa-Komplexen des Thorocens und Uranocens via flytrap-Methode. N2 - This Dissertation presents the results of the synthesis and polymerization of strained Manganoarenophanes. Furthermore the reactivity of bis(benzene)titanium and the synthesis of its ansa-compounds, as well as property investigations are shown. Comparative studies of the complex bis(mesityl)titanium are also described. The polymerization of tin-bridged, strained Vanadium sandwich compounds and the investigations of their paramagnetic properties are also described within this dissertation. Additionally the synthesis of heteroleptic sandwich complexes of Scandium and Yttrium and their ring substitution are presented. First results concerning the synthesis of heteroleptic sandwich complexes of the Lanthanides are a part of this work as well as the synthesis of ansa-compounds of Thorocene and Uranocene via flytrap-method. KW - Sandwich-Verbindungen KW - Überbrückte Verbindungen KW - Polymerisation KW - Lanthanoide KW - Actinoide KW - ansa-Komplexe/ ansa complexes KW - ringsubstituierte Sandwichverbindungen/ ring-substitueted sadnwich compounds KW - Verbrückte Verbindungen Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112600 ER - TY - THES A1 - Brand, Johannes T1 - Darstellung und Untersuchung von niederkoordinierten Platinimino-, Platinoxo- und Platinalkylidenborylkomplexen T1 - Synthesis and investigation of low-coordinated platinum imino-, platinum oxo- and platinum alkylideneboryl complexes N2 - Diese Dissertation handelt von der Darstellung, Charakterisierung und Reaktivitätsuntersuchungen von neuartigen Platinalkylidenborylkomplexen und eines heteroleptischen Platiniminoborylkomplexes. Außerdem wurden Reaktivitätsuntersuchungen an einem Platinoxoborylkomplex durchgeführt und die erhaltenen Produkte wurden genau untersucht und charakterisiert. N2 - This dissertation is about the synthesis, characterisation and reactivity studies of new platinum alkylideneboryl complexes and a heteroleptic platinum iminoboryl complex. Furthermore reactivity studies of a platinum oxoboryl complex were carried out and the obtained products have been studied and characterised accurately. KW - Dreifachbindung KW - Doppelbindung KW - Iminogruppe KW - Oxoborane KW - alkylidengruppe KW - Alkylidenboryl komplexe KW - Iminoborylkomplexe KW - Oxoborylkomplexe Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112306 ER - TY - THES A1 - Arnold, Nicole T1 - Reaktivität von Boranen gegenüber Übergangsmetall-Lewis-Basen T1 - Reactivity of boranes towards transition metal Lewis bases N2 - Im Rahmen der vorliegenden Arbeit wurden Dihydroborane (H2BR) sowie Dihalogenborane (X2BR) mit Übergangsmetall-Lewis-Basen umgesetzt und die Reaktivität der auf diese Weise erhaltenen Übergangsmetall–Bor-Komplexe eingehend untersucht. So wurde eine Serie neuer Borylkomplexe des Typs trans-[Pt{B(Br)R‘}Br(PR3)2] dargestellt und mit Salzen schwach-koordinierender Anionen umgesetzt. Diese Studien sollten die Triebkraft für die Bildung kationischer Borylenkomplexe näher beleuchten. Die experimentellen Ergebnisse zeigen, dass eine Substitution in ortho-Position des borgebundenen Arylliganden für den notwendigen [1,2]-Halogenshift vom Bor- zum Platinzentrum und somit zur Realisierung einer Pt=B-Mehrfachbindung unabdingbar ist. Demnach reagieren Komplexe mit para-substituierten Arylliganden bei Halogenidabstraktion aus Borylkomplexen zu T-förmigen, kationischen Borylplatinkomplexen, während die Duryl-substituierten Analoga unter [1,2]-Halogenwanderung in kationische Borylenplatinkomplexe überführt werden. Neben dem Substitutionsmuster des borgebundenen Arylliganden wurde auch der Einfluss des Phosphanliganden untersucht. Die Molekülstrukturen der Borylkomplexe 2 und 4 im Festkörper zeigen grundlegende Unterschiede im strukturellen Aufbau. Der Durylsubstituent ist in 2 im Vergleich zur (Ph-4-tBu)-Einheit in 4 deutlich aus der {Br2–Pt–B–Br1}-Ebene herausgedreht (2: Pt–B–C1–C2: 31.4(1); 4: 4.3(7)°), was vermutlich einen [1,2]-Halogenshift in 2 begünstigt. Die Pt–B-Bindungen der kationischen Borylenkomplexe 6 (1.861(5) Å) und 7 (1.863(5) Å) sind deutlich kürzer als im neutralen Borylkomplex 2 (2.004(4) Å), was ein eindeutiger Beleg für den Mehrfachbindungscharakter der Pt–B-Bindungen in 6 und 7 ist. Demzufolge scheint der sterische Anspruch des borgebundene Arylsubstituenten entscheidend für den Reaktionspfad bei Halogenidabstraktionen und somit für die Bildung kationischer Borylenplatinkomplexe zu sein, während diesen Studien zu Folge der Einfluss der Ligandensphäre am Platinzentrum eher eine untergeordnete Rolle spielt. Des Weiteren gelang die Synthese der neuartigen heteroleptischen Platinkomplexe [Pt(cAACMe)(PiPr3)] (13) und [Pt(cAACMe)(PCy3)] (14) durch Umsetzung von [Pt(PCy3)2] und [Pt(PiPr3)2] mit dem cyclischen (Alkyl)(Amino)Carben cAACMe (Schema 34, A), bzw. durch Umsetzung von [Pt(nbe)2(PCy3)] (Schema 34, B) mit cAACMe. Die Darstellung des literaturbekannten homoleptischen Komplexes [Pt(cAACMe)2] (11) konnte durch Reaktion von [Pt(nbe)3] mit cAACMe deutlich vereinfacht werden bei gleichzeitiger Steigerung der Ausbeute (96%, Literatur: 79%). Die ungewöhnlich intensiv orangene Farbe dieser Verbindungsklasse geht laut DFT-Rechnungen auf die elektronische Anregung aus dem HOMO in das LUMO zurück, wobei hauptsächlich die π-Wechselwirkungen zwischen den Platin- und Carbenkohlenstoffatomen des cAACMe-Liganden beteiligt sind (DFT-Rechnungen von Dr. Mehmet Ali Celik). Auch in ihren strukturellen Eigenschaften sind sich 11 - 14 sehr ähnlich, wohingegen deutliche Unterschiede in deren Elektrochemie und Reaktivität beobachtet wurden. So konnte für 11 eine quasi-reversible Oxidationswelle (E1/2 = –0.30 V gegen [Cp2Fe]/[Cp2Fe]+ in THF) bestimmt werden, während die heteroleptischen Komplexe 13 und 14 (Epa = –0.09 V; –0.11 V) sowie deren Vorläufer [Pt(PCy3)2] und [Pt(PiPr3)2] (Epa = 0.00 V; +0.12 V) irreversible Oxidationswellen zeigen. Demnach kann 13 und 14 im Vergleich zu [Pt(PCy3)2] und [Pt(PiPr3)2] ein größeres Reduktionsvermögen zugeordnet werden. Reaktivitätsstudien zeigen, dass der homoleptische Komplex 11 inert gegenüber vielen Substraten wie z.B. Boranen, Diboranen(4) und Lewis-Säuren ist. Im Gegensatz dazu haben sich die heteroleptischen Komplexe 13 und 14 als deutlich reaktiver erwiesen, womit diese eine Mittelstellung zwischen 11 und der Spezies [Pt(PR3)2] einnimmt. Die Umsetzung von [Pt(cAACMe)(PiPr3)] (13) mit BBr3 und Br2BPh lieferte die Borylkomplexe 18 und 19, welche vollständig charakterisiert wurden. Die Reaktivität von 13 und 14 gegenüber den Lewis-Säuren GaCl3 und HgCl2 zeigt ebenfalls Analogien zu der von Bis(phosphan)platinkomplexen. Reaktion mit GaCl3 führte hierbei zur Bildung der MOLP-Komplexe [(cAACMe)(PiPr3)Pt→GaCl3] (21) und [(cAACMe)(PCy3)Pt→GaCl3] (22), während die oxidative Addition der Hg–Cl-Bindung an das Platinzentrum von 14 im Komplex [PtCl(HgCl)(cAACMe)(PiPr3)] (23) resultierte. Die Synthese von 23 gelang auch durch Umsetzung mit Kalomel unter Abscheidung eines Äquivalentes elementaren Quecksilbers. Ein weiterer Schwerpunkt dieser Arbeit lag auf der Übergangsmetall-vermittelten Dehydrokupplung von Dihydroboranen. Die Umsetzung von [Pt(cAACMe)(PiPr3)] (13) mit BBr3 und Br2BPh lieferte die Borylkomplexe 18 und 19, welche vollständig charakterisiert wurden. Die Reaktivität von 13 und 14 gegenüber den Lewis-Säuren GaCl3 und HgCl2 zeigt ebenfalls Analogien zu der von Bis(phosphan)platinkomplexen. Reaktion mit GaCl3 führte hierbei zur Bildung der MOLP-Komplexe [(cAACMe)(PiPr3)Pt→GaCl3] (21) und [(cAACMe)(PCy3)Pt→GaCl3] (22), während die oxidative Addition der Hg–Cl-Bindung an das Platinzentrum von 14 im Komplex [PtCl(HgCl)(cAACMe)(PiPr3)] (23) resultierte. Die Synthese von 23 gelang auch durch Umsetzung mit Kalomel unter Abscheidung eines Äquivalentes elementaren Quecksilbers. Ein weiterer Schwerpunkt dieser Arbeit lag auf der Übergangsmetall-vermittelten Dehydrokupplung von Dihydroboranen. Vor Beginn dieser Reaktivitätsstudien wurde zunächst eine vereinfachte Syntheseroute für Dihydroborane entwickelt. Durch Umsetzung von Cl2BDur mit HSiEt3 konnte auf diese Weise der Syntheseaufwand deutlich verringert und die Ausbeute an H2BDur von 74% auf 98% deutlich gesteigert werden. Zur Dehydrokupplung wurden neben Gold-, Rhodium- und Iridiumkomplexen auch Platinkomplexe mit H2BDur umgesetzt. Die Untersuchungen mit Gold- und Rhodiumverbindungen erwiesen sich hierbei als erfolglos und die Umsetzung der Iridiumpincerkomplexe [(PCP)IrH2] 26 und 27 (tBuPCP, AdPCP) mit H2BDur lieferte die Boratkomplexe 28 und 29 mit κ2-koordinierten {H2BHDur}-Liganden. Analog konnte bei Umsetzung von 26 mit H2BThx der Boratkomplex 30 spektroskopisch beobachtet, jedoch nicht isoliert werden. Bei den Komplexen 28 - 30 handelt es sich um die ersten κ2-σ:σ-Dihydroboratkomplexe mit sterisch anspruchsvollen Arylsubstituenten. Neben den Iridiumpincerkomplexen wurde auch der Komplex [Cp*IrCl2]2 mit H2BDur umgesetzt. Die Bildung des Boratkomplexes 34 ist mit einem [1,2]-Shift eines Chloratoms von Iridium auf das Borzentrum verbunden. Die Reaktivität von H2BDur gegenüber [Pt(PCy3)2] zeigte eine starke Abhängigkeit hängt von der Stöchiometrie. Bei der 1:1-Umsetzung konnten sowohl die farblosen Verbindungen trans-[(PCy3)2PtH2] und Cy3P→BH2Dur (48) isoliert werden, als auch die beiden dunkelroten Verbindungen [(Cy3P)3Pt3(2-B2Dur2)] (36) und [{(PCy3)Pt}4(2-BDur)2(4-BDur)] (37), kristallographisch untersucht werden. Der B–B-Abstand im π-Diborenkomplex 36 (1.614(6) Å) deutet eindeutig auf die Gegenwart einer B=B-Doppelbindung hin, wobei das Diboren side-on gebunden an zwei der drei Platinatome des Pt3-Gerüsts koordiniert ist. Die Zusammensetzung von 36 und 37 konnte auch durch Elementaranalysen bestätigt werden. Die Bildung von 36 und 37 deuten auch darauf hin, dass bei dieser Art der Dehydrokupplung multimetallische Wechselwirkungen eine wichtige Rolle für die Stabilisierung der borzentrierten Liganden spielen. So konnten bei der Reaktion von [Pt(PCy3)2] mit zwei Äquivalenten H2BDur neben Cy3P→BH2Dur (48) auch zwei weitere zweikernige Platinverbindungen isoliert und vollständig charakterisiert werden. Erhitzen der Reaktionslösung auf 68°C für 170 Minuten führte hierbei zur Bildung von [{(Cy3P)Pt}2(μ-BDur)(ƞ2:(μ-B)-HB(H)Dur)] (38) mit zwei verbrückenden borzentrierten Liganden, einem Borylen- (BDur) und einem Boranliganden (BH2Dur), welche im 11B{1H}-NMR Spektrum bei δ = 101.3 und δ = 32.8 ppm detektiert wurden. Die Röntgenstrukturanalyse von 38 lässt einen signifikanten σ-BH-Hinbindungsanteil des Boranliganden zu einem der Platinzentren vermuten, was einen anteiligen Pt2→B-Bindungscharakter andeutet. Dieser Befund konnte auch durch DFT-Rechnungen von Dr. William Ewing bestätigt werden. Die Studien haben auch gezeigt, dass die Bildung von 38 über eine Zwischenstufe verläuft, den hypercloso-Cluster [{(Cy3P)HPt}2(μ-H){μ:ƞ2-B2Dur2(μ-H)}] (39) mit einer tetraedrischen {Pt2B2}-Einheit, zwei terminalen Pt–H-Bindungen sowie je einen die Pt–Pt- bzw. B–B-Bindung verbrückenden Hydridliganden. 39 erwies sich als anfällig gegenüber H2-Eliminierung und lagert bei Raumtemperatur innerhalb von Tagen, bzw. bei 68°C innerhalb einer Stunde unter B–B-Bindungsbruch quantitativ in 38 um, welche selbst keinen direkten Bor–Bor-Kontakt mehr aufweist. Auf Grundlage der beschriebenen Resultate wurde zudem ein einfacher Zugang zu zweikernigen Platinkomplexen entwickelt. Demnach gelang es, den literaturbekannten zweikernigen Komplex [Pt2(μ:ƞ2-dppm)3] (50) (dppm = Ph2PCH2PPh2) durch Umsetzung von [Pt(nbe)3] mit dppm in guten Ausbeuten zu synthetisieren. Des Weiteren wurde die Reaktivität von 50 gegenüber verschiedenen Lewis-Säuren untersucht. Ein Großteil dieser Umsetzungen war mit der Bildung von schwer löslichen Feststoffen verbunden, weshalb lediglich bei der Reaktion mit Br2BPh und Br2BMes geringe Mengen an definiertem Produkt isoliert und durch Röntgenstrukturanalyse charakterisiert werden konnten. Demnach führte die Umsetzung von 50 mit Br2BPh oder Br2BMes zur oxidativen Addition beider B–Br-Bindungen an je eines der Platinzentren und der Bildung der verbrückenden Borylenplatinkomplexe 51 und 52. NMR-spektroskopische Studien deuteten eine analoge Reaktivität von Br2BDur und Br2BFc an, wobei die Komplexe 53 und 54 noch nicht vollständig charakterisiert werden konnten. N2 - Another focus of this work was the dehydrocoupling of dihydroboranes (H2BDur) mediated by late transition metals. Prior to these reactivity studies, an improved protocol for a less time-consuming synthetic route of dihydroboranes was developed. To this end, reaction of Cl2BDur with an excess HSiEt3 was shown to proceed quantitatively, affording H2BDur in 98% yield (lit: 74%). Unfortunately, dehydrocoupling experiments of H2BDur with gold, rhodium and iridium complexes were unsuccessful. However, it was possible to isolate two dihydroborate complexes (28, 29) by reaction of iridium pincer complexes [(PCP)IrH2] 26 and 27 (tBuPCP, AdPCP) with H2BDur. Here, the {H2BHDur} moiety binds as a bidentate unit to the metal center. Similarly, the reaction of 26 with H2BThx yielded an analogous species, which was detected by NMR spectroscopy, but could not be isolated. Complexes 28 and 29 have to be considered the first κ2-σ:σ-dihydroborate complexes with sterically demanding aryl substituents. In addition, the iridium complex [Cp*IrCl2]2 was treated with H2BDur and a crystal of the dihydroborate complex 34 was obtained. In this case, formation of 34 was accompanied by a [1,2]-shift of one chloride atom from iridium to the boron center. ... KW - Metallorganische Verbindungen KW - Borylene KW - Platinkomplexe KW - Platin KW - Dihydroborane KW - Borylkomplexe KW - Borylenkomplexe KW - Dehydrokupplung Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125447 ER - TY - THES A1 - Ferkinghoff, Katharina T1 - Reaktivitätsstudien an Metalloborylenkomplexen und Eisen-substituierten Borirenen T1 - Reactivity studies of metalloborylene complexes and Iron-substituted borirenes N2 - D) Zusammenfassung Im Rahmen der vorgestellten Doktorarbeit wurde die Reaktivität des Metalloborylenkomplexes [{(η5-C5Me5)Fe(CO)2}(μ-B){Cr(CO)5}] (43) gegenüber weiterer Übergangsmetallfragmente, verschiedener Mono- bzw. Dialkine sowie unterschiedlicher Isonitrile untersucht. Mittels spektroskopischer und struktureller Befunde der dabei synthetisierten Verbindungen konnten bekannte Sachverhalte bestätigt und neue Erkenntnisse über die Metall–Bor-Bindung erhalten werden. Der Boridokomplex [{(η5-C5Me5)Fe(CO)2}(μ-B){W(CO)5}] (73) konnte auf dem klassischen Weg einer doppelten Salzeliminierungsreaktion des Dichloroborylkomplexes 11 und dem Metallcarbonylat Na2[W(CO)5] in einer Ausbeute von 46% dargestellt werden (Abbildung 96). Abbildung 96: Synthese des Boridokomplexes 73. Verbindung 73 weist die für terminale Borylenkomplexe charakteristische, lineare FeBW Einheit sowie ein extrem tieffeldverschobenes 11B{1H}-NMR-Signal auf. Es gelang ebenfalls, die Metalloborylen-Einheit {(η5-C5Me5)Fe(CO)2(B:)} aus 43 auf ein weiteres Übergangsmetall-Fragment zu übertragen. Dieser intermetallische Transfer bietet neben der klassischen Salzeliminierungsreaktion einen neuen Syntheseweg für Boridokomplexe. Die Umsetzung von 43 mit dem Übergangsmetallkomplex [(η5 C5H5)(H)W(CO)3] resultiert in 52%-iger Ausbeute in der Bildung des Hydrid-verbrückten Boridokomplexes [{(η5-C5Me5)(CO)2Fe}(µ-B)(µ-H){CpW(CO)2}] (74) (Abbildung 97). Röntgenkristallographische Untersuchungen sowie NMR-spektroskopische Daten belegen die verbrückende Position des Hydridoliganden über die W–B-Bindung der linearen FeBW Einheit. Abbildung 97: Synthese des hydrid-verbrückten Boridokomplexes 74. Aus den Umsetzungen der Hydrid-verbrückten Boridokomplexe [{(η5-C5Me5)(CO)2Fe} (µ B)(µ-H){CpM(CO)2}] (M = W (74), Mo (75)) mit einem Äquivalent des Metall-basischen Platin-(0)-Komplexes [Pt(PCy3)2] konnten die Trimetallo-Boridokomplexe 76 und 77 in Ausbeuten von 27% und 33% isoliert und vollständig charakterisiert werden (Abbildung 98). Sie weisen die für Metall-basenstabilisierten Boridokomplexe typische T-förmige Struktur mit einem verbrückenden Hydridoliganden zwischen der M–Pt-Bindung sowie einer verbrückenden Carbonylgruppe zwischen der Fe–Pt-Bindung auf. Des Weiteren zeigte sich, dass in beiden Verbindungen die M–B-Bindungsabstände vergleichbar mit denen anderer Boridokomplexe sind, die Pt–B-Bindungsabstände jedoch gegenüber Platin-Borylkomplexen deutlich verlängert sind. Dieser Befund wurde bereits für andere Metall-Basen-Addukte beschrieben. Mit einem weiteren Metallbasen-Fragment gelang es die noch freie Koordinationsstelle am Bor-Zentrum zu besetzen. Hierzu wurden die Verbindungen 76 und 77 mit einem zweiten Äquivalent des niedervalenten Metallkomplexes [Pt(PCy3)2] umgesetzt (Abbildung 98). Folglich konnten die tetranuklearen Komplexe 78 und 79 in Ausbeuten von 44% und 30% isoliert werden. Die 1H-NMR-Kopplungsschemata des Hydridoliganden bestätigen seine verbrückende Position zwischen dem Metall (Wolfram, Molybdän) und Platin. Obwohl die Festkörperstruktur von 79 zwei unterschiedliche {Pt(PCy3)}-Fragmente aufweist, zeigt das 31P{1H}-NMR-Spektrum in Lösung nur ein Signal. Somit liegt bei Raumtemperatur in Lösung eine Fluktuation der verbrückenden Carbonylgruppe sowie des Hydridoliganden vor. Entgegen den Erwartungen nimmt Verbindung 79 eine stark gekippte Anordnung ein und nicht, wie die meisten bekannten Tetrametallo-Boridokomplexe eine quadratisch-planare Koordination (Anti-van`t Hoff-Le Bel-Verbindungen). Abbildung 98: Reaktivität des hydrid-verbrückten Boridokomplexes 74 gegenüber [Pt(PCy3)2]. Des Weiteren gelang es die Metalloborylen-Einheit {(η5-C5Me5)Fe(CO)2(B:)} aus 43 auf einige unterschiedlich substituierte Alkine zu übertragen und die Verbindungsklasse der bislang erst zwei bekannten Eisen-substituierten Borirene auf die Verbindungen 81-86 zu erweitern, welche in Ausbeuten von 24-61% isoliert werden konnten (Abbildung 99). Abbildung 99: Synthese der Ferroborirene 81-86. Das charakteristische Strukturmerkmal dieser Verbindungsklasse stellt der dreigliedrige Boracyclus dar, dessen Verkürzung der BC bzw. Verlängerung der C–C-Bindungen gegenüber B–C-Einfach- bzw. C=C Doppelbindungen auf eine Delokalisierung der π Elektronen über ein bindendes Molekülorbital bestehend aus den p-Orbitalen der Ring-Atome hindeuten. Durch den thermisch induzierten Borylentransfer und drastische Reaktionsbedingungen gelang es erstmals, ein Ferro(bis)boriren (87) vollständig zu charakterisieren. Die Umsetzung von 43 mit verschiedenen Dialkinen führte zur Bildung der Ferro(bis)borirene 87 89 (Abbildung 100). Abbildung 100: Synthese der Ferro(bis)borirene 87-89. Aufgrund der Verkürzung der C–C-Einfachbindung zwischen den beiden Dreiringen (1.411(3) Å) kann in dem Ferro(bis)boriren 87 von einer Delokalisation der π Elektronen über beide Boracyclen hinweg ausgegangen werden. Zahlreiche Versuche zur Spaltung der Fe–B-Bindung des Ferroborirens 63 mit H2, Br2 oder HCl, um Zugang zu Borirene mit veränderten Eigenschaften zu erhalten, waren nicht erfolgreich. Auch einige Quarternisierungsversuche des Ferroborirens 63 mit den weniger basischen Pyridinderivaten (3,5-Lutidin, 4 Picolin, 4-(Dimethylamino)-pyridin) waren nicht erfolgreich. Die Reaktionskontrolle mittels 11B{1H} NMR-Spektroskopie zeigte immer nur das Eduktsignal bei δ = 63.4 ppm. Sowohl nach dem Erhitzen für mehrere Stunden auf 80 °C sowie durch Abkühlen der Reaktionslösung war keine Reaktion zu erkennen. Die Umsetzung von 63 mit einem cyclischen Alkylaminocarben lieferte ebenfalls keine Reaktion. Weitere Untersuchungen zur Reaktivität von 63 ergaben, dass es durch die Umsetzung von 63 mit zwei Äquivalenten eines N-heterocyclischen Carbens zu einer heterolytischen FeB Bindungsspaltung unter Bildung der Boroniumionen 90-92 kommt (Abbildung 101). Auf diese Weise konnte das erste Borironium-Salz eines Borirens erhalten werden. Abbildung 101: Synthese der Boroniumionen 90-92. Durch die Quarternisierung des Boratoms ist in den Borironiumionen eine Delokalisierung der zwei π Elektronen über ein bindendes Molekülorbital bestehend aus den p-Orbitalen der Ring-Atome nicht mehr möglich, dies spiegelt sich in der Verlängerung der BC- sowie Verkürzung der C–C-Bindungen im Vergleich zur Ausgangsverbindung wieder. Ein weiteres Projekt dieser Arbeit umfasste Untersuchungen zur Reaktivität von Manganborylkomplexen gegenüber Isonitrilen. Es zeigte sich, dass durch Umsetzung des Mangan(dibromboryl)komplexes (94) mit Cyclohexyl- bzw. tert-Butylisonirtil die Lewis Säure-Base-Addukte 95 und 96 gebildet werden. Abbildung 102: Synthese der Lewis-Säure-Base-Addukte 95und 96. Im Gegensatz hierzu kommt es bei der Umsetzung des Phosphan-substituierten Manganborylkomplexes 98 mit Cyclohexyl- bzw. tert-Butylisonirtil zu keiner Adduktbildung, sondern zu einer Insertion zweier Isonitrile in die MnB Bindung unter Bildung eines carbenartigen Mangankomplexes und einem viergliedrigen Ring bestehend aus dem Kohlenstoff- und dem Stickstoffatom eines Isonitrils, dem Kohlenstoffatom des zweiten Isonitrils sowie dem Boratom der {BCl2}-Gruppe. Des Weiteren wurden zwei Carbonylgruppen durch Isonitrile ausgetauscht (Abbildung 103). Abbildung 103: Synthese der Isonitrilinsertionskomplexe 99 und 100. Das letzte Projekt dieser Arbeit umfasste die Untersuchung der Reaktivität von 43 gegenüber Isonitrilen. Während die Umsetzung des Boridokomplexes 43 mit tert-Butyl- bzw. Mesitylisonitril keine selektive Reaktion lieferte, führte die Umsetzung von 43 mit drei Äquivalenten Cyclohexylisonitril zu einer Insertion der Isonitrile in beide MB-Bindungen und somit zur Bildung der [2.3] Spiro-Verbindung 103. Da der Metalloborylenkomplex 43 formal eine Eisenboryl- und eine Chromborylen-Funktionalität aufweist, werden dementsprechend in dieser Reaktion zwei unterschiedliche Reaktivitäten in einem Molekül vereinigt. Diese sind zum einen vergleichbar zu der des Eisen(dichlorboryl)komplexes 11 und zum anderen zu der des Chrom(aminoborylen)komplexes 17. Abbildung 104: Synthese der [2,3]-Spiroverbindung 103. Bei der Umsetzung von 43 mit Supermesitylisonitril konnte anhand geeigneter Kristalle für die Röntgenstrukturanalyse das Chrom-Spaltungsprodukt [(OC)4(Mes*NC)2Cr] (109) erhalten werden. Dieser Befund sowie quantenchemische Rechnungen sprechen für die Bildung von 115 (Abbildung 105). Abbildung 105: Umsetzung von 43 mit Mes*NC. In den Untersuchungen zu der Isonitril-insertierten [2.3] Spiro-Verbindung 103 konnte zum einen die Reversibilität der Isonitrilinsertion in die FeB-Bindung durch Umsetzung mit der starken Lewis-Säure Tris(pentafluorphenyl)boran unter der Bildung des Lewis-Säure-Base-Addukts (C5F5)3B−CNtBu vermutet werden. Weitere Reaktivitätsuntersuchungen zu 103 zeigen, dass durch die HCl-Addition an die NB Bindung des dreigliedrigen Rings der Eisencarbenkomplex 118 gebildet wird (Abbildung 106). Dieser Befund deutet darauf hin, dass es sich bei der B–N-Bindung in 103 eher um eine dative N→B-Wechselwirkung handelt und diese somit leichter gespalten werden kann als die B–C-Einfachbindung des dreigliedrigen Rings. Abbildung 106: Synthese der Verbindung 118. N2 - E) Summary This work aims to investigate the reactivity of the metalloborylene complex [{(η5 C5Me5)Fe(CO)2}(μ-B){Cr(CO)5}] (43) towards other transition metal complexes, a variety of mono- and dialkynes, and several isonitriles. Thereby, discussion of spectroscopical and structural data of the prepared compounds confirms known facts and helps to determine the nature of the metal–boron bond. According to a well-established synthetic protocol, the borido complex [{(η5 C5Me5)Fe(CO)2}(μ-B){W(CO)5}] (73) could be prepared by a double salt-elimination reaction of the dichloroboryl compound 11 and the corresponding metal carbonylate Na2[W(CO)5] in isolated yields of 46% (Figure 107). Figure 107: Synthesis of the borido complex 73. As observed for related metalloborylene species, the borido complex 73 shows the typical linear FeB–W moiety (178.5(2)°) as well as a low-field-shifted 11B{1H} NMR (δ = 204.6 ppm) resonance. The borido complex 43 can be employed as a synthetic source of the metalloborylene fragment {(η5 C5Me5)Fe(CO)2(B:)}. The metalloborylene complex is known for its ability to transfer the borylene moiety to both organic and organometallic fragments. Thus, reaction of 43 with the tungsten hydride complex [(η5 C5H5)(H)W(CO)3] leads to the dinuclear hydridoborylene complex [{(η5-C5Me5)(CO)2Fe}(µ-B)(µ-H){CpW(CO)2}] (74) in yields of 52% (Figure 108). This intermetallic borylene transfer offers an alternative synthesis route to the well-known salt-elimination reaction. X-ray crystallographic studies and NMR spectroscopic data confirmed the bridging position of the hydride between the tungsten and the boron center. Figure 108: Synthesis of the borido complex 74. The addition of one equivalent of the zerovalent platinum fragment [Pt(PCy3)2] to the hydridoborylene complexes [{(η5-C5Me5)(CO)2Fe}(µ B)(µ-H){CpM(CO)2}] (M = W (74), M = Mo (75)) results in BH-bond breakage and the formation of the T-shaped trinuclear borido complexes [{(η5-C5Me5)Fe(CO)}(µ-CO){Pt(PCy3)}{CpM(CO)2}(µ3-B)] (M = W (76), Mo (77)) (Figure 109). The hydrido ligand occupies a bridging position between the MPt bond and single crystal X-ray analysis confirmed the absence of a BH interaction. Single crystal X ray diffraction studies of 76 and 77 revealed MB bond distances comparable to those found for other borido complexes. In addition, the PtB distances are significantly elongated and resemble those found in metal base adducts of other boron species. With an additional equivalent of the [Pt(PCy3)2] fragment it was possible to occupy the last free coordination site at the central boron atom. Thus, the tetranuclear species [{(Cp*)Fe(CO)}(µ-CO){Pt(PCy3)2}{CpM(CO)2}(µ4-B)] (M = W (78), M = Mo (79)) (Figure 109) were obtained in isolated yields of 44% and 30%. As was determined by the solid-state structure, the complex 79 retains the bridging hydride and carbonyl ligands of its precursor 77, adding a [Pt(PCy3)2] fragment to the boron atom held in place by two further bridging carbonyl ligands. The boron atom in 79 is even more distorted from planarity (angular sum around boron: 335.7(7)°) than the two published examples of planar tetracoordinate boron complexes (362.4° and 364.6°). Consequently the four metal atoms and the boron (FeBMo: 162.5(3)°, PtBPt: 91.1(2)°) form a saw-horse geometry and not the expected nearly-square-planar coordination mode (Anti-van`t Hoff-Le Bel-compounds). The 31P{1H} NMR spectra shows only one signal in solution, thus the bridging hydride and carbonyl ligands are fluxional at room temperature. Figure 109: Synthesis of the tri- and tetranuclear borido complexes 76-79. Furthermore, the metalloborylene moiety {(η5-C5Me5)Fe(CO)2(B:)} of 43 can also be transferred successfully to alkynes. The thermal borylene transfer has turned out to be applicable to a set of alkynes with different functional groups, expanding the class of ferroborirenes to 81-86 (Figure 110), which were obtained in yields of 24-61%. Figure 110: Synthesis of the ferroborirenes 81-86. The characteristic structural feature of these compounds is a three-membered BCC-ring. The short BC bonds as well as the long CC bonds suggests a delocalisation of the two π electrons over a three centered bonding molecular orbital comprised of the pz atomic orbitals of boron and carbon. The first complete characterization of a ferro(bis)borirene (87) was carried out by thermal metalloborylene transfer and drastic reaction conditions. Thus, the reaction of 43 with different diynes leads to the formation of the ferro(bis)borirenes 87-89 (Figure 111). Figure 111: Synthesis of the ferro(bis)borirenes 87-89. Due to the shortening of the C–C single bond between the two boracycles (1.411(3) Å) it can be assumed that there is a strong electronic interaction between the two boracyclopropene rings. Numerous attempts to cleave the Fe–B bond of the ferroborirene 63 with H2, Br2 or HCl to gain access to borirenes with modified properties failed. Additionally, several quaternization attempts of the ring boron atom from 63 with less basic pyridine derivates (3,5-lutidine, 4-(dimethylamino)-pyridine) were unsuccessful. The 11B{1H} NMR spectra showed in all cases only the reactant signal of 63 at δ = 63.4 ppm. The implementation of 63 with a cyclic (alkyl)(amino) carbene also yielded no reaction. Further investigations on the reactivity of 63 showed that it is possible to cleave the FeB bond. Treatment of 63 with two equivalents of the N-heterocyclic carbenes IMe, IMeMe and IiPr results in heterolytic FeB bond cleavage, yielding the boronium cations 90-92 (Figure 112). In this way, the first borironium salts of a borirene could be obtained. Figure 112: Synthesis of the boronium cations 90-92. Because of the quaternization of the boron atom the structural findings for the boronium cations are interpreted as indicative for annihilation of delocalization of the two π electrons over the three-centered bonding molecular orbital comprised of the pz atomic orbitals of boron and carbon. A further topic of this thesis focussed on the reactivity of manganese boryl complexes towards isonitriles. It turns out that the reaction of the dibromoboryl complex 94 with cyclohexyl- or tert-butylisonitrile leads to the formation of the Lewis-base adducts 95 and 96 (Figure 113). Figure 113: Synthesis of the base adducts 95 and 96. In contrast to the afore-mentioned reactions, treatment of the phosphine-substituted manganese dichloroboryl complex 98 with cyclohexyl- or tert-butylisonitrile leads not to the Lewis adduct formation, but insertion of the isonitriles into the MnB bond (Figure 114). In these complexes the former boryl unit is coordinated by the carbon and nitrogen atom of one isonitrile and by the carbon of the second isonitrile, forming a four-membered ring. This compound might be best described as a manganese carbene-like complex. Furthermore, two carbonyl ligands at the manganese were replaced by two isonitriles. Figure 114: Synthesis of insertion complexes 99 and 100. The last objective of this work was the exploration of the reactivity of the borido complex 43 with different isonitriles. While the treatment of the borido complex 43 with tert-butyl- or mesitylisonitrile does not lead to a selective reaction, the reaction of 43 with three equivalents of cyclohexylisonitrile leads to insertion of the isonitriles into the MB bonds, revealing a [2.3] spiro species 103 (Figure 115). In 103, the boron atom is coordinated to three separate isonitrile units, two of which have been coupled head-to-head. In this case, insertion into the FeB single bond shows reactivity similar to that observed with the iron boryl complex 11, while the double insertion into the Cr=B bond is analogous to the reactivity observed for the chromium aminoborylene complex 17. This reactivity, leading to 103, allows an interesting internal comparison of the boryl and borylene functionalities, which show distinct reactivity even within the same molecule. Figure 115: Synthesis of the spiro compound 103. X-ray diffraction of suitable crystals from the treatment of 43 with supermesitylisonitrile confirmed the formation of [(OC)4(Mes*NC)2Cr] (109). This finding, as well as quantum chemical calculations support the formation of 115 (Figure 116). Figure 116: Reaction of 43 with Mes*NC. As we were interested in the nature of the bonding within the three- and four-membered rings of the isonitrile-inserted [2.3] spiro complex 103, further investigations with the strong Lewis acid tris(pentafluorophenyl)borane revealed the formation of the Lewis adduct (C5F5)3B−CNtBu. Furthermore the possibility to selectively add HCl to the B−N bond of the three-membered ring without decomposition of the compound allowed the characterization of 118 (Figure 117). This finding suggests that the B–N bond in 103 can be described as a dative N→B interaction, thus being easier to cleave than the B–C single bond of the three-membered ring. KW - Borylene KW - Metalloborylenkomplexe KW - Eisen-substituierte Borirene KW - Borirene KW - Borylentransfer Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-118850 ER - TY - THES A1 - Ullrich, Stefan T1 - Synthese und Reaktivität NHC-stabilisierter Diborene T1 - Synthesis and reactivity of NHC-stabilized diborenes N2 - In der vorliegenden Arbeit wurde der Fokus auf die Synthese neuer Diborene mit unterschiedlichem Substitutionsmuster gerichtet. Ein Ziel bestand darin, die Gruppe der heteroaromatisch substituierten Diborene, die sich bisher aus den literaturbekannten Thienyl-substituierten Diborenen 59 und 60 zusammensetzt, um weitere Vertreter zu bereichern. In diesem Kontext konnte das Furanyl-substituierte Diboren 85 synthetisiert und charakterisiert werden (Schema 59). Die Festkörperstruktur von 85 zeigt eine koplanare Anordnung zwischen der B=B-Doppelbindung und den Furanylsubstituenten, was als Hinweis auf eine Konjugation zwischen der B=B-Doppelbindung und den Heteroaromaten gewertet werden kann und damit Parallelen zu den Thienyl-substituierten Diborenen 59 und 60 erkennen lässt. Analog dazu weist 85 drei Banden im UV-Vis-Absorptionsspektrum auf, die anhand von quantenchemischen Rechnungen den entsprechenden elektronischen Anregungen zugeordnet werden können. Demzufolge sind die HOMOs ausschließlich an der B=B-Doppelbindung und die LUMOs an den Furanylringen, sowie den NHCs lokalisiert. Cyclovoltammetrische Messungen legen zudem den Elektronenreichtum des Furanyl-substituierten Diborens 85 offen und sprechen für dessen Eignung als starkes, neutrales nichtmetallisches Oxidationsmittel. Darüber hinaus zeigen sie eine teilweise reversible Oxidation zu dem entsprechenden Monoradikalkation auf. Zur Realisierung weiterer heteroaromatisch substituierter Diborene wurden Versuche unternommen die Pyrrolylgruppe als Substituent zu etablieren, die noch elektronenreicher verglichen zu Furanyl- und Thienylgruppen ist. Die erfolgreiche Darstellung des NHC-stabilisierten Diborens 88 konnte mittels NMR-Spektroskopie verifiziert werden, jedoch gelang die weitere Charakterisierung aufgrund der extremen Empfindlichkeit von 88 nicht (Schema 59). Der Einsatz von vergleichsweise großen NHCs wie IMes zur kinetischen Stabilisierung der B=B-Doppelbindung eines Pyrrolyl-substituierten Diborens war nicht erfolgreich. Schema 59: Synthese der NHC-stabilisierten heteroaromatisch substituierten Diborene (85, 88) durch Reduktion der korrespondierenden NHC-Boran-Addukte (84, 87). In unmittelbarer Fortführung der aussichtsreichen Arbeiten von Dr. Philipp Bissinger wurde an geeigneten Syntheserouten zu den NHC-stabilisierten Diborenen 95 und 99 mit derivatisierten Thiophensubstituenten gearbeitet. Ausgehend von den BMes2- und B(FMes)2-funktionalisierten Thiophensubstituenten konnten über mehrere Reaktionssequenzen die korrespondierenden NHC-Boran-Addukte synthetisiert und charakterisiert werden. Die Reduktion dieser NHC-Boran-Addukte erzeugt intensiv gefärbte Lösungen, deren 11B-NMR-spektroskopische Untersuchungen Hinweise auf die Generierung der Diborene 95 und 99 lieferten (Schema 60). Darüber hinaus wird die erfolgreiche Darstellung des Diborens 95 durch Röntgenstrukturanalyse an Einkristallen gestützt. Schema 60: Synthese der Diborene 95 und 99 mit derivatisierten Thiophensubstituenten. Die Isolierung größerer Mengen der Diborene 95 und 99 in analytisch reiner Form gelang jedoch bislang nicht. UV-Vis Absorptionsspektroskopie, Cyclovoltammetrie und TD-DFT-Rechnungen offenbaren die drastische Einflussnahme der BMes2- bzw. der B(FMes)2-Gruppe auf die Eigenschaften der resultierenden Diborene 95 und 99. Vor allem die elektronenziehende B(FMes)2-Gruppe senkt die Grenzorbitale energetisch erheblich ab und verringert das HOMO-LUMO-gap signifikant. Die Hauptabsorptionsbande im UV-Vis-Absorptionsspektrum findet sich im nahinfraroten Bereich (NIR) und ist damit gegenüber jener des Thienyl-substituierten Diborens 59 stark bathochrom verschoben. Ziel anknüpfender Arbeiten der Gruppe um Braunschweig ist die Optimierung der Synthese der Diborene 95 und 99, sowie die weitere Charakterisierung der physikalischen Eigenschaften und die Erforschung der Reaktivitäten. Ein weiteres Ziel dieser Arbeit war die Synthese von Vinyl-substituierten Diborenen. Das NHC-Boran-Addukt 102 konnte, ausgehend von 1,1-Diphenylethen, erfolgreich dargestellt werden. Die Reduktion mit KC8 erzeugte eine intensiv gefärbte Reaktionslösung, deren 11B-NMR-spektroskopische Untersuchung eine gegenüber bekannten Diborenen leicht tieffeldverschobene Resonanz im 11B-NMR-Spektrum zeigt. Die Isolierung und zweifelsfreie Identifizierung des Reaktionsprodukts gelang aufgrund der hohen Empfindlichkeit bislang nicht. Weitere Versuche ein Diboren mit vinylogem Substitutionsmuster zu synthetisieren, in dem die alpha-Position des Vinyl-Substituenten durch eine Phenylgruppe besetzt ist, waren nicht zielführend (Schema 61). Anknüpfend an die Arbeiten von Thomas Steffenhagen, dem die Darstellung des ersten [2]Diboraferrocenophans mit Diborenbrücke 109 und dessen Identifizierung mittels NMR-Spektroskopie gelang, wurden Versuche unternommen, 109 zu kristallisieren. Dabei konnten geeignete Einkristalle zur röntgenstrukturanalytischen Charakterisierung erhalten werden und das Strukturmotiv im Festkörper bestätigt werden (Schema 62). Zentraler Gegenstand dieser Arbeit war neben der Synthese und Charakterisierung von neuen Diborenen die Untersuchung der Chemie der reaktiven B=B-Doppelbindung. Dazu wurden unter anderem Reaktivitätsstudien mit Münzmetallkomplexen durchgeführt, um die Koordinationschemie der heteroaromatisch substituierten Diborene 59 und 85, sowie des Diboren-verbrückten [2]Diboraferrocenophans 109 zu erforschen. Die Umsetzungen von 59, 85 und 109 mit CuCl führten zu den entsprechenden Münzmetall π-Diboren-Komplexen 111-113 (Schema 63). Röntgenstrukturanalytische Untersuchungen zeigen die T-förmige Geometrie der Komplexe, die aus der side-on Koordination des jeweiligen Diborens an das Metallzentrum resultiert. Das erhaltene Strukturmotiv entspricht damit dem der literaturbekannten Münzmetall-π-Diboren-Komplexe 71 und 72. Aufgrund der hohen Empfindlichkeit konnten allerdings weder die Ausbeute bestimmt noch eine detaillierte NMR-spektroskopische Charakterisierung durchgeführt werden. Das photophysikalische Potential dieser Verbindungsklasse wird dennoch in qualitativen Tests durch Bestrahlung mit UV-Licht erkennbar. Die Koordination von Kupferalkinen an die B=B-Doppelbindung der Verbindungen 59, 85 und 109 verläuft demgegenüber selektiv (Schema 63). Die ebenfalls T-förmigen Komplexe (114-116) erweisen sich als deutlich stabiler als die CuCl-Analoga und konnten demzufolge in analysenreiner Form isoliert werden. Allerdings zeigen diese in qualitativen Tests kein Lumineszenzverhalten. Eine genauere Analyse dieser Befunde erfolgte bislang nicht, ist aber aktueller Bestandteil der Forschung der Arbeitsgruppe um Braunschweig. Da die heteroaromatisch substituierten Diborene wegen ihres energetisch hoch liegenden HOMO bereitwillig zur Abgabe von Elektronen tendieren, wie in cyclovoltammetrischen Messungen gezeigt werden konnte, wurde deren potentielle Verwendung als Reduktionsmittel untersucht. Die Diborene 59, 60, 85 und 88 wurden dazu mit dem milden Oxidationsmittel (C7H7)BArf4 oxidiert und die Monoradikalkationen 117-120 mittels EPR-Spektroskopie nachgewiesen (Schema 64). Aufgrund der hohen Empfindlichkeit der Radikale (117-120) konnte keine weitere Charakterisierung erfolgen. Durch Oxidation des Diborens 85 mit Iod konnte Verbindung 121 erhalten werden (Schema 65). Die Festkörperstruktur zeigt einen dreigliedrigen Heterocyclus, bestehend aus einem positiv polarisierten Iodatom, das eine B2-Einheit verbrückt und damit die gleichwertige Beschreibung als Iodoniumion in Analogie zu den gleichnamigen Intermediaten, die bei der Addition von Halogenen an Alkene entstehen, rechtfertigt. Die Hydroborierungsreaktion ist eine bekannte Additionsreaktion von H-B-Bindungen an C=C-Doppelbindungen und konnte in dieser Arbeit erfolgreich auf die alkenanalogen Diborene übertragen werden. Die Reaktion des heteroaromatisch substituierten Diborens 85 mit Catecholboran ergibt das Triboran 122, das strukturell den klassischen Hydroborierungsprodukten von Alkenen gleicht. In Analogie dazu wird von einer syn-Addition der H-B-Bindung an die B=B-Doppelbindung des Diborens ausgegangen. Wird hingegen das Hydroborierungsreagenz Durylboran eingesetzt, so findet eine nicht-klassische Addition der H-B-Fragmente an die B=B-Doppelbindung statt. Der genaue Mechanismus, der zur Bildung des Triborans 124 führt, ist bisher nicht aufgeklärt (Schema 66). Wird das [2]Diboraferrocenophan 109, das ein cyclisches, cis-konfiguriertes Diboren als Brücke beinhaltet, mit Catecholboran bzw. Durylboran umgesetzt, so werden ebenfalls Triborane (123 und 125) generiert, die sich jedoch von den Triboranen 122 und 124 in ihrer Struktur grundlegend unterscheiden (Schema 67). Ein Erklärungsansatz hierfür könnte in der hohen Ringspannung im cyclischen Diboren-verbrückten [2]Diboraferrocenophan 109 verglichen mit dem acyclischen heteroaromatisch substituierten Diboren 85 liegen. Ein Schritt zur Bildung des Triborans 123 aus der Umsetzung von 109 mit Catecholboran findet offenbar, wie die Festkörperstruktur von 123 nahe legt, durch eine Ringerweiterung des Fünfringes des Catecholborans zu einem Sechsring durch Insertion eines Boratoms der Diborenbrücke statt. Um genauere Aussagen zur Bildung von 123 wie auch 125 treffen zu können, sind quantenchemische Studien zu diesem Thema aktuelles Arbeitsgebiet der Arbeitsgruppe um Braunschweig. Die Reaktivität der elektronenreichen B=B-Doppelbindung der heteroaromatisch substituierten Diborene wurde in der vorliegenden Arbeit gegenüber der Substanzklasse der Chalkogene überprüft. Dabei stellte sich heraus, dass die Reaktionen der Diborene 60 und 85 mit elementarem Schwefel durch reduktive Insertion von Schwefel in die B=B-Doppelbindung zur Bildung von Produktgemischen aus Trithiadiborolanen und Diborathiiranen führen. Es zeigte sich, dass die gezielte Darstellung der Trithiadiborolane 126 und 127 durch Einwirkung von Ultraschall gelingt, wohingegen das Thiadiborolan 128 selektiv durch Reaktion des Diborens 85 mit Ethylensulfid oder einem Überschuss an Triphenylphosphansulfid zugänglich gemacht werden kann (Schema 68). Die Reaktion der Diborene 60 und 85 mit elementarem Selen bzw. elementarem Tellur ergibt die entsprechenden Diboraselenirane (129 und 130) bzw. Diboratellurirane (131 und 132), die durch reduktive Insertion des entsprechenden Chalkogens in die B=B-Doppelbindung entstehen (Schema 69). Eine vollständige Spaltung der B=B-Bindung durch Insertion weiterer Äquivalente Selen bzw. Tellur ist auch unter Behandlung mit Ultraschall nicht zu beobachten. Das Furanyl-substituierte Diboren 85 konnte zudem mit chalkogenhaltigen Verbindungen erfolgreich umgesetzt werden. 85 reagiert mit Diphenyldisulfid und Diphenyldiselenid selektiv durch Addition der E-E-Bindung an die B=B Doppelbindung (Schema 70). Die diaseteroselektiven, analysenreinen 1,2-Additionsprodukte (133, 137) lassen auf einen Mechanismus, der in Analogie zu den Additionen von Disulfiden bzw. Diseleniden an Alkene über die Zwischenstufe entsprechender Sulfonium- bzw. Seleniumionen verläuft, folgern. Alternativ dazu muss eine konzertierte syn-Addition der E-E-Bindung in Erwägung gezogen werden. Demgegenüber konnten aus den Umsetzungen des Thienyl-substituierten Diborens 60 mit Diphenyldisulfid, Diphenyldiselenid und isoPropylthiol keine analysenreinen Produkte isoliert werden. Das Diboren-verbrückte [2]Diboraferrocenophan 109 reagiert mit Diphenyldisulfid in einer 1,2-Addition der S-S-Bindung an die B=B-Doppelbindung, wobei ein sp2-sp3-Diboran durch Abspaltung eines NHCs gebildet wird. Die verkürzte Fe-Bsp2-Bindungslänge lässt auf eine Stabilisierung des sp2-Boratoms durch das Fe-Zentrum schließen. In einer vergleichbaren Reaktion mit Dimethyldisulfid konnte das identische Strukturmotiv, ein sp2-sp3-Diboran, erhalten werden (Schema 71). Die Reaktion des [2]Diboraferrocenophans 109 mit Diphenyldiselenid führt zur vollständigen Spaltung der B=B-Doppelbindung unter Addition zweier Se-Se-Bindungen von zwei Äquivalenten Diphenyldiselenid und der damit einhergehenden Bildung der acyclischen bisborylierten Ferrocenspezies 139 (Schema 72). Die Bildung des einfachen Additionsprodukts, was wahrscheinlich intermediär auftritt, wurde auch bei Umsetzung mit nur einem Äquivalent Diphenyldiselenid nicht beobachtet. Die Umsetzung des Furanyl-substituierten Diborens 85 mit isoPropylthiol verläuft unter Addition der H-S-Bindung an die B=B-Doppelbindung, wobei in allen Fällen das syn-Additionsprodukt 142 erhalten wurde (Schema 72). Die von Thomas Steffenhagen beschriebene Addition der H-S-Bindung von isoPropylthiol an die B=B-Doppelbindung des [2]Diboraferrocenophans 109 ergibt dagegen selektiv ein anti-Additionsprodukt. In einer vergleichbaren Reaktion des [2]Diboraferrocenophans 109 mit tert-Butylthiol wurden anhand von NMR-Spektroskopie Indizien für die Bildung eines 1,2-Additionsproduktes erhalten. Allerdings gelang die Isolierung eines analysenreinen Produktes bislang nicht. N2 - Initially the focus of this work was the synthesis and characterization of novel diborenes bearing a variety of boron substituents. Of particular interest was the introduction of new heterocyclic functionalized diborenes synthesized in a manner akin to two literature-known thienyl functionalized diborenes (59 and 60). Through these studies, the synthesis and charaterization of the furanyl-functionalized diborene 85 has been achieved (scheme 1). The solid-state structure of 85 displays coplanarity between the respective B2 unit and the furanyl rings, indicating some degree of pi-conjugation between the heterocyclic substituents and the central B2 unit. This structural feature closely parallels the thienyl-functionalized diborenes, which also exhibit coplanarity between the central B2 unit and the peripheral heterocycles as well. Similar to 59 and 60, the furanyl-functionalized diborene 85 reveals three absorption bands in the UV-vis spectrum. According to TD-DFT calculations the excitations can be assigned to transitions between the frontier orbitals. The HOMOs are exclusively located at the central B=B double bond, whereas the LUMOs are predominantly delocalized over the furanyl substituents and the NHCs. Cyclovoltammetry measurements prove that the diborene 85 is extraordinarily electron rich, which is in accordance with previous data taken from the characterization of the thienyl-substituted diborenes (59, 60). Therefore the heterocyclic-functionalized diborenes can be considered strong electron donors. Respectively, these species rank among the class of strong, neutral non-metallic reducing agents. Moreover the partial reversible reduction wave suggests the formation of a stable monoradical cation, which was also observed in similar cyclovoltametry measurements of the related diborenes 59 and 60. A synthetic approach to establish a pyrrolyl-functionalized diborene was also investigated. The successful synthesis of the IMe-stabilized diborene 88 was verified by NMR spectroscopy (scheme 1). Further charaterization of 88 failed because of the instability of the compound in both the solid state and in solution. The application of a more sterically demanding NHC (IMes) led only to the respective NHC-borane adduct 89, which could not be reductively coupled to the desired diborene. In a continuation of the promising work of Dr. Philipp Bissinger, the search for a reliable synthesis route to the heterocyclic-substituted diborenes 95 and 99 was examined (scheme 2). These species consisted of thiophene-derived heterocyclics substituted with BMes2 and B(FMes)2 groups, respectively. Starting from the BMes2- and B(FMes)2-functionalized thiophene precursors, the synthesis of the respective NHC-borane adducts was first accomplished over several reaction steps. The reduction of these adducts produced intensely colored solutions of the respective diborenes 95 and 99 as confirmed by 11B NMR spectroscopic investigations. The diborene 95 was structurally confirmed by X-ray diffraction studies of suitable crystals, however, isolation of the pure compounds (95, 99) in larger amounts for detailed NMR spectroscopic studies could not be achieved. Investigations via UV-vis spectroscopy, cyclovoltammetry and TD-DFT-calculations revealed the significant influence of the BMes2 and the B(FMes)2 groups on the chemical and photophysical properties of both diborenes 95 and 99. The strong electron withdrawing B(FMes)2 group was found to lower the energy of the LUMO, subsequently decreasing the HOMO-LUMO energetic gap dramatically. The main absorption band in the UV-vis spectrum of 99 is detected in the near infrared (NIR) range, bathochromically shifted in comparison to the parent thienyl-substituted diborene 59. A following prospective study in the Braunschweig group could be the optimization of the synthesis of these diborenes, accompanied by the characterization and exploration of their reactivity patterns. Another part of this thesis dealt with the synthesis of diborenes bearing vinyl-group functionalized boron precursors. Based on the 1,1-diphenylethene starting material, the corresponding NHC-borane adduct was generated through several sequential reactions. Reduction with KC8 afforded an intensely colored reaction mixture that upon filtration had a 11B NMR resonance slightly downfield shifted with respect to the literature-known diborenes. However, isolation of the product and its identification were unsuccessful. Further attempts to prepare a diborene bearing a vinyl substituent with a phenyl group in the alpha-position were attempted but were ultimately unrewarding (scheme 3). Extending the work of Thomas Steffenhagen on the synthesis of the first diborene-bridged [2]diboraferrocenophane 109, experiments aimed at crystallizing 109 were successfully performed. Single crystal X-ray diffraction experiments confirmed the highly strained structure [2]diboraferrocenophane 109 bearing a cis-configured bridging diborene (scheme 4). Besides the synthesis and characterization of new diborenes, exploration of the chemistry of the reactive B=B double bond was also a major interest in this thesis. Therefore diborene reactivity studies with coinage metal complexes were carried out in order to evaluate the ability of the heterocyclic-substituted species 59, 85 and the diborene-bridged [2]diboraferrocenophane (109) to interact with these metal species. The reactions of 59, 85 and 109 with CuCl led to the formation of the corresponding copper complexes 111-113 (scheme 5). Single X-ray crystallographic analysis of 111 and 112 revealed a T-shaped geometry for these complexes. This geometry results through side-on coordination of the diborene to the metal center. The structural motif is equivalent to those of literature known diborene CuCl pi-complexes. Due to their instability, further characterization of the complexes 111-113 could not be achieved. In addition, the potential of the diborene CuCl pi-complexes was realized qualitatively via irradiation with UV light, indicating strong luminescence. The coordination of copper alkyne complexes at the B=B double bond of 59, 85 and 109 proceeded selectively and resulted in the formation of T-shaped complexes 114-116, which are structurally similar to the CuCl complexes 111 and 112 (scheme 5). Remarkably, 114 and 116 display enhanced stability compared with the CuCl complexes 111 and 112 and could be characterized via NMR spectroscopy. However contrary to the CuCl complexes, the diborene Cu alkynyl  complexes 114-116 showed no signs of luminescence while under UV irradiation. A concurrent detailled study of these findings is underway in the Braunschweig group. Owing to their energetically high-lying HOMOs, diborenes can easily be oxidized as shown in CV measurements. Therefore their application as reducing agent was explored in this thesis. The diborenes were utilized in redox reactions with (C7H7)BArf4 to yield the monoradical cations 117-120 (scheme 6). These species could be subsequently be verified by EPR spectroscopic measurements. Due to the instability of the radical species 117-120, further characterization could not be accomplished. Upon oxidation with elemental iodine (I2), the diborene 85 could be succcessfully converted to the dicationic species 121. This species can be considered an iodonium ion analogous to the compounds generated in reactions of alkenes with iodine (scheme 7). The solid state structure shows a three-membered heterocyclic ring in which the positively charged iodine atom symmetrically bridges the two boron atoms. The diborene species were tested for hydroboration reactivity in a manner analogous to the well-known hydroboration reaction between borane B-H bonds and C=C double bonds. This work utilized the B=B double bonds of diborenes to serve as alkene mimics. The reaction of the furanyl-substituted diborene 85 with catecholborane afforded the triborane 122. This product is presumably formed via syn-addition of the borane B-H bond to the diborene B=B double bond. Treatment of the same diborene 85 with durylborane led to the formation of a non-classical species in contrast to known alkene hydroboration reactivity. As can be seen in Scheme 8, the species formed seemingly arises upon cleavage of a B-Cfuryl bond (scheme 8). The detailled mechanism for this reaction has thus far not been elucidated. In reactions of 109 with catecholborane or durylborane, the triboranes 123 and 125 were generated, respectively (scheme 9). The structural motifs of both species show the ring expansion of the diboraferrocenophane that likely occurs through the insertion of the BDur and BCat fragments into the diborene B=B double bond. Additionally, in the case of the reaction with catecholborane, one boron atom must insert into the B-O bond to yield compound 123. The reaction patterns between the heterocycle-substitued diborene 85 and the [2]diboraferocenophane 109 towards hydroboration reagents have been shown to differ dramatically. One reason for this divergent reactivity could be the tendency of the diborene-bridged [2]diboraferrocenophane 109 to alleviate some of its ring strain. To gain further knowledge into this reactivity, theoretical studies are currently underway in the Braunschweig group. The electron rich B=B double bond of diborenes was further exploited in reactivity studies with elemental chalcogen reagents as well as chalcogen-containing reagents. The reaction products of the heterocycle-substituted diborenes 60 and 85 with elemental sulfur proved to be dependent upon the reaction conditions. Reactions performed at room temperature were observed to generate a mixture of diborathiiranes and trithiadiborolanes, whereas the selective formation of the trithiadiborolanes (126, 127) has been accomplished by ultrasonification of the reaction mixture. The trithiadiborolanes 126 and 127 are formed by the reductive insertion of three sulfur atoms into the B=B double bond while the partial insertion of one sulfur atom affords the diborathiirane 128. Further reactivity studies were conducted with triphenylphosphine sulfide and ethylene sulfide reagents in order to probe the application of sulfur-atom-donor compounds. These test reactions yielded successful transfer of the sulfur atom to the B=B double bonds of the diborene 85 (scheme 10). The reactions of diborenes 60 and 85 with elemental selenium or tellurium exclusively afforded the heterocyclic three-membered diboraseleniranes 129 and 130 and diboratelluriranes 131 and 132, respectively (scheme 11). The formation of similar five-membered heterocyclic compounds relative to the trithiadiborolanes was not observed under ultrasonification of the reaction mixtures. Besides the reactions with elemental chalcogens, the heterocyclic-substituted diborene 85 was succesfully reacted with diorganyldichalcogens (diphenyl disulfide and diphenyl diselenide), whereby 1,2-addition of the E-E single bond of the dichalcogens to the B=B double bond was observed (scheme 12). In contrast, the reaction of the thienyl-substituted diborene with diphenyl diselenide led to the formation of the desired compound 138, however isolation of the pure product was not successful. The structural motifs of 133 and 137 are indicative of either a syn-addition mechanism or a thiol-ene Michael-addition-type mechanism. A radical mechanism can be ruled out, since only one stereoisomer was generated through these studies. In order to validate these proposed mechanisms, ongoing theoretical studies are being performed by the Braunschweig group. The reaction of diborene-bridged [2]diboraferrocenophane 109 with diphenyl disulfide resulted in the formation of a sp2-sp3 diborane through cleavage of one B-CNHC bond. The short Fe-Bsp2 distance indicates some interaction between the Fe core and the Bsp2 atom. In a similar reaction the [2]diboraferrocenophane 109 formed an identical sp2-sp3 diborane when reacted with dimethyl disulfide (scheme 13). The B=B double bond of [2]diboraferrocenophane 109 was completely cleaved upon addition of two equivalents of diphenyl diselenide, yielding compound 139 (scheme 14). The simple 1,2-addition product of one Se-Se bond to the B=B double bond could not be detected or isolated as an intermediate, even if only one equivalent of diphenyl dislenide was applied. The reactions of the heterocycle-substituted diborenes 85 and 60 with isopropyl mercaptan result in addition of one H-S bond to the B=B double bonds to yield the syn-addition products 142 and 143 (scheme 14). In constrast, the anti-addition product 110 of the reaction of [2]diboraferrocenophane 109 with isopropyl mercaptan has been recently isolated by Thomas Steffenhagen. The reaction of 109 with a tert-butyl-mercaptan was also attempted. NMR spectroscopic investigations indicated the successful formation of the 1,2-addition product. Since attempts to crystallize 144 did not succeed, the structure of 144 could not be confirmed. KW - Mehrfachbindung KW - Bor KW - Ferrocenophane KW - Diboren KW - NHC KW - Heterocyclische Carbene <-N> Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-140485 ER - TY - THES A1 - Trumpp, Alexandra T1 - Synthese und Reaktivität von Diboran(4)- und Diboran(4)-Addukt-Verbindungen T1 - Synthesis and reactivity of diborane(4)- and diborane(4)-adduct-compounds N2 - In der vorliegenden Arbeit wurde zum einen das Koordinationsverhalten von Lewis-Basen an die Lewis-aciden Borzentren der symmetrisch konfigurierten 1,2-Dihalogendiborane(4) des Typs B2R2X2 (R = NMe2, Mes, Dur, tBu; X = Cl, Br, I) und des unsymmetrisch 1,1 substituierten Diborans(4) F2BB(Mes)2, sowie die Eigenschaften und die Reaktivität der erhaltenen sp2–sp3 Diboran(4)-Verbindungen untersucht. Zum anderem wurde die Fähigkeit des 1,1-substituierten Diborans(4) F2BB(Mes)2 zur oxidativen Addition der B–F- bzw. B–B-Bindung an Bisphosphan-Platin(0)-Komplexe untersucht. N2 - The present work focuses on two different reactivities of diboranes(4): a)the coordination behaviour of Lewis bases to the Lewis-acidic boron centres of symmetrical 1,2-dihalodiboranes(4) of the type B2R2X2 (R = NMe2, Mes, Dur, tBu; X = Cl, Br, I) and the unsymmetrical 1,1-dimesityl-2,2-difluorodiborane(4) F2BB(Mes)2, furthermore the properties and reactivity of the prepared sp2–sp3 diboranes(4) were investigated, and b)the oxidative addition of 1,1-dimesityl-2,2-difluorodiborane(4) towards low-valent bis(phosphine)platinum precursors. KW - Diborane KW - Bor KW - Diboran(4) KW - Addukt KW - sp2-sp3 KW - boron KW - adduct Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-136812 ER - TY - THES A1 - Claes, Christina T1 - Reduktive Synthese zu neuartigen cyclischen und acyclischen Borverbindungen T1 - Reductive synthesis of novel cyclic and acyclic boron compounds N2 - Ein Teil der hier vorliegenden Arbeit beschäftigte sich mit der Synthese und Charakterisierung neuer Boran-Addukte. Dabei wurden neben den NHCs IMe und IMeMe die Phosphane PEt3 und PMe3 als stabilisierende Lewisbasen eingesetzt. Neben dem Liganden wurde auch der borgebundene organische Rest variiert (Phenyl und n-Butyl), um deren Einfluss auf die Eigenschaften der Addukte zu untersuchen. Die NHC-stabilisierten Monoborane IMe∙B(nBu)Cl2 (99) und IMeMe∙B(Ph)Cl2 (100) konnten in guten Ausbeuten isoliert und vollständig charakterisiert werden. Zusammen mit dem bereits bekannten Addukt IMe∙B(Ph)Cl2 (98) wurden die analytischen Daten dieser drei Spezies miteinander verglichen, wobei sich die strukturellen Parameter im Festkörper stark ähneln. Die vergleichsweise lange B–CCarben-Bindungen (98: 1.621(3) Å; 99: 1.619(5) Å; 100: 1.631(3) Å) konnten hierbei als Beleg für den dativen Charakter dieser Wechselwirkungen herangezogen werden. Auch bei den Phosphan-Boran-Addukten Et3P∙B(Ph)Cl2 (112), Et3P∙B(nBu)Cl2 (113) und Me3P∙B(Ph)Cl2 (114) wurden relativ lange dative B–P-Bindungen (112: 1.987(2) Å; 113: 1.980(2) Å; 114: 1.960(3) Å) gefunden, wobei diese in Me3P∙B(Ph)Cl2 (114) deutlich kürzer ist als bei den PEt3-Addukten 112 und 113. Da die Lewisbasizität von PMe3 geringer ist als von PEt3 konnte dieser Befund auf den geringeren sterischen Anspruch von PMe3 zurückgeführt werden. Die reduktive Umsetzung der Phosphan-Boran-Addukte 112, 113 und 114 mit 1,2-Diphenyl-1,2-dinatriumethan (Na2[C14H12]) verlief in allen Fällen unselektiv und führte nicht zur Bildung eines Phosphan-stabilisierten Borirans. Das gleiche Ergebnis lieferte das NHC-stabilisierte Boran IMe∙B(Dur)Cl2. Im Gegensatz dazu konnten die Addukte 98, 99 und 100 mit NHC-Liganden und kleineren organischen Resten selektiv in die Borirane IMe∙B(Ph)(C14H12) (101), IMe∙B(nBu)(C14H12) (102) und IMeMe∙B(Ph)(C14H12) (103) durch Umsetzung mit Na2[C14H12] überführt werden. Hierbei wurden jene als racemische Gemische erhalten, wobei die Phenylgruppen am C2B-Dreiring ausschließlich trans zueinander orientiert sind. Die sterisch gehinderte Rotation um die B–CCarben-Bindung resultiert in einer Verbreiterung bzw. Aufspaltung der Signale des NHCs im 1H NMR-Spektrum. Die Strukturparameter der Molekülstrukturen im Festkörper von 101, 102 und 103 unterscheiden sich nur geringfügig. Die NHC-stabilisierten Borirane 101, 102 und 103 weisen trotz der enormen Ringspannung eine erstaunlich hohe Stabilität sogar gegenüber Luft und Wasser auf. Während gegenüber [Pt(PCy3)2] keine Reaktivität beobachtet wurde, erfolgte bei Umsetzung von IMe∙B(Ph)(C14H12) (101) mit [Pt(PEt3)3] eine langsame und unvollständige C–H-Bindungsaktivierung am NHC-Rückgrat unter Bildung des Platin(II)-Komplexes 105. Aufgrund der gehinderten Rotation um die B–CCarben-Bindung wurde hierbei ein racemisches Gemisch von jeweils zwei Rotameren erhalten, welche in den NMR-Spektren in Form zweier Signalsätze zu beobachten waren. Die chemische Verschiebung des platingebundenen Hydrid-Signals bestätigt zudem eine vinylartige Natur des Boriran-Liganden mit starkem trans-Effekt. Die Konstitution von 105 im Festkörper konnte durch eine Einkristallröntgenstrukturanalyse belegt werden, wobei die geringe Qualität des Datensatzes keine Strukturdiskussion zulässt. Erwartungsgemäß ging das Boriran IMeMe∙B(Ph)(C14H12) (103) mit [Pt(PEt3)3] keine Reaktion ein, da der IMeMe-Ligand keine C–H-Einheiten im NHC-Rückgrat aufweist. Basenfreie Borirane konnten hingegen weder durch Basenabstraktion aus dem NHC-stabilisierten Boriran 101 mit Hilfe starker Lewissäuren (PPB, B(C6F5)3, AlCl3 oder [Lu∙BCl2][AlCl4]), noch durch Reduktion einfacher Dihalogenborane mit Na2[C14H12] realisiert werden. Während die Umsetzungen mit Lewissäuren entweder mit keiner Reaktion oder mit Zersetzung verbunden waren, bestand eine Schwierigkeit des reduktiven Ansatzes in der Wahl des Lösungsmittels, in welchem das Reduktionsmittel generiert wurde. Die meisten polaren Lösungsmittel führten hierbei direkt zur Zersetzung des Borans und lediglich DME erwies sich als geeignet. Jedoch wurde bei der Umsetzung von DurBCl2 mit Na2[C14H12] in DME kein Boriran, sondern das Borolan 109 mit syndiotaktisch angeordneten Phenylgruppen gebildet. Die Molekülstruktur im Festkörper offenbarte hierbei ein planar-koordiniertes Boratom. Ein weiterer Fokus dieser Arbeit lag auf der Synthese und Reaktivität neuer Phosphan-stabilisierter Diborene. Hierbei konnte zunächst gezeigt werden, dass das sterisch anspruchsvolle Bisphosphan dppe mit ( B(Mes)Br)2 (115) bei Raumtemperatur kein Addukt ausbildet. Bei –40 °C konnten neben freiem dppe auch ein Mono- und ein Bisaddukt im 31P NMR-Spektrum nachgewiesen werden. Im Gegensatz dazu lieferte die Umsetzung von 115 mit dmpe einen nahezu unlöslichen Feststoff, welcher sich in nachfolgenden Reduktionsversuchen als ungeeignet erwiesen hat. Deshalb wurde eine Eintopfsynthese entwickelt, mit der 115 mit KC8 in Gegenwart der jeweiligen Bisphosphane zu den cis-konfigurierten Diborenen (=BMes)2∙dmpe (123), (=BMes)2∙dmpm (126) und (=BMes)2∙dppm (127) umgesetzt werden konnte. Ebenfalls konnte ( B(Mes)Cl)2 (124) selektiv zum Diboren 123 reduziert werden, wobei kein signifikanter Unterschied in Selektivität oder Reaktionszeit beobachtet wurde. Das trans-konfigurierte Diboren (=B(Mes)∙PMe3)2 (122) wurde hingegen durch Reduktion des einfach-stabilisierten Diborans ( B(Mes)Br)2∙PMe3 (119) dargestellt. Anhand der Molekülstrukturen von 122, 123, 126 und 127 im Festkörper konnten die Abstände der B=B-Doppelbindungen (1.55(2)-1.593(2) Å) ermittelt werden. Dabei sind die Boratome nahezu planar von ihren Substituenten umgeben. Durch Analyse der P1–B1–B2-Winkel konnte zudem gezeigt werden, dass das trans-konfigurierte Diboren (=B(Mes)∙PMe3)2 (122) (116.6(3)°) und das cis-konfigurierte Diboren (=BMes)2∙dmpe (123) (118.7(1)°) nahezu ungespannte Spezies darstellen, wohingegen die Fünfring-Systeme (=BMes)2∙dmpm (126) (110.6(2)°) und (=BMes)2∙dppm (127) (110.4(1)°) eine signifikante Ringspannung aufweisen. Mit Hilfe von NMR-Spektroskopie, Cyclovoltammetrie, DFT-Rechnungen und UV-Vis-Spektroskopie konnte der Einfluss der Konfiguration, der Ringgröße und der Lewisbase auf die elektronischen Eigenschaften des Diborensystems untersucht werden. Hierbei wurde bei nahezu allen Parametern eine Tendenz in der Reihenfolge 122, 123, 126 zu 127 beobachtet. 127 nimmt aufgrund der phosphorgebundenen Phenyl-Substituenten eine gesonderte Rolle im Hinblick auf den HOMO-LUMO-Abstand ein, und es wurde für dieses Diboren erstmals eine Reduktionswelle im Cyclovoltammogramm beobachtet. Einige NMR-Signale der Diborene 122, 123, 126 und 127 wurden aufgrund des Spinsystems höherer Ordnung als virtuelle Signale detektiert, bei denen bei geeigneter Auflösung bzw. Signalüberlappung nur die Summe an Kopplungskonstanten ausgewertet werden konnte. Das HOMO ist bei allen Diborenen auf die B–B-Bindung lokalisiert und weist -Charakter auf. Versuche, analoge Diborene mit den Lewisbasen dppe, dppbe, dmpbe, (-PR2)2 (R = p MeOC6H4) oder HP(o-Tol)2 zu realisieren und vollständig zu charakterisieren, schlugen fehl. Lediglich die Diborene (=BMes)2∙dppe (132) und (=BMes)2∙dppbe (133) konnten spektroskopisch nachgewiesen werden. Auch durch reduktive Kupplung von Monoboranen mit chelatisierenden Phosphanen wurde versucht, Diborene darzustellen. Hierzu wurde zunächst die Adduktbildung von Monoboranen und Bisphosphanen untersucht. Während mit dppm kein Addukt nachgewiesen werden konnte, lieferte die Umsetzung von dmpe mit MesBBr2 das Bisaddukt 148. Als Nebenprodukt dieser Reaktion wurde jedoch auch das Boreniumkation 149 beobachtet, welches sich nicht zur reduktiven Kupplung zum Diboren 123 eignet. Auch bei der Umsetzung von MesBCl2 mit dmpe wurde neben dem Bisaddukt 151 eine zu 149 analoge Spezies gebildet. Die nachfolgende Reduktion von 148 mit KC8 in Benzol war mit der Bildung des Diborens (=BMes)2∙dmpe (123) verbunden, welches allerdings nicht isoliert werden konnte. Auch die Variation des Lösungsmittels, des Reduktionsmittels, der Zugabe, des organischen Restes und der Lewisbase ermöglichte keine selektivere Umsetzung bzw. eine Isolierung des Diborens. Im Gegensatz dazu konnte das Diboren 123 durch reduktive Kupplung des Bisadduktes 151 mit KC8 in Benzol dargestellt und isoliert werden. Im Vergleich zur Synthese von 123 durch Reduktion von ( B(Mes)Br)2 (115) benötigt dieser Ansatz jedoch deutlich längere Reaktionszeiten (zwanzig Tage statt einen Tag) und lieferte schlechtere Ausbeuten (31 % statt 54 %). Durch Umsetzung mit Wasser konnte (=B(Mes)∙PMe3)2 (122) selektiv in das Hydrolyseprodukt 154 überführt werden. Dieses Produkt konnte, aufgrund geringer Spuren Wasser im Reaktionsgemisch, ebenfalls durch freeze-pump-thaw Zyklen einer Lösung von 122 erhalten werden. Die Identität von 154 als gemischtes sp2-sp3-Diboran konnte mit Hilfe von NMR-Spektroskopie eindeutig erklärt werden. Zusätzlich konnten zwei weitere mögliche Zersetzungsprodukte durch Einkristallröntgen-strukturanalysen als ( B(Mes)(H)∙PMe3)2 (156) und MesB(OH)2 (155) identifiziert werden. Die Versuche die Liganden der Diborene (=B(Mes)∙PMe3)2 (122) und (=BMes)∙dppm (127) durch Mono- oder Bisphosphane bzw. IMe auszutauschen verlief nur für 122 mit IMe erfolgreich zum Diboren (=B(Mes)∙IMe)2 (49). Auch Cycloadditionsreaktionen unter Beteiligung der B=B-Doppelbindung wurden im Detail untersucht. Es hat sich jedoch gezeigt, dass weder eine [4+2]-Cycloaddition von Isopren (mit 122) oder Cyclopentadien (mit 122 oder 123), noch eine [2+2]-Cycloaddition von Acetylen (mit 127), 2-Butin (mit 123 oder 127), Bis(trimethylsilyl)acetylen (mit 122), Di-tert-butyliminoboran (mit 122), Acetonitril (mit 122), Cyclohexen (mit 122), Aceton (mit 127) oder Methacrolein (mit 123 oder 127), sowie eine [2+1]-Cycloaddition von Kohlenstoffmonoxid (mit 123 oder 127) oder Ethylisonitril (mit 127), noch eine [3+2]-Cycloaddition von Trimethylsilylazid (mit 123 oder 127) möglich ist. Lediglich mit 2-Butin konnte eine selektive Reaktion von (=B(Mes)PMe3)2 (122) zum Phosphan-stabilisierten 1,3-Diboreten 157 herbei geführt werden. Diese ungewöhnliche Reaktion beinhaltet formal die Spaltung der C≡C-Dreifachbindung, wobei als möglicher Reaktionsmechanismus eine [2+2]-Cycloaddition zum 1,2-Diboreten mit nachfolgender Isomerisierung zum 1,3-Derivat 157 postuliert werden konnte. DFT-Rechnungen an 157 zufolge besitzt das HOMO  artigen Charakter und ist über die beiden Boratome und die CMe-Einheit delokalisiert. Demnach konnte 157 als homoaromatisches System mit zwei  Elektronen identifiziert werden, was durch die negativen NICS-Werte (NICS(0) = –20.62; NICS(1) = –6.27; NICS(1)` = –14.59) und den unterschiedlich langen B–C-Bindungen des Vierrings in der Molekülstruktur im Festkörper (B–C1: 1.465(4) bzw. 1.486(4) Å; B–C3: 1.666(4) bzw. 1.630(4) Å) weiter bestätigt wurde. Eine Einkristallröntgen-strukturanalyse belegte zudem eine Butterfly-Struktur des 1,3-Diboretens 157 mit einem Kippwinkel  = 34.4°. Die Bindung zwischen Phosphoratom und dem Kohlenstoffatom im Vierring liegt mit 1.759(2) Å im Bereich einer dativen Bindung. Durch Basenabstraktion mit PPB konnte das stabilisierte Diboreten 157 in das basenfreie 1,3-Diboreten 164 überführt werden, welches jedoch nicht isoliert werden konnte. Die NMR-spektroskopischen Parameter von 164 belegen hingegen eindeutig dessen Natur. Neben Cycloadditionsreaktionen wurde auch das Redoxverhalten des Diborens (=BMes)2∙dppm (127) untersucht. So verlief die Umsetzung von 127 mit Iod hochselektiv zu einer in Lösung vermutlich diamagnetischen Spezies (NMR-aktiv/ESR-inaktiv). Durch Bestimmung der Molekülstruktur im Festkörper stellte sich jedoch heraus, dass diese Umsetzung zu einer Oxidation der elektronenreichen B=B-Doppelbindung unter Bildung des Radikalkations 166 führte (B–B: 1.633(3) Å). Somit wurde eine signifikante Diskrepanz zwischen kristallographischen und spektroskopischen Befunden beobachtet, weshalb die Natur des Reaktionsproduktes in Lösung nicht eindeutig ermittelt werden konnte. Aus diesem Grund wurde (=BMes)2∙dppm (127) auch mit dem Einelektronenoxidationsmittel [Cp2Fe][PF6] umgesetzt und ESR-spektroskopisch analysiert. Hierbei konnte im ESR-Spektrum das typische 1:2:1-Triplett bei giso = 2.0023 mit A(31P) = 21 G (58 MHz) für ein derartiges Radikalkation detektiert werden. Die Reduktion von 127 mit Lithium und Natriumnaphthalid lieferte entweder keinen Umsatz (Lithium) oder eine unselektive Zersetzung des Diborens (Natriumnaphthalid). Die Umsetzung mit KC8 verlief jedoch äußerst selektiv zu einer neuen borhaltigen Spezies (11B:  = 22.4 ppm; 31P:  = 18.6 ppm), welche sich in Anwesenheit des Reduktionsmittels jedoch als nicht stabil erwies und somit nicht isoliert werden konnte. Auch der Versuch durch einen Kationenaustausch mit Li[BArCl4] ein stabileres Produkt zu erhalten schlug fehl. Im Gegensatz dazu führte die Umsetzung der Diborene (=B(Mes)∙PMe3)2 (122) und (=BMes)2∙dppm (127) mit Cu(I)Cl zur Bildung der Kupferkomplexe 167 und 168, deren Molekülstrukturen im Festkörper vergleichbar zu dem analogen NHC-stabilisierten Kupferkomplex 63 sind (B–B: 1.626(3) Å (167); 1.628(3) Å (168); 1.633(4) Å (63)). Beide Spezies zeigen hierbei erwartungsgemäß ein interessantes photophysikalisches Verhalten, wobei dieses lösungsmittelunabhängig ist und Fluoreszenzprozesse für die Emission verantwortlich sind. Durch analoge Umsetzung von 127 mit Ag(I)Cl konnte der entsprechende Silberkomplex 169 generiert und NMR-spektroskopisch nachgewiesen werden (11B:  = 26.7 ppm; 31P:  = 5.4 ppm). 169 erwies sich jedoch als nicht stabil und zersetzte sich im Verlauf der Aufarbeitung zu der bekannten tetranukleare Silberverbindung 170. Im Rahmen der Reaktivitätsstudien wurden die Diborene 122, 123 und 127 auch noch mit einer Reihe weiterer Reagenzien wie Catecholboran (mit 122 oder 127), THF∙BH3 (mit 127), Brom (mit 127), Iodchlorid (mit 123), ZnCl2 (mit 127), GaCl3 (mit 127), Na[BArF4] (mit 122), ( SPh)2 (mit 127), HCl (127), Wasserstoff (mit 122), Natriumhydrid (mit 127) und Methanol (mit 127) versetzt. Hierbei konnte entweder keine Reaktion oder Zersetzung beobachtet werden. Lediglich bei der Umsetzung von 127 mit Methanol konnte das Zersetzungsprodukt Mesityldimethoxyboran (171) eindeutig charakterisiert werden. N2 - One part of the present thesis focused on the synthesis and characterization of novel Lewis base borane adducts. In addition to NHCs (IMe, IMeMe), the monophosphines PEt3 and PMe3 were used as the stabilizing Lewis base. However, not only the Lewis base was varied, but also the boron-bound organic substituent (phenyl, n-butyl) in order to evaluate its influence on the electronic structure of the adducts. Thus, the NHC-stabilized boranes IMe∙B(nBu)Cl2 (99) und IMeMe∙B(Ph)Cl2 (100) were isolated in good yields and could be fully characterized. Including the known adduct IMe∙B(Ph)Cl2 (98), a reasonable comparison of the analytical data of the three adducts became feasible. While the structural parameters of 98, 99 and 100 in the solid state strongly resemble each other, rather long B Ccarbene bonds (98: 1.621(3) Å; 99: 1.619(5) Å; 100: 1.631(3) Å) illustrated the dative character of these interactions. Similarly, the phosphine borane adducts Et3P∙B(Ph)Cl2 (112), Et3P∙B(nBu)Cl2 (113), and Me3P∙B(Ph)Cl2 (114) showed quite long dative B–P bonds (112: 1.987(2) Å; 113: 1.980(2) Å; 114: 1.960(3) Å), which is however significantly shorter in Me3P∙B(Ph)Cl2 (114) as those of the PEt3 adducts 112 and 113. Since the lewis basicity of PMe3 is lower than that of PEt3, this finding is presumably associated with the smaller sterical demand of the PMe3 ligand. Attempts to reduce the phosphine borane adducts 112, 113 and 114 by Na2[C14H12] consistently proceeded with low selectivities and did not result in the generation of borirane species. The same result was obtained for the reduction of the NHC-stabilized borane IMe∙B(Dur)Cl2. By contrast, the adducts 98, 99 and 100 featuring NHC ligands in combination with smaller organic moieties were successfully converted selectively into the boriranes IMe∙B(Ph)(C14H12) (101), IMe∙B(nBu)(C14H12) (102) and IMeMe∙B(Ph)(C14H12) (103) by reaction with Na2[C14H12]. Here, the boriranes were isolated as racemic mixtures with trans-configured phenyl groups at the C2B rings. Due to hindered rotation at the B Ccarbene-bond, the signals of the NHC in the 1H NMR-spectrum broadened and split, respectively. The molecular structures of 101, 102 and 103 in the solid state were also determined by X-ray diffraction, and were shown to differ only marginally. Despite the presence of significant molecular ring strain, the NHC-stabilized boriranes 101, 102 and 103 are surprisingly stable towards air and moisture. While no reaction was observed with [Pt(PCy3)2], treatment of IMe∙B(Ph)(C14H12) (101) with [Pt(PEt3)3] resulted in a slow and incomplete C–H bond activation process at the NHC backbone to afford the platinum(II) complex 105. Due to hindered rotation towards the B–Ccarbene bond, a racemic mixture of two rotameres was observed, which showed two sets of signals in the NMR spectra. In the 1H NMR spectrum the chemical shift of the platinum-bound hydride of 105 further confirmed the vinyl-like nature of the borirane ligand featuring a trans-effect. The identity of 105 was also substantiated in the solid state X-ray diffraction, while the poor quality of the crystallographic data prevented any discussion of the structural parameters. As expected, IMeMe∙B(Ph)(C14H12) (103) did not react with [Pt(PEt3)3], because of the lack of C–H-moieties within the NHC backbone. By contrast, the realization of base-free boriranes either by Lewis base abstraction reactions from the NHC-stabilized borirane 101 using strong Lewis acids (PPB, B(C6F5)3, AlCl3, [Lu∙BCl2][AlCl4]) or by direct reduction of free dihaloboranes with Na2[C14H12] was not successful. While the reactions with Lewis acids either suffered any visible conversion or showed complete decomposition of the borirane precursors, the reductive approach was hampered by the choice of an adequate reaction medium in which the reductant can be generated. Thus, most of the suitable polar solvents reacted with the free boranes themselves, and only DME appeared to be practical. However, reaction of DurBCl2 with Na2[C14H12] in DME did not afford a borirane species. Instead, borolane 109 with syndiotactically-arranged phenyl groups was formed, which was fully characterized in solution, and in the solid state. Thereby a trigonal-planar boron atom was observed. Another main part of the present thesis dealt with the synthesis and reactivity of phosphine-stabilized diborenes. Initially, it was demonstrated that the sterically demanding diphosphine dppe does not form an adduct with ( B(Mes)Br)2 (115) at room temperature, while at –40 °C dppe, a mono- and a bisadduct were evident in the 31P NMR spectrum. By contrast, reaction of 115 with dmpe provided an almost insoluble solid, which however, proved unsuitable in subsequent reduction experiments. Consequently, a simple one-pot protocol was developed, which enabled the isolation of the cis-configured diborenes (=BMes)2∙dmpe (123), (=BMes)2∙dmpm (126) and (=BMes)2∙dppm (127) by reduction of 115 with KC8 in the presence of the respective diphosphines. Also ( B(Mes)Cl)2 (124) could be reduced selectively to diborene 123, whereat no significant difference was observed in the selectivity or the reaction time. The related trans-configured diborene (=B(Mes)∙PMe3)2 (122) was realized by reduction of the mono-stabilized diborane ( B(Mes)Br)2∙PMe3 (119) with KC8 in the presence of an excess PMe3. Analysis of the structural parameters of 122, 123, 126 and 127 in the solid state revealed typical B–B distances (1.55(2)-1.593(2) Å) for B=B double bond systems. Thereby all boron atoms are effectively planar. In addition, large P1–B1–B2 bond angles for the trans-configured diborene 122 (116.6(3)°) and the cis-configured diborene 123 (118.7(1)°) suggested rather unstrained species, while the five membered ring systems 126 (110.6(2)°) and 127 (110.4(1)°) feature significant ring strain. The influence of the configuration, the ring size, and the Lewis base on the electronic properties of the diborene systems was further evaluated in detail by NMR spectroscopy, cyclic voltammetry, DFT calculations, and UV-visible spectroscopy. Here, a tendency was observed in the sequence 122, 123, 126 to 127 for all parameters. Thereby 127 is an exceptional compound, due to the phosphorous-bound phenyl moieties, in regard to the HOMO-LUMO gap and the first reduction wave was observed for this diborene in a cyclic voltammogram. Some NMR signals of the diborenes 122, 123, 126 and 127 were detected as virtual signals as a result of the spin systems. Here, only the sum of the coupling constant can be determined by a suitable resolution of the signals. The HOMO of all diborenes is located on the B–B-bond and possesses  character. All attempts to prepare and fully characterize analogous diborenes featuring the Lewis bases dppe, dppbe, dmpbe, ( PR2)2 (R = p-MeOC6H4), and HP(o-Tol)2 failed so far, and only the diborenes (=BMes)2∙dppe (132) and (=BMes)2∙dppbe (133) could be generated and identified spectroscopically in solution. Subsequently, we studied an alternative approach to realize diborenes by reductive coupling of monoboranes with chelating phosphine ligands. Initially, we focused on the adduct formation process between monoboranes and diphosphines. While no adduct was formed with dppm, reaction of MesBBr2 with dmpe afforded the bisadduct 148. However, the borenium cation 149 was observed as a side product of this transformation, which itself has proven unsuitable for the reductive coupling to yield diborene 123. Similarly, reaction of MesBCl2 with dmpe afforded a related cationic species in addition to the bisadduct 151. Subsequent reduction of 148 with KC8 in benzene led to the formation of (=BMes)2∙dmpe (123), which however, could not be isolated by this route. Variation of the solvent, the reductant, the order of addition, the organic moiety, and the Lewis base exerted no influence on the selectivity of the reduction process or the possibility of isolation of the diborene. Only reduction of 151 with KC8 in benzene facilitated the isolation of pure (=BMes)2∙dmpe (123). However, the reductive coupling approach required significantly longer reaction times (twenty days) and provided significantly lower yields (31 %) than the synthesis of 123 by reduction of ( B(Mes)Br)2 (one day; 54%). Reaction of (=B(Mes)∙PMe3)2 (122) with water selectively afforded the hydrolysis product 154, which had already been observed after a few freeze-pump-thaw cycles, due to the presence of trace amounts of water in the reaction mixture. The nature of 154 as mixed sp2-sp3 diborane was clearly verified by NMR spectroscopy. Two other possible decomposition products were also identified by X-ray diffraction as ( B(Mes)(H)∙PMe3)2 (156) and MesB(OH)2 (155). Experiments of ligand exchange of (=B(Mes)∙PMe3)2 (122) and (=BMes)∙dppm (127) with mono-, diphosphines or IMe are only successful for 122 with IMe to the diborene (=B(Mes)∙IMe)2 (49). Subsequently, cycloaddition reactions involving the B=B double bond system were studied in detail. Here, we could show that neither [4+2]-cycloaddition with isoprene (122) or cyclopentadiene (122/123), [2+2]-cycloaddition with acetylene (127), 2-butyne (123/127), bis(trimethylsilyl)acetylene (122), di-tert-butyliminoborane (122), acetonitrile (122), cyclohexene (122), acetone (127), or methacrolein (123/127), [2+1]-cycloaddition with CO (123/127) or ethylisonitrile (127), nor [3+2]-cycloaddition reactions with trimethylsilylazide (123/127) are feasible. Only 2-butyne showed a selective reaction when treated with (=B(Mes)∙PMe3)2 (122) to afford the phosphine-stabilized 1,3-diboretene 157. This uncommon transformation formally involves cleavage of the C≡C-triple bond. A plausible mechanism combines the initial formation of the 1,2 diboretene and subsequent isomerisation to the more stable 1,3 diboretene derivative 157. According to DFT calculations, 157 possesses a -type HOMO, which is delocalized over the two boron atoms and the CMe moiety. Consequently, 157 features a homoaromatic system with two -electrons, which was verified by its negative NICS values (NICS(0) = –20.62; NICS(1) = –6.27; NICS(1)` = –14.59) and the differences in the B–C-bond lengths in the molecular structure in the solid state (B–C1: 1.465(4), 1.486(4) Å; B–C3: 1.666(4), 1.630(4) Å). Furthermore, an X-ray diffraction study on 157 revealed a butterfly structure with a tilt angle  of 34.4°. The bond between the phosphorous and the carbon atom in the ring possesses dative character (1.759(2) Å). Subsequent reaction of 157 with PPB enabled the generation of the base-free 1,3-diboretene 164, which could not be isolated. However, the NMR spectroscopic parameters of 164 clearly verified its base-free nature. In addition to cycloaddition reactions, we also studied the redox properties of (=BMes)2∙dppm (127). Thus, reaction of 127 with iodine proceeded highly selective to presumably afford a diamagnetic species in solution (NMR-active/EPR-inactive). However, determination of the molecular structure showed the presence of the radical cation 166 (B–B: 1.633(3) Å), which has been formed by one-electron oxidation of the B=B double bond of 127. Thus, we observed a significant discrepancy between the spectroscopic and the crystallographic results, for which reason the nature of the primary reaction product in solution remains unknown so far. Accordingly, 127 was also oxidized selectively by reaction with the one-electron oxidant [Cp2Fe][PF6], while the reaction mixture was characterized by EPR spectroscopy. Here, a typical 1:2:1 triplet at giso = 2.0023 with A(31P) = 21 G (58 MHz) was found in the EPR spectrum, which strongly suggested the generation of a radical cationic species (172). Reduction of 127 by lithium or sodium naphthalenide did not afford either a reaction (lithium) or an unselective decomposition of the diborene (sodium naphthalenide). Thus, reduction with KC8 initially indicated a selective transformation to afford a new boron-containing species (11B:  = 22.4 ppm; 31P:  = 18.6 ppm), which however, readily decomposed during work-up in the absence of the reductant. Also the attempt to stabilize the reduction product by exchange of the cation with Li[BArCl4] was not successful. By contrast, reaction of (=B(Mes)∙PMe3)2 (122) and (=BMes)2∙dppm (127) with Cu(I)Cl led to the formation of the copper complexes 167 and 168, respectively, which feature solid state structures comparable to that of the analogous NHC-stabilized copper diborene complex 63 (B–B: 1.626(3) Å (167); 1.628(3) Å (168); 1.633(4) Å (63)). As expected, both species exhibit interesting photophysical properties, which caused by fluorescence processes. The photophysical data of both complexes are independent from the solvent and the emission is a result of fluorescent processes. The analogous silver complex 169 could also be generated by reaction of 127 with Ag(I)Cl and identified spectroscopically in solution (11B:  = 26.7 ppm; 31P:  = 5.4 ppm). However, all attempts to isolate this species failed, and 169 consistently decomposed during work-up to afford the known tetranuclear silver complex 170. As part of the reactivity studies, diborenes 122, 123 and 127 were also reacted with numerous other reagents such as catecholborane (122/127), THF∙BH3 (127), bromine (127), iodine monochloride (123), ZnCl2 (127), GaCl3 (127), Na[BArF4] (122), ( SPh)2 (127), hydrogen (122), HCl (127), NaH (127) and MeOH (127). However, either no reaction or decomposition of the diborenes was noticed. Only for the reaction of 127 with MeOH the decomposition product MesB(OMe)2 (171) could be assigned. KW - Bor KW - Lewis-Addukt KW - Reduktion KW - Phosphane KW - NHCs KW - Homoaromatisches System KW - Diborene KW - Borirane Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-135558 ER - TY - THES A1 - Schäfer, Marius T1 - Darstellung und Reaktivität von Iminoboranen sowie deren Einsatz bei der Synthese von Azaborininen T1 - Synthesis and Reactivity of Iminoboranes and their Usage in the Synthesis of Azaborinines N2 - Die Dissertation befasst sich mit der Darstellung von Iminoboranen sowie deren Verwendung bei der Rhodium-vermittelten Synthese von Azaborininen. N2 - The first examples of adducts of cyclic alkyl(amino) carbenes (cAACs) and N-heterocyclic carbenes (NHCs) with iminoboranes have been synthesized and fully characterized. Furthermore new synthetic route to functionalized 1,2 and 1,4-azaborinines has been developed utilizing a [2+2]/[2+4] cycloaddition reaction of di-tert-butyliminoborane and the unsymmetric (tert-butylimino)mesityborane with a series of alkynes in presence of the rhodium complex [{RhCl(PiPr3)2}]2. KW - Iminoborane KW - Azaborinine Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-136959 ER - TY - THES A1 - Schneider, Christoph T1 - Synthese und Reaktivität von Lewis-basischen Carbonylkomplexen der Gruppe 8 T1 - Synthesis and reactivity of Lewis basic group 8 carbonyle complexes N2 - Im Rahmen der vorliegenden Arbeit wurden Untersuchungen zur Lewis-Basizität von Carbonylkomplexen der Gruppe 8 durchgeführt. Hierzu wurde eine Reihe von Komplexen mit GaCl3 als Lewis-Säure zu den entsprechenden Lewis-Addukten umgesetzt. Durch Analyse der experimentell ermittelten spektroskopischen und strukturellen Parameter sowie auf der Basis von Transferexperimenten wurde die relative Lewis-Basizität dieser Verbindungen zueinander bestimmt. Durch Umsetzung von Eisenpenta-, -tetra- und -tricarbonylkomplexen mit den sterisch anspruchslosen Liganden PMe3, IMe und CNtBu mit der Lewis-Säure GaCl3 wurde eine Serie von GaCl3-Addukten dargestellt und diese durch NMR- und IR-Spektroskopie sowie Röntgenstruktur- und Elementaranalyse vollständig charakterisiert. Während die Eisentetracarbonyladdukte 36-38 die gleiche cis-Geometrie aufweisen ist die Adduktbildung bei den Eisentricarbonylen 43-45 mit Konformationsänderungen in den Addukten 46, 48 und 49 verbunden. Hierbei zeigen die GaCl3-Addukte 46, 48 und 49 drei unterschiedliche Geometrien. Vergleicht man die Fe-Ga-Bindungslängen beziehungsweise die Winkelsummen der ClGa-Cl-Winkel, so zeichnet sich ein Trend für die Lewis-Basizität in Abhängigkeit von der Natur der σ-Donorliganden ab. Demnach weisen die IMe-substituierten Eisencarbonyle im Vergleich zu den PMe3- beziehungsweise tBuNC-substituierten Analoga die höchste Lewis-Basizität auf. Zudem konnte belegt werden, dass die Lewis-Basizität auch durch die Anzahl an σ-Donorliganden im Komplex erhöht wird. Die schrittweise Erhöhung des sterischen Anspruchs der Liganden in den Eisencarbonylen erschwert die Adduktbildung und äußert sich auch in der trans-ständigen Anordnung der Lewis-Säure. Die Gegenwart von zwei sterisch anspruchsvollen Liganden verhindert indes die Adduktbildung mit GaCl3 und es kommt zu einer Disproportionierung der Lewis-Säure in eine kationische [GaCl2]+-Einheit, welche an das Eisenzentrum koordiniert und eine anionische [GaCl4]--Einheit, die als Gegenion fungiert. Neben dem elektronischen und sterischen Einfluss der Liganden auf die Lewis-Basizität und die Adduktbildung in Eisencarbonylen wurde auch der Einfluss des Zentralatoms untersucht. Hierzu wurden analoge Ruthenium- und Osmiumcarbonyle dargestellt und mit der Lewis-Säure GaCl3 umgesetzt. Hierbei wurde die Ligandensphäre im Vergleich zu den Eisencarbonylen nicht verändert. Um die M-Ga-Bindungsabstände untereinander vergleichen zu können, wurde aufgrund der unterschiedlichen Kovalenzradien der Zentralmetalle der relative Abstand (drel) herangezogen, wodurch die relativen Lewis-Basizitäten abgeschätzt werden konnten. Hierbei konnte der gleiche Trend wie bei den Eisencarbonyladdukten beobachtet werden, dass mit steigender Anzahl an σ-Donorliganden die Lewis-Basizität erhöht wird. Weiterhin liegt aufgrund der kleineren drel-Werte die Vermutung nahe, dass sowohl Ruthenium-, als auch Osmiumcarbonyle Lewis-basischer sind als die entsprechenden Eisencarbonyle. Diese Befunde wurden weiterhin durch Transferexperimente untermauert. Hierzu wurden verschiedene GaCl3-Addukte mit Carbonylkomplexen in CD2Cl2 umgesetzt und eine eventuelle Übertragung der Lewis-Säure GaCl3 NMR-spektroskopisch verfolgt. Hierdurch konnte gezeigt werden, dass die Lewis-Säure GaCl3 jeweils erfolgreich auf die Komplexe mit der höheren Anzahl an σ-Donorliganden übertragen wird, was deren höhere Lewis-Basizität belegt. Zudem konnte bestätigt werden, dass Ruthenium- und Osmiumcarbonyle Lewis-basischer als die analogen Eisencarbonyle sind, zwischen Ruthenium und Osmium bei gleicher Ligandensphäre jedoch kaum Unterschiede in der Lewis-Basizität vorgefunden werden. Zusätzlich wurden auch ausgewählte Gruppe 8-Carbonyladdukte mit dem literaturbekannten Platinkomplex [(Cy3P)2Pt] (7) umgesetzt. Hierbei wurde in allen Fällen ein Transfer von GaCl3 auf die Platinverbindung beobachtet, welche demnach die stärkste Lewis-Base in dieser Studie darstellt. Neben einkernigen GaCl3-Addukten wurden auch dinukleare Gruppe 8-Carbonyle dargestellt. Hierzu wurde anstelle von GaCl3 die Lewis-Säure Ag+ eingesetzt, was zur Bildung der zweikernigen Addukte 83-86 führte. Hierdurch konnte gezeigt werden, dass neben den Hauptgruppenmetallen wie Gallium auch Gruppe 8-Addukte mit Übergangsmetallen zugänglich sind. Des Weiteren konnten die zweikernigen Komplexe 87-89 mit chelatisierenden beziehungsweise verbrückenden Liganden dargestellt und deren Reaktivität gegenüber GaCl3 untersucht werden. Der Unterschied zwischen diesen beiden Ligandenarten besteht darin, dass der M-M-Abstand bei Verwendung von chelatisierender Liganden eher gering ist, weshalb hier immer noch M-M-Wechselwirkungen möglich sind, während diese bei Verwendung eines Brückenliganden verhindert werden. Ausgewählte Gruppe 8-Carbonyle wurden auch in Bezug auf ihre katalytische Aktivität in der Hydrosilylierung von Benzaldehyd (90) mit Phenylsilan (91) untersucht. Hierbei konnte gezeigt werden, dass NHC-substituierte Carbonylkomplexe einen höheren Umsatz ermöglichen als Phosphan- oder Isocyanid-substituierte Verbindungen. Zudem wurde deutlich, dass die analogen Ruthenium- und Osmiumcarbonyle eine wesentlich geringere Aktivität bei der Hydrosilylierung aufweisen als die Eisenanaloga, trotz einer höheren Lewis-Basizität. Abschließend konnten Halogenidabstraktionsreaktionen exemplarisch an den GaCl3-Addukten 46, 66 und 76 durch Umsetzung mit GaCl3 demonstriert werden, wodurch die kationischen dimeren Komplexe 104-106 erhalten wurden. In diesen Komplexen sind formal zwei [(Me3P)2(OC)3M-GaCl2]+-Einheiten durch Ga-Cl-Wechselwirkungen miteinander verbrückt. Im Gegensatz dazu führte die Umsetzung von 46, 66 und 76 mit Na[BArCl4] (101) zu keiner Chloridabstraktion. Stattdessen konnte eine Verbrückung zweier GaCl3-Adduktfragmente durch zwei Natriumkationen beobachtet werden. N2 - This work describes a detailed study on the Lewis basicity of group 8 carbonyl complexes. Thus, a variety of carbonyl complexes was treated with GaCl3 as Lewis acid to afford the corresponding Lewis adducts. Based on the analysis of spectroscopic and structural parameters of these adducts as well as on transfer experiments it was possible to evaluate the relative Lewis basicities of the metal carbonyl complexes. The reaction of iron penta-, tetra- and tricarbonyl complexes with the sterically less demanding ligands PMe3, IMe and tBuNC with the Lewis acid GaCl3 yielded a series of GaCl3 adducts, which could be fully characterized by NMR- and IR-spectroscopy, as well as X-ray diffraction and elemental analysis. While the three iron tetracarbonyl adducts 36-38 adopt the same cis geometry, adduct formation of the iron carbonyl complexes 43-45 entails a conformational change in the adducts 46, 48 and 49. Here, different geometries were observed. Comparison of the Fe-Ga bond lengths and the sum of the Cl-Ga-Cl angles of the adducts revealed a clear trend for the Lewis basicity depending on the nature of the σ-donor ligand. Thus, IMe substituted complexes showed the greatest Lewis basicity as compared to their PMe3 and tBuNC substituted analogs. In addition, the more σ-donor ligands are present in the iron carbonyls, the higher their Lewis basicity. Stepwise increase of the steric demand of the σ-donor ligands makes the adduct formation more difficult, which is illustrated in a trans position of the GaCl3. The presence of two bulky ligands fully hampered the formation of simpler GaCl3 adducts. Instead disproportion reactions of the Lewis acid into cationic [GaCl2]+ and anionic [GaCl4]- unit took place, with the [GaCl2]+ fragment coordinated to the iron center and [GaCl4]- as counterion. In addition to the electronic and steric influences of the ligands on the Lewis basicity and the adduct formation process of iron carbonyl complexes, the influence of the central atom was also investigated. To this end, analogous ruthenium- and osmium carbonyl complexes were prepared and treated with GaCl3, while the ligand sphere was retained with respect to the iron carbonyl complexes. To enable a direct comparison of the M-Ga bond distances, the relative distance (drel) was employed, which accounts for the different covalent radii of the metal centers. Accordingly, the relative Lewis basicity of the different complexes could be evaluated. Here, the same trend as observed for the iron carbonyl complexes was revealed: the more σ-donor ligands are present, the higher the Lewis basicity. Also, the relativly small drel-values of the ruthenium- and osmium carbonyl complexes suggested a higher Lewis basicity as compared to the corresponding iron carbonyl complexes. These results were clearly validated by transfer experiments. In general, several GaCl3 adducts were reacted with carbonyl complexes in CD2Cl2 while a possible transfer of the Lewis acid GaCl3 was monitored by NMR spectroscopy. The results showed that the Lewis acid GaCl3 is transfered always to the complex with a higher number of σ-donor ligands, thus verifying the higher Lewis basictiy of the latter complexes. In addition, the experiments also showed that ruthenium- and osmium carbonyl complexes are more Lewis basic than analogous iron carbonyl complexes while ruthenium and osmium feature a similar Lewis basicity. Additionally, transfer experiments between group 8 carbonyl adducts and the well-known Lewis base [(Cy3P)2Pt] (7) were carried out, which highlighted the strong Lewis basic character of the platinum compound 7. In addition to these mononuclear GaCl3 adducts, several dinuclear group 8 carbonyl complexes were prepared. Therefore, Ag+ was used as Lewis acid instead of GaCl3, which resulted in the generation of the dinuclear adducts 83-86. These results demonstrated that not only main group metals as gallium, but also transition metals can be employed in the syntheses of group 8 carbonyl adducts. It was also possible to prepare the dinuclear complexes 87-89 featuring either chelating or bridging ligands and to study their reactivity towards GaCl3. The main difference between these two classes of ligands is provided by the fact that the M-M disctance is much smaller in complexes bearing chelating ligands for which reason M-M communication remains possible here. By contrast, employing bridging ligands such an interaction can be ruled out completely. Selected group 8 carbonyl complexes were also used in catalysis experiments to evaluate their catalytic activity in the hydrosilylation of benzaldehyde (90) with phenylsilan (91). The study showed that NHC substituted carbonyl complexes enable a significantly higher turnover than phosphine- or isocyanid substituted complexes. In addition, ruthenium- and osmium carbonyl complexes are far less active catalysts in hydrosilylation reactions than corresponding iron carbonyl complexes, despite their higher Lewis basicity. Addition of one equivalent of GaCl3 to the adducts 46, 66 und 76 resulted in chloride abstraction reactions to afford the cationic and dimeric complexes 104-106. Here, two [(Me3P)2(OC)3M-GaCl2]+ units are bridged by Ga-Cl interactions. By contrast, treatment of 46, 66 und 76 with Na[BArCl4] (101) did not result in chloride abstraction reactions. Instead, the dimeric complexes 107-109 were isolated, in which two GaCl3 adducts are connected by two sodium cations. KW - Lewis-Addukt KW - Metallcarbonyle KW - Carbonyladdukte der Gruppe 8 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-134211 ER - TY - THES A1 - Wennemann, Benedikt T1 - Untersuchungen zur Synthese und Reaktivität von Übergangsmetallborylenkomplexen der Gruppe 8 T1 - Synthesis and reactivity of group 8 borylene complexes N2 - Zusammenfassung Die vorliegende Arbeit wurde in drei Teilbereiche untergliedert. Der erste Teil beschäftigte sich mit der Untersuchung des anionischen Systems K[(OC)3M(PMe3)(SiR3)] (M = Fe, Ru, Os; R = Me, Et, Ph) und dessen Reaktivität gegenüber Dihalogenboranen. Der zweite Teil widmete sich der Untersuchung der Reaktivät des Eisenbis(borylen)komplexes 45 gegenüber verschiedenen Lewis-Basen und Lewis-Säuren. Im letzten Teil der Arbeit wurde die Insertion von Metallfragmenten der Übergangsmetalle der Gruppe 8 in die M=B-Doppelbindung des Borylenkomplexes 28 untersucht. Durch Umsetzungen der anionischen Osmiumverbindung 64 mit Cl2BDur und Br2BDur konnten die Borylkomplexe 67 und 68 erhalten werden (SCHEMA 56). Die Untersuchungen zum sterischen Einfluss des Silylsubstituenten zeigten, dass die Osmiumkomplexe 65 und 66 mit SiEt3- bzw. SiPh3-Substituenten in die entsprechenden Borylkomplexe überführt werden können, wobei diese Spezies nicht analysenrein isoliert werden konnten. Der Borylkomplex 68 konnte nachfolgend weder unter thermischen Bedingungen, noch unter Verwendung der Lewis-Base Pyridin bzw. des Halogenabstraktionsmittels Na[BArCl4] in einen terminalen Osmiumborylenkomplex umgewandelt werden (Schema 57). Anfängliche Studien zur Reaktivität der anionischen Rutheniumverbindungen 81-83 gegenüber Dihalogenboranen haben sich auf den sterischen Einfluss der borgebundenen Arylsubstituenten konzentriert. Hierdurch konnte gezeigt werden, dass eine Ph-Substitution keine ausreichende Stabilisierung der entstehenden Borylkomplexe liefert. Im Gegensatz dazu erwies sich der sterische Anspruch von Duryl- und Mesitylsubsituenten als ideal für die Bildung stabiler Borylkomplexe, wohingegen die sterische Überfrachtung der Supermesityl- und Terphenylsubstituenten eine Salzeliminierungsreaktion von vornherein verhindert. Der Einfluss des Halogensubstituenten in X2BDur (X = Cl, Br) wurde anhand der Reaktivität gegenüber 81 näher untersucht. In beiden Fällen konnten die entsprechenden Borylkomplexe 84 und 85 isoliert und charakterisiert werden. Da bei der Umsetzung mit Br2BDur auch noch weitere Produkte zu erkennen waren, wurde der sterische Einfluss des Silylsubstituenten in 82 und 83 auf die Produktverteilung bei Reaktion mit Br2BDur untersucht. Es hat sich gezeigt, dass die Wahl der Reaktionsbedingungen einen starken Einfluss auf den Reaktionsverlauf ausübt. So konnte durch regelmäßiges Entgasen der Reaktionslösung der Rutheniumborylenkomplex 86 erhalten werden, während eine thermische Reaktionsführung unter CO-Atmosphäre selektiv zu einer Silylboraneliminierung führte, dessen Produkt indirekt über die Bildung von [(OC)4Ru(PMe3)] (75) nachgewiesen werden konnte (Schema 59). Während die Umsetzung der analogen Eisenspezies K[(OC)3Fe(PMe3)(SiEt3)] (92) mit Cl2BDur lediglich zu Zersetzung führte, konnte im Verlauf der Reaktion mit Br2BDur eine neue, sehr interessante Reaktivität beobachtet werden. Hier war die Salzeliminierungsreaktion mit einer Alkylboraneliminierung verbunden, wobei der intermediär entstehende Silylenkomplex (95) in situ zum dinuklearen, zweifach-verbrückten Bis(silylen)komplex 94 dimerisierte (SCHEMA 60). Unter photolytischen Bedingungen konnte 94 weiter in den dreifach-verbrückten Bis(silylen)komplex 96 überführt werden, welcher den ersten strukturell charaktersierten Komplex dieser Art darstellt. In SCHEMA 61 sind alle relevanten Reaktivitäten des Systems K[(OC)3M(PMe3)(SiR3)] gegenüber X2BDur (X = Cl, Br) zusammen mit den Ergebnissen vorangegangener Arbeiten in einer Übersicht dargestellt. Der zweite Teil dieser Arbeit beschäftigte sich mit der Reaktivität des Eisenbis(borylen)komplexes [(OC)3Fe(=BDur){=BN(SiMe3)2}] (45). Zunächst wurde 45 mit verschiedenen Lewis-Basen umgesetzt. Während die Umsetzungen mit verschiedenen NHCs (IMe, IMes, IDipp) nur zu Zersetzung führte, konnte durch die Reaktion mit cAACMe der außergewöhnliche Komplex 98 isoliert und vollständig charakterisiert werden (SCHEMA 62). Dieser stellt das erste Beispiel für eine intramolekulare Spaltung eines Carbonylliganden in einem einkernigen Komplex dar. Anschließend wurde die Reaktivität von 45 gegenüber den Lewis-Säuren BBr3, AlBr3 und GaBr3 untersucht. Während die Umsetzung von 45 mit AlBr3 lediglich zu Zersetzung führte, konnte mit GaBr3 als Hauptprodukt Br2BDur nachgewiesen werden. In einem möglichen Reaktionsmechanismus ist die Reaktion mit einer 1,2-Addition des GaBr3 unter Bildung eines Gallylkomplexes verbunden, welcher nach Abspaltung von Br2BDur in einen instabilen Gallylenkomplex übergeht (SCHEMA 63). Die Umsetzung von 45 mit BBr3 lieferte bei tiefen Temperaturen den zweikernigen Tris(borylen)komplex 100 (SCHEMA 64), welcher ein Analogon des wohlbekannten Fe2(CO)9 darstellt. Das abschließende Kapitel dieser Arbeit befasste sich mit der Insertion von Metallfragmenten der Gruppe 8-Übergangsmetalle in die M=B-Doppelbindung von [(OC)5Mo=BN(SiMe3)2] (28). Während bei den Umsetzungen von 28 mit [(OC)4Fe(PMe3)] (90) und [(OC)4Ru(PMe3)] (75) die MOLPs 104 und 105 nur NMR-spektroskopisch nachgewiesen werden konnten, war die Isolierung des MOLPs 103 sowie dessen strukturelle Charakterisierung möglich (SCHEMA 65). Bemerkenswert ist hierbei, dass die Reaktion sowohl unter thermischen als auch unter photolytischen Bedingungen durchgeführt werden kann. N2 - Summary The first part of this work focused on the development of a new route to neutral terminal group 8 transition metal borylene complexes. Thus, the reactivity of the anionic system K[(OC)3M(PMe3)(SiR3)] (M = Fe, Ru, Os; R = Me, Et, Ph) towards dihaloboranes was studied in detail. The second part of this work dealt with the reactivity studies of the iron bis(borylene) complex 45 towards common lewis bases and acids. The final part of this work concentrated on the insertion of group 8 transition metal fragments into the M=B double bond of the molybdenum borylene complex 28. The reaction of the anionic osmium complex 64 with X2BDur (X = Cl, Br) resulted in the formation of the osmium boryl complexes 67 and 68 (SCHEME 1). Studies concerning the steric influence of the silyl substituent showed that the osmium species 65 and 66 containing SiEt3 and SiPh3 groups can also be converted into the respective boryl complexes, while the resulting products could not be isolated. All attempts to convert the osmium boryl complex 68 into an osmium borylene complex, either under thermal conditions or by reaction with lewis bases and halide abstracting reagents, consistently failed (SCHEME 2). Initial studies on the reactivity of the anionic ruthenium complexes 81-83 towards dihaloboranes focused on the steric influence of the aryl ligand on boron. The results clearly showed that the small phenyl substituent is not able to efficiently stabilize the resulting boryl complexes. By contrast, the steric demand of the mesityl and duryl ligands appeared to be sufficient to afford stable boryl complexes, while supermesityl and terphenyl substituents were sterically too encumbered even for the initial salt elimination step (SCHEME 3). The influence of the halide substituents in X2BDur (X = Cl, Br) was evaluated by reactivity studies towards 81. In both cases, boryl complexes 84 and 85 could be isolated and fully characterized. However, reaction of 81 with Br2BDur suggested the formation of additional products, for which reason the steric influence of the silyl substituents in 81 and 82 on the nature of the products was studied in detail. It turned out that the reaction conditions have a strong influence on the observed pathways. Thus, periodical degassing favoured the formation of the neutral terminal ruthenium borylene complex 86, while thermal treatment under an atmosphere of CO led to silyl borane elimination (SCHEME 4). While the reaction of the analogous iron species K[(OC)3Fe(PMe3)(SiEt3)] (92) with Cl2BDur resulted in decomposition, reaction with Br2BDur uncovered a new, highly interesting reactivity pattern. Here, initial salt elimination was followed by alkyl borane elimination step while the in situ generated silylene complex readily dimerized to form the dinuclear bis(silylene) complex 94 (SCHEME 5). Photolysis of 94 in solution subsequently converted 94 into the triply-bridged dinuclear complex 96, which is the first structurally characterized example of this class of compounds. The second part of this work focused on the reactivity of the iron bis(borylene) complex [(OC)3Fe(=BDur){=BN(SiMe3)2}] (45). Intitally, 45 was reacted with different lewis bases. While reaction with NHCs (IMe, IMes, IDipp) only resulted in decomposition, reaction with cAACMe enabled the isolation of the uncommon complex 98 (SCHEME 7), which represents the first example of an intramolecular carbonyl cleavage in a mononuclear complex. Next, the reactivity of 45 towards lewis acids BBr3, AlBr3 and GaBr3 was studied. While reaction of 45 with AlBr3 was accompanied by decomposition, reaction with GaBr3 selectively afforded Br2BDur as the main product. A plausible mechanism involves the 1,2-addition of GaBr3 to afford a gallyl species, which subsequently eliminates Br2BDur to generate a labile gallylene complex (SCHEME 8). At low temperatures, the reaction of 45 with BBr3 resulted in the formation of the dinuclear tris(borylene)complex 100 (SCHEME 9), which can be considered an analogue of the well-known [Fe2(CO)9]. The final part of this work was concerned with the insertion of group 8 transition metal fragments into the M=B-double bond of [(OC)5Mo=BN(SiMe3)2] (28). While the reaction of 28 with [(OC)4Fe(PMe3)] (90) and [(OC)4Ru(PMe3)] (75) afforded the MOLPs 104 and 105, which could only be identified by NMR-spectroscopy, the isolation and structural characterization of the MOLP product 103 of the reaction with [(OC)4Os(PMe3)] (59) was feasible (SCHEME 10). Remarkably, this reaction can be carried out both under thermal and photolytic conditions. KW - Borylgruppe KW - Borylenkomplexe KW - Borylkomplexe KW - Übergangsmetallkomplexe Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130755 ER - TY - THES A1 - Dellermann, Theresa T1 - NHC-stabilisierte Bor-Bor-Mehrfachbindungssysteme - Darstellung und Reaktivität T1 - NHC-stabilized Boron-Boron Multiple Bonds - Synthesis and Reactivity N2 - Im Rahmen dieser Arbeit war es möglich, eine Vielzahl NHC-stabilisierter Tetrabromdiboran-Addukte zu synthetisieren und mithilfe von zwei bzw. vier Reduktionsäquivalenten zu reduzieren. Dies führte zur Bildung neuartiger Dibromdiborene bzw. Diborin-Verbindungen, welche infolgedessen charakterisiert wurden. Der Einfluss des Carbens auf die jeweilige Struktur und Elektronik der synthetisierten Verbindungen war hierbei von besonderem Interesse. Im Fall der Diborine gelang es neben den beiden bereits literaturbekannten Verbindungen XXIII und XXXII drei neue Vertreter mit einer B≡B-Dreifachbindung (7, 8 und 9) darzustellen. Aufgrund der Verwendung von gesättigten Carbenen wurden die spektroskopischen und strukturellen Eigenschaften der Verbindungen soweit modifiziert, dass sie zwischen denen mit einer isolierten Dreifachbindung (B2IDip2 (XXIII) und B2IDep2 (XXXII)) und der mit Kumulencharakter (B2CAAC2 (XXXIV)) eingeordnet werden können. Neben der Charakterisierung neuartiger Verbindungen mit Bor–Bor-Dreifachbindungscharakter konnten auch zahlreiche Reaktivitätsstudien durchgeführt werden. So verdeutlichte sich der strukturelle und elektronische Unterschied der Diborine vor allem am Beispiel der Reaktivität gegenüber CO (Schema 42). Während für B2IDip2 (XXIII) der Reaktionsverlauf über das Intermediat XXV zum Bis(boralacton) XXVI reagierte, konnte für die Diborine 7 und 8 primär die Bildung des jeweiligen Bis(boraketens) (16 und 18) beobachtet werden. Die Bindungssituation dieser Zwischenstufen wird vor allem durch die π-Rückbindungen der Boratome in die CO-Bindung geprägt, welche zu einer Schwächung dieser führen und sowohl in den Festkörperstrukturen als auch in den Schwingungsspektren verdeutlicht wird. Die weitere Umsetzung zu den entsprechenden Bis(boralactonen) 17 und 19 erfolgte im Anschluss je nach Substituent bei Raumtemperatur (16) oder durch Heizen der Boraketen-Zwischenstufe (18). Mithilfe quantenmechanischer Betrachtung konnte die Ursache der unterschiedlichen Reaktionsverläufe näher erläutert werden, auch unter Einbeziehung des Diborakumulens XXXIV, welches mit Überschuss an CO auch bei hohen Temperaturen lediglich zur Bildung des Bis(boraketens) (XXXV) führt. Dies zeigt, dass aufgrund der unterschiedlichen Reaktionsbarrieren der jeweiligen Diborine bzw. des Diborakumulens mit CO die Bildung des Ketens bzw. anschließend des Bis(boralactons) verschieden stark bevorzugt wird. Für B2IDip2 (XXIII) wird deshalb aufgrund der hohen freien Gibbs-Energie, welche bei der Bildung des Bis(boralactons) entsteht, im ersten Schritt keine Bildung des IDip-stabilisierten Bis(boraketens) beobachtet und für B2CAAC2 (XXXIV) aufgrund von nahezu keiner Energiegewinnung im zweiten Schritt lediglich XXXV gebildet. Die freien Gibbs-Energien beider Reaktionsschritte der Umsetzungen von B2SIDip2 (7) und B2SIDep2 (8) mit CO ordnen sich zwischen den oben beschriebenen Extrema ein. Einen Einfluss des Carbens auf die Reaktivität zeigte auch die Umsetzung mit Wasserstoffgas. Während bei XXIII, XXXII und 7 keine Reaktionen beobachtet werden konnten, verlief diese bei 8 und XXXIV unter einer 1,2-Addition des H2-Moleküls an die B–B-Bindung und Bildung der jeweiligen Dihydrodiborene 21 (B2H2SIDep2) und XXXVIII (B2H2CAAC2). Neben der Reaktivität gegenüber CO und H2 wurden auch Reaktionen beschrieben, welche zu einer Insertion einer in-situ-gebildeten Borylen-Spezies führten. Diese sind die Umsetzungen von B2IDip2 (XXIII) mit CO-Quellen oder der Brønstedt-Säure Triethylammonium(tetraphenyl)borat. In beiden Fällen kam es im Laufe der Reaktion zur Insertion eines Borfragments in die CH-Bindung des Isopropylrestes und zur Bildung der Boracyclen 20 (B2IDip2CO) und 25 ([B2IDip2H][BPh4]). Daneben konnte eine ähnliche Beobachtung bei der Umsetzung des SIDep-stabilisierten Diborins 8 mit Isonitrilen gemacht werden. Hierbei insertierte bei der Reaktion mit Metyhlisonitril ein Borfragment in den benachbarten Imidazolring unter Ausbildung eines Sechsrings. Gleichzeitig konnte eine CH-Aktivierung des Ethylrestes des Dep-Substituenten beobachtet werden. Bei der analogen Umsetzung mit tert-Butylisonitril wurde neben der einfachen auch die zweifache Insertion beider Borzentren beobachtet. Die Reaktivität gegenüber Chalkogenen und Chalkogenverbindungen stellte einen weiteren, zentralen Aspekt dieser Arbeit dar. Die Umsetzung von B2IDip2 mit elementarem Schwefel und Selen führte dabei zur Spaltung der B≡B-Bindung durch reduktive Insertion von drei Chalkogenbrücken und Bildung der entsprechenden Pentachalkogenverbindungen 26 und 27. Die analogen Umsetzungen des Diborins 7 mit Selen führte ebenfalls zur Bildung einer Pentachalkogenverbindung (29). Da derartige Verbindung in der Literatur bislang nicht bekannt sind, sollte auch deren Reaktivität exemplarisch an 27 untersucht werden. Dabei zeigte sich, dass die Verbindung stabil unter photolytischen Bedingungen ist und sich bei thermischer Behandlung erst nach mehreren Tagen zersetzt. Die Umsetzung mit Triphenylphosphan oder elementarem Natrium zur Entfernung von Selenfragmenten oder mit Triphenylphosphanselenid zur Addition weiterer Seleneinheiten zeigten keine Reaktionen. Lediglich die Umsetzung mit zwei Äquivalenten Natriumnaphthalid führte zur erfolgreichen Darstellung des Dimers 28. Im Gegensatz dazu lieferte die Reaktion des Diborins 8 mit elementarem Selen bereits ein anderes Strukturmotiv (30), in welchem sechs Selenatome in Form von ein-, zwei und dreiatomigen Henkeln zwischen die Boratome insertierten. Durch Umsetzung mit Triphenylphosphan deuteten erste Reaktionsversuche darauf hin, dass es möglich ist, selektiv ein Selenfragment aus der dreiatomigen Selenbrücke zu entfernen und die entsprechende Pentachalkogenverbindung 31 zu generieren. Reaktivitätsstudien der Diborine XXIII, 7 und 8 gegenüber Diphenyldisulfid und -selenid als auch gegenüber Isopropylthiol führten in allen Fällen zur 1,2-Addition an die B≡B-Bindung unter Bildung der Diborene 32 bis 36 bzw. 42 und 43. Im Gegensatz dazu kam es bei der Reaktion von XXIII mit Diphenylditellurid zur Bildung eines salzartigen Komplexes 37, in welchem ein Phenyltellurireniumkation die B≡B-Bindung verbrückte und das entsprechende Phenyltellurid als Gegenion fungierte. Durch den Einsatz von para-substituierten Diphenylditelluriden konnten zwei weitere Verbindungen (38 und 39) dargestellt werden. Dabei zeigte der para-Substituent jedoch nur einen geringen Einfluss auf die elektronische Struktur der gebildeten Produkte. Die Reaktion von Diborin 8 mit Diphenylditellurid zeigte neben der Bildung des salzartigen Komplexes 40 auch die Entstehung des 1,2-Additionsproduktes 41, was vermutlich wie bereits bei der Reaktion mit elementarem Selen auf sterische Effekte zurückzuführen ist (Schema 45). Aufgrund der besonderen Bindungssituation in den Komplexen 37 bis 40 wurden diese eingehender untersucht. Die Auswertung der Röntgenstrukturanalyse, Raman-Spektroskopie, 11B-NMR-Spinkopplungsexperimente sowie der quantenmechanischen Rechnungen ergab dabei Hinweise auf eine Koordinationsverbindung nach dem Dewar-Chatt-Duncanson-Bindungsmodell. Weitere Reaktivitätsstudien v.a. des IDip-stabilisierten Diborins (XXIII) beschäftigten sich mit der Synthese von π-Komplexverbindungen durch Reaktionen von XXIII mit Alkalimetallkationen in der Ligandensphäre schwach koordinierender Anionen mit Kupfer(I)-Verbindungen. Die Bildung sogenannter Kation-π-Komplexe des Diborins mit Lithium bzw. Natrium gelang durch die Umsetzung von B2IDip2 (XXIII) mit je zwei Äquivalenten Lithium bzw. Natriumtetrakis(3,5-dichlorphenyl)borat quantitativ unter Bildung von 46 und 47 als unlösliche, violette Feststoffe. Die in der Kristallstruktur ersichtliche Bindungssituation zeigt die Einkapselung der jeweiligen Kationen durch das B2-Fragment des Diborins sowie der Arylreste der Ligandensphäre, die sich infolgeder Komplexierung ekliptisch zueinander anordnen. Aufgrund der ungewöhnlichen Bindungssituation wurden theoretische Studien aufbauend auf den aus den Kristallstrukturen und den aus spektroskopischen Messungen erhaltenen Daten angefertigt. Diese beweisen eine rein elektrostatische Wechselwirkung der Kationen mit der noch intakten B≡B-Bindung des Diborins. Auch für die Diborine 7 und 8 konnten am Beispiel des Natriumtetrakis(3,5-dichlorphenyl)borats die Komplexe 48 ([B2SIDip2Na2][BArCl4]) und 49 ([B2SIDep2Na2][BArCl4]) erfolgreich dargestellt werden. Dies beweist, dass in den SIDip- und SIDep-substituierten Diborinen noch genügend Elektronendichte auf der B–B-Bindung lokalisiert ist, um derartige π-Wechselwirkungen auszubilden. Die Reaktivität des Diborins XXIII gegenüber Kupfer(I)-Verbindungen wurde bereits von Dr. Jan Mies im Zuge seiner Dissertation untersucht. In dieser Arbeit ist es nun gelungen, weitere Komplexe mit Kupfer(I)-alkinylen (50 und 51) darzustellen. Darüber hinaus war es möglich, eine alternative Syntheseroute zur Darstellung des dreikernigen Kupfer(I)-chlorid-Komplexes XXVII zu entwickeln sowie den entsprechenden Zweikerner 52 darzustellen. Die Verbindungen XXVII, 52 und XXVIII wurden im Anschluss in Kooperation mit der Gruppe um Dr. Andreas Steffen auf ihre photophysikalischen Eigenschaften hin untersucht.Dabei zeigte sich, dass alle drei Verbindungen aufgrund der langen Lebenszeiten ihrer angeregten Zustände phosphoreszieren, die Quantenausbeute der Phosphoreszenz jedoch stark von der Verbindung abhängig ist. Während der dreikernige Kupfer(I)-Komplex XXVII bereits in Lösung eine Quantenausbeute von 29 % aufwies, war eine Bestimmung der Quantenausbeute in Lösung für B2IDip2(CuC2TMS)2 (XXVIII) aufgrund der schwachen Emission nicht möglich. Die Ursache des unterschiedlichen Emissionsverhaltens konnte mittels Betrachtung von Absorptions- und Anregungsspektren erklärt werden. Für B2IDip2(CuCl)3 sind die beiden Spektren in Lösung nahezu identisch. Im Gegensatz dazu weisen die beiden Zweikerner 52 und XXVIII ein vom Absorptionsspektrum verschiedenes Anregungsspektrum auf, was darauf schließen lässt, dass es zu Konformationsänderungen im angeregten Zustand kommt, welche die Emission auslöscht. TheoretischeStudien bestätigen für 52, dass die Barriere zwischen zwei Konformeren, in denen die Kupferfragmente linear bzw. orthogonal angeordnet sind, lediglich 4.77 kcal/mol beträgt und bekräftigen damit die vermutete Ursache der schwachen Emission. Ein zweites Thema dieser Arbeit beschäftigte sich mit der Darstellung und Untersuchung neuartiger Dibromdiborene, welche im Zuge der Diborin-Synthese beobachtet werden konnten. Dabei gelang es neben dem bereits literaturbekannten IDip-stabilisierten Dibromdiboren (XXIV) noch sechs weitere Vertreter dieser Verbindungsklasse darzustellen (10–15). Auch hier konnte ein Einfluss der Carbenliganden auf die strukturellen und elektronischen Eigenschaften beobachtet werden. Die Reaktivität der Dibromdiborene wurde in einigen Testreaktionen untersucht. Dabei zeigte sich, dass im Hinblick auf ihr Oxidationsverhalten die literaturbekannte Darstellung von Monokationen (53 [B2Br2IDip2][BArF4] und 54 [B2Br2IDep2][BArF4]) nachempfunden werden konnte. Versuche zur Bromsubstitution zeigten durch Umsetzung mit BuLi den Austausch der Bromid-Liganden durch Butylgruppen, jedoch bildeten sich aufgrund von Umlagerungen anstelle der erwarteten Diborene die kondensierten Ringsysteme 56–58. N2 - Within the scope of this work, a variety of NHC stabilized tetrabromodiborane adducts were synthesized. The subsequent two- or four-electron reduction of the latter yielded the novel diborene and diboryne molecules, which were fully characterized. The influence of the carbene ligand on the electronic structure of the final molecule was therefore of particular interest. ... KW - Bor KW - Mehrfachbindung KW - Reaktivität KW - NHC KW - Diborin KW - Diboren Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146345 ER - TY - THES A1 - Auerhammer, Dominic T1 - Synthese und Reaktivität von niedervalenten Bor(I)-Verbindungen T1 - Synthesis and Reactivity of Low-valent Boron(I) Compounds N2 - Kapitel 1 Darstellung und Reaktivität des Cyanoborylens (3) Im Rahmen dieser Arbeit ist es gelungen, in einer dreistufigen Synthese das erste basenstabilisierte Cyanoborylen [(cAAC)B(CN)]4 (3) in hohen Ausbeuten darzustellen (Schema 64). Hervorzuheben ist hierbei, dass dieser Ansatz keine „klassische“ Metallborylen- Vorstufe benötigt, weshalb wenig Synthesestufen und bessere Ausbeuten erreicht werden konnten. Schema 64. Darstellung von [(cAAC)B(CN)]4 (3). Eine erste Besonderheit von [(cAAC)B(CN)]4 (3) ist, dass dieses das einzige bislang bekannte Borylen darstellt, welches eine Stabilisierung durch Oligomerisierung erfährt und somit in Folgereaktionen nicht erst in situ generiert werden muss. Die elektronische Untersuchung von 3 durch Cyclovoltammetrie hat zudem gezeigt, dass 3 ein Redoxpotential von E1/2 = −0.83 V besitzt und somit eine chemische Oxidation zu neuen Verbindungen führen könnte, was durch Umsetzung mit AgCN demonstriert wurde (Schema 65). Hierdurch konnte [(cAAC)B(CN)3] (4) erfolgreich dargestellt und vollständig charakterisiert werden. [(cAAC)B(CN)3] (4) ist erst das zweite strukturell untersuchte basenstabilisierte Tricyanoboran. Zudem wurde die Reaktivität von [(cAAC)B(CN)]4 (3) gegenüber verschiedenen Lewis-Basen untersucht. Ziel hierbei war es, das oligomere Strukturmotiv aufzubrechen und gemischte zweifach basenstabilisierte Borylene zu realisieren. Hierbei konnte eine deutliche Abhängigkeit von der Basenstärke und dem sterischen Anspruch der Lewis-Base aufgedeckt werden. So hat sich gezeigt, dass Lewis-Basen wie THF, MeCN, Pyridin und PEt3 zu schwach sind, um die oligomere Struktur aufzubrechen. Im Gegensatz dazu führten die Umsetzungen von [(cAAC)B(CN)]4 (3) mit den starken Lewis-Basen cAAC bzw. IPr zu keinerlei Umsatz, was vermutlich auf einen zu großen sterischen Anspruch zurückzuführen ist. Dementsprechend verlief die Umsetzung von [(cAAC)B(CN)]4 (3) mit der starken und sterisch nicht anspruchsvollen Base IMeMe erfolgreich und lieferte [(cAAC)B(CN)(IMeMe)] (5) in guten Ausbeuten (Schema 65). Schema 65. Umsetzung von [(cAAC)B(CN)]4 (3) mit AgCN und IMeMe. Während [(cAAC)B(CN)(PEt3)] (6) nicht durch Umsetzung von [(cAAC)B(CN)]4 (3) mit PEt3 zugänglich ist, konnte dieses jedoch auch durch Reduktion von [(cAAC)BBr2(CN)] (2) in Gegenwart von PEt3 erhalten werden (Schema 66). [(cAAC)B(CN)(PEt3)] (6) stellt hierbei das das bislang erste bekannte Phosphan-stabilisierte Borylen dar. Schema 66. Kristallstruktur und Synthese von [(cAAC)B(CN)(PEt3)] 6. Kapitel 2 Reaktivität von 3 gegenüber Chalcogenen und Chalcogeniden In weiterführenden Studien wurde zudem die Reaktivität von 3 gegenüber Chalcogenen und Chalcogeniden im Detail untersucht. Durch Verwendung der entsprechenden Stöchiometrie konnte 3 hierbei selektiv zu den Bor-Chalcogen-Heterocyclen 9, 10, 13-15 umgesetzt werden (Schema 67). Schema 67. Darstellung von 9, 10, 13-15. Diese Ergebnisse wurden anschließend mit der Reaktivität des Konstitutionsisomers LII verglichen. In diesem Zusammenhang konnten 11 und 12 durch stöchiometrische Reaktionsführung dargestellt werden (Schema 68), welche nachfolgend in die bereits erwähnten Verbindungen 9 und 10 überführt werden konnten (Schema 69). Schema 68. Darstellung von 11 und 12. Schema 69. Darstellung von 9 und 10 aus 11 bzw. 12. Des Weiteren konnte 3 erfolgreich mit Ph2Se2, Me2Se2 und Ph2S2 zu 16-18 umgesetzt werden (Schema 70), wobei 16 und 18 auch durch Umsetzung von LII mit Ph2Se2 bzw. Ph2S2 zugänglich sind (Schema 70). Schema 70. Synthese von 16-18. Das tetramere Borylen 3 und das Diboren LII zeigen ähnliche Reaktivitäten gegenüber elementaren Chalcogenen sowie Dichalcogeniden. Lediglich die Darstellung der dreigliedrigen B2E-Heterocyclen 11 und 12 gelingt selektiv nur ausgehend von LII. Kapitel 3 Darstellung und Reaktivität des Borylanions (19) Ein weiterer Aspekt dieser Arbeit beschäftigte sich mit der Synthese und Reaktivität des Borylanions 19, eines der wenigen bekannten nukleophilen Borspezies. Der Zugang zu 19 durch Deprotonierung von 1 (Schema 71) ist hierbei besonders bemerkenswert, da es eine bis dato kaum bekannte bzw. verwendete Methode ist, da borgebundene Wasserstoffatome in der Regel hydridischer Natur sind, weshalb eine Deprotonierung normalerweise nicht möglich ist und nur für zwei weitere Systeme beschrieben ist. Hierzu zählen die Synthese des Dianions XLVII[6a, 6b] und die Synthese des Borylanions XLVIII[45]. Eine Gemeinsamkeit dieser drei Spezies ist die Gegenwart elektronenziehender Cyanidsubstituenten welche eine Umpolung der B‒H-Bindung bedingen, wodurch eine Deprotonierung erst ermöglicht wird. Schema 71. Synthese von 19. Um diesen Sachverhalt genauer zu untersuchen, wurden Rechnungen durchgeführt und die partiellen Ladungen (NBO) des borgebunden Wasserstoff an BH3, [(cAAC)BH3] und 1 auf dem BP86/def2-SVP-Niveau berechnet (Abbildung 53). Abbildung 53. Teilladungen (NBO) von BH3, [(cAAC)BH3] und 1 (BP86/def2-SVP). Durch Austausch eines der Hydride in [(cAAC)BH3] durch eine Cyanogruppe werden die borgebunden Wasserstoffe in 1 deutlich protischer (+0.038, +0.080), wobei schon durch Koordination des cAAC-Liganden an BH3 zwei der vorher hydridischen Wasserstoffe (BH3: partielle Ladung: –0.101) erheblich positiver geladen wird (+0.050). Der nukleophile Charakter von 19 wurde anschließend durch Reaktivitätsstudien untersucht. So führte die Umsetzung von 19 mit [(PPh3)AuCl] zur Bildung von [(cAAC)BH(CN)(AuPPh3)] (20) (Schema 72). Während die Umsetzung von 19 mit Tritylderivaten keine isolierbare Verbindung lieferte, konnte durch Umsetzung mit den schweren, weichen Homologen R3ECl (R = Ph, E = Ge, Sn und Pb; R = Me, E = Sn) eine ganze Reihe von Boranen dargestellt werden (Schema 72). Schema 72. Synthese von 20-24. Die Umsetzung der entsprechenden Silylderivate R3SiCl war hingegen mit einem anderen Reaktionsverlauf verbunden (Schema 73). Schema 73. Synthese von 25-28. Demnach erfolgt die Reaktion von 19, im Gegensatz zu den höheren Homologen, mit den Silylderivaten nicht am weichen, nukleophilen Borzentrum sondern am härteren Cyanostickstoffatom. Demzufolge wurden hierbei zunächst die Silylisonitrilverbindungen 25 und 26 gebildet, wobei 25 labil ist und innerhalb kürzester Zeit in 27 übergeht. Im Gegensatz dazu konnte 28 nur durch Bestrahlung von 26 dargestellt werden. Die Bindungsverhältnisse in 26 wurden zudem auch durch DFT-Rechnungen auf dem BP86/def2-SVP-Niveau untersucht. Die Analyse der Kohn–Sham MOs offenbarte hierbei ein HOMO mit π-Bindungscharakter über die gesamte CcAAC‒B‒CCN-Einheit mit angrenzendem π-Antibindungscharakter über die C‒NEinheiten beider Donorliganden (Abbildung 54). Abbildung 54. Gemessene (links) und berechnete (mitte) Struktur und HOMO (rechts) von 26. Während die Umsetzung von 26 mit Cu(I)Cl dessen hohes Reduktionsvermögen verdeutlichte, führte die Umsetzung mit Lithium in THF zur Bildung des Borylanions 19 und LiSiPh3. Die Reaktion von 26 mit BH3∙SMe2 lieferte hingegen quantitativ [(cAAC)BH3] (29), während bei Umsetzung mit Ph3SnCl quantitativ 22 gebildet wurde (Schema 74). Dieses sehr unterschiedliche Reaktionsverhalten rechtfertigt eine Beschreibung von 26 sowohl als ein Silylisonitrilborylen, als auch eine zwitterionische Silyliumboryl-Spezies. Schema 74. Ambiphile Reaktivität von 26 als neutrales Silylisonitrilborylen (A) oder als zwitterionische Silyliumboryl-Spezies (B). Kapitel 4 Darstellung und Reaktivität von [(cAAC)BH3] (29) Da 1 selektiv deprotoniert werden kann und [(cAAC)BH3] (29) Rechnungen zufolge ebenfalls borgebundene Wasserstoffe mit protischem Charakter besitzt, wurde versucht, diese Reaktivität auf 29 zu übertragen. Demzufolge wurde im Rahmen dieser Arbeit [(cAAC)BH3] (29) dargestellt und dessen Reaktivität gegenüber anionischen (Schema 75) und neutralen (Schema 76) Nukleophilen untersucht. Es hat sich jedoch gezeigt, dass die Umsetzung von [(cAAC)BH3] (29) mit Lithiumorganylen nicht zur Deprotonierung führt, sondern zur Bildung der Lithiumborate 30, 32 und 34, unabhängig von der Hybridisierung des Lithiumorganyls (sp3: LiNp, sp2: LiMes, sp: LiCCPh). Der Reaktionsmechanismus wurde durch DFT-Rechnungen untersucht (Abbildung 47). Diese zeigen eindeutig, das [(cAAC)BH3] (29) in einem Gleichgewicht mit dem entsprechenden Boran [(cAAC‒H)BH2] steht. Bei der stark exergonischen nukleophilen Addition der entsprechenden Basen wird [(cAAC‒H)BH2] aus dem Gleichgewicht entfernt (30: −29.6 kcal∙mol‒1; 32: ‒12.4 kcal∙mol‒1) und die Lithiumborate 30 und 32 gebildet. Diese Lithiumborate gehen dann durch Reaktion mit Me3SiCl in die entsprechenden cAACBoranaddukten 31, 33 und 35 über (Schema 75). Schema 75. Synthese von 30-35. Diese zweistufige Synthese ist deshalb bemerkenswert, da dies einer ungewöhnlichen Substitution an einem sp3-Boran gleichkommt. Des Weiteren wurde die Reaktivität von [(cAAC)BH3] (29) gegenüber neutralen Lewis-Basen untersucht. So konnte bei der Umsetzung mit cAAC Verbindung 36 und bei der Umsetzung mit Pyridin Verbindung 37 erhalten werden (Schema 76). Schema 76. Synthese von 36 und 37. Der Mechanismus der Bildung von 36 und 37 wurde ebenfalls durch DFT-Rechnungen untersucht, welche auf eine reversible Reaktion des Pyridin-Addukts 37 hindeutet. Dies konnte auch experimentell bestätigt werden. Im Gegensatz dazu ist die Bildung von 36 irreversibel. Kapitel 5 Darstellung und Vergleich neuer Diborene Im Rahmen dieser Arbeit ist es zudem gelungen, eine Reihe an NHC-Boranaddukten (42-50) darzustellen und diese zum Großteil in die entsprechenden Diborene (51-58) zu überführen (Schema 77). Schema 77. Synthese der NHC-Boranaddukte 42-50 sowie deren Umsetzung zu den Diborenen 51-58. Die meisten Verbindungen konnten hierbei vollständig charakterisiert und somit die NMR-spektroskopischen und strukturellen Daten miteinander verglichen werden. Die 11B-NMRSignale von 51-58 wurden in einem engen Bereich (20.2 bis 22.5 ppm) beobachtet, welcher sich mit dem von X und XI (21.3 und 22.4 ppm)[17] deckt. Im Festkörper weisen die Diborene einen B‒B-Abstand zwischen 1.576(4) Å (51) und 1.603(4) Å (54) auf, ohne dass ein Trend erkennbar ist. Dieser Bereich ist zudem nahezu identisch mit bereits bekannten IMe-stabilisierten 1,2-Diaryldiborenen (1.585(4) bis 1.593(5) Å).[16-17] Einige dieser Diborene sind durch die entsprechende Wahl des Substitutionsmusters sehr labil und konnten deshalb nicht isoliert werden. Es ist dennoch gelungen UV-vis-spektroskopische Daten von 51, 52, 57 und 58 zu erhalten (Abbildung 55). Abbildung 55. UV-vis-Absorptionsspektren von 51, 52, 57 und 58. Die genaue Analyse der UV-vis-Spektren von 51, 52, 57 und 58 offenbart eine gewisse Abhängigkeit der Maxima vom Substitutionsmuster. Der Vergleich der Diborene 51-58 hat gezeigt, dass das Substitutionsmuster einen entscheidenden Einfluss auf die Lage der Grenzorbitale hat, was die Eigenschaften der Diborene deutlich verändert. So führte die Einführung einer Diphenylaminogruppe am Thienylrest zur Aufhebung der Koplanarität der Th‒B=B‒Th-Ebene, weshalb die entsprechenden Spezies durch die fehlende π-Konjugation sehr labil sind. Diese Beeinflussung der Koplanarität konnte bereits in kleinem Ausmaß bei der Substitution durch eine Me3Si-Gruppe beobachtet werden. Auch der Einfluss unterschiedlicher NHCs wurde untersucht. Während die Einführung von IMeMe kaum einen Einfluss auf die Absorptionsmaxima zeigt, führt die Verwendung von IPr zu einer deutlichen Verschiebung. Als das stabilste Diboren erwies sich im Rahmen dieser Untersuchung das [(IMe)BTh)]2 (X). N2 - Chapter 1 Synthesis and reactivity of cyanoborylene 3 In the context of this work, a successful high-yielding three-step synthesis of the first basestabilised cyanoborylene [(cAAC)B(CN)]4 (3) was developed (Scheme 1). It should be emphasized that this approach does not involve a „classical“ metal borylene precursor, which is why fewer synthetic steps and better yields could be achieved. Scheme 1. Synthesis of the tetrameric borylene [(cAAC)B(CN)]4 (3). The first notable feature of borylene 3 is its unique self-stabilising nature via oligomerization, which means that it does not have to be generated in situ. The electronic properties of 3 were investigated by cyclic voltammetry, showing an oxidation wave at E1/2 = −0.83 V, implying that chemical oxidation could lead to new compounds. This was demonstrated by the reaction with AgCN (Scheme 2) which yielded [(cAAC)B(CN)3] (4). Compound 4 is only the second structurally characterized base-stabilized tricyanoborane. Additionally, the reactivity of 3 with different Lewis bases was investigated. The aim was to break up the tetrameric structural motif and obtain mixed base-stabilized borylenes. This study demonstrated dependence on the strength and steric demands of the Lewis base. Weak Lewis bases such as THF, MeCN, pyridine and PEt3 proved too weak to break up the tetrameric structure. Similarly, the reaction of 3 with strong Lewis bases such as cAAC or IPr remained unsuccessful, probably due to a too large steric hindrance. In contrast, the reaction of 3 with the strong and sterically non-demanding base IMeMe successfully yielded the mixed base borylene [(cAAC)B(CN)(IMeMe)] (5) in high yields (Scheme 2). Scheme 2. Reactions of [(cAAC)B(CN)]4 (3) with AgCN and IMeMe. While [(cAAC)B(CN)(PEt3)] (6) could not obtained by reaction of 3 with PEt3, this could be achieved by reducing [(cAAC)BBr2(CN)] (2) in the presence of excess PEt3 (Scheme 3). [(cAAC)B(CN)(PEt3)] (6) represents the first known phosphine-stabilized borylene. Scheme 3. Synthesis of [(cAAC)B(CN)(PEt3)] 6. Chapter 2 Reactivity of 3 toward chalcogens and chalcogenides In further studies, the reactivity of 3 towards elemental chalcogens was investigated in detail. By using the appropriate stoichiometry, 3 could be selectively converted to the four-, five- or six-membered diborachalcogen heterocycles 9, 10, 13-15 (Scheme 4). Scheme 4. Synthesis of 9, 10, 13-15 from 3. These results were then compared with the reactivity of the constitutional isomer of 3, diborene LII towards elemental chalcogens. In this context, the 3-membered B2E heterocycles 11 and 12 could be prepared by stoichiometric reaction (Scheme 5). These could subsequently be converted into the four-membered B2E2 heterocycles 9 and 10 already mentioned (Scheme 6). Scheme 5. Synthesis of 11 und 12 from diborene LII. Scheme 6. Synthesis of 9 and 10 by ring-expansion of 11 or 12. Furthermore, borylene 3 was successfully converted to the boron dichalcogenides 16-18 with Ph2Se2, Me2Se2, and Ph2S2 (Scheme 7). 16 and 18 were also accessible by reaction of diborene LII with Ph2Se2 and Ph2S2, respectively (Scheme 7). Scheme 7. Synthesis of dichalcogenides 16-18 from borylene 3 and diborene LII. The tetrameric borylene 3 and the diborene LII show similar reactivities towards elemental chalcogens and dichalcogenides. Only the synthesis of the 3-membered B2E heterocycles 11 and 12 succeeds exclusively from LII. Chapter 3 Synthesis and reactivity of the boryl anion (19) Another aspect of this work was the synthesis and reactivity of the (cyano)hydroboryl anion 19, a rare example of a nucleophilic boron species. The access to 19 by deprotonation of the (dihydro)cyanoborane 1 (Scheme 8) is particularly noteworthy, since boron-bonded hydrogen atoms are usually hydridic in nature and not amenable to deprotonation. Only two other systems allowing the deprotonation of a borane have been described. The tricyano-boryl dianion XLVII[6a, 6b] and the synthesis of the dicyanoboryl anion XLVIII[45]. A common feature of these three species is the presence of electron-withdrawing cyanide substituents, which cause an Umpolung of the B−H bond, thus enabling deprotonation. Scheme 8. Synthesis and solid state structure of the boryl anion 19. To investigate this peculiary more closely, calculations were carried out on the BP86/def2-SVPLevel and the partial charges (NBO) of boron-bound hydrogen at BH3, [(cAAC)BH3] and 1 calculated (Figure 1). Figure 1. Partial charges (NBO) of BH3, [(cAAC)BH3] and 1 (BP86/def2-SVP). By replacing one of the hydrides in [(cAAC)BH3] by a cyano group, the boron-bound hydrogens in 1 become significantly more protic (+0.038, +0.080). Even coordination of the cAAC ligand to BH3 results in two of the previously hydridic hydrogens (BH3: partial charge: –0.101) to became much more positive (+0.050). The nucleophilic character of 19 was then examined by reactivity studies. For example, the reaction of 19 with [(PPh3)AuCl] led to the formation of the gold boryl complex [(cAAC)BH(CN)(AuPPh3)] (20) (Scheme 9). While the reaction of 19 with trityl derivatives did not yield any isolable compound, reactions with the heavier group 14 homologues R3ECl (R = Ph, E = Ge, Sn und Pb; R = Me, E = Sn) yielded a series of triorganotetrel boranes, compounds 21-24 (Schema 9). Scheme 9. Synthesis of 20-24 from boryl anion 19. The reaction of the corresponding silyl derivatives R3SiCl with 19, however, provided a different course of reaction (Scheme 10). Scheme 10. Synthesis of 25-28 from boryl anion 19. In contrast to the higher homologues, the reaction of 19 with the silyl derivatives occurs not at the soft, nucleophilic boron center but at the harder cyano nitrogen atom. The silylisonitrile compounds 25 and 26 were initially formed as the kinetic products. However, 25 was labile and transformed rapidly into the silylborane 27. In contrast, the silylborane 28 could only be obtained by irradiation of 26. In addition, the bonding situation in 26 were examined by DFT calculations at the BP86/def2-SVP level. The Kohn–Sham MO analysis revealed a HOMO with π-character over the entire CcAAC‒B‒CCN unit with contiguous π-antibonding character across the C‒N units of both donor ligands (Figure 2). Figure 2. X-ray crystallographic (left) and calculated (center) structure and HOMO (right) of 26 (BP86/def2-SVP). The electronic nature of 26 was also investigated experimentally. While the reaction of 26 with Cu(I)Cl, which yielded Cu(0), demonstrated its high reducing power, the reaction with elemental lithium in THF led to the formation of the boryl anion 19 and LiSiPh3. In contrast, the reaction of 26 with BH3∙SMe2 quantitatively gave [(cAAC)BH3] (29), while the (triphenyltin)borane 22 was quantitatively formed upon reaction with Ph3SnCl (Scheme 11). This divergent reaction behavior justifies a description of 26 as both a silylisonitrile borylene and a zwitterionic silylium boryl species. Scheme 11. Ambiphilic reactivity of 26 as a neutral silylisonitrile borylene (A) or as a zwitterionic silylium boryl species (B). Chapter 4 Synthesis and reactivity of [(cAAC)BH3] (29) Since [(cAAC)BH2(CN)] 1 can be selectively deprotonated and [(cAAC)BH3] (29) also dispays slightly protic boron-bound hydrogens (see Figure 1), attempts were made to deprotonate 29. For this purpose [(cAAC)BH3] (29) was synthesized and its reactivity towards anionic (Scheme 12) and neutral (Scheme 13) nucleophiles was investigated. Instead of a deprotonation, the reaction of [(cAAC)BH3] (29) with organolithium compounds leads tot he formation of lithium borates 30, 32 and 34, in which a hydrogen has migrated from boron to cAAC and the organic residue is bound to the boroncenter. This reactivity is applicable to sp3-, sp2- and sp-hybridized organolithium compounds. The reaction mechanism was also examined by DFT-calculations. These clearly show that [(cAAC)BH3] (29) is in equilibrium with the tautomeric borane [(cAAC‒H)BH2] by migration of one hydrogen from boron to cAAC. The strongly exergonic nucleophilic addition of the LiR bases with [(cAAC‒H)BH2] (30: ‒29.6 kcal∙mol‒1; 32: ‒12.4 kcal∙mol‒1) directly leads to the formation of the lithium borates 30 and 32. The latter then react with Me3SiCl under elimination of LiCl and Me3SiH to form the cAAC-borane adducts 31, 33 and 35 (Scheme 12). Scheme 12. Synthesis of 30-35 by direct nucleophilic substitution at sp3-boron. This two-step synthesis is remarkable because it is effectively an unusual substitution at a sp3-borane. Furthermore, the reactivity of [(cAAC)BH3] (29) towards neutral Lewis bases was investigated. Thus, [(cAAC−H)BH2(cAAC)] 36 was obtained from the reaction with cAAC and [cAAC−H)BH2(pyr)] 37 from the reaction with pyridine (Scheme 13). Scheme 13. Synthesis of 36 and 37 from 29. The mechanism of formation of 36 and 37 was also investigated by DFT calculations, which suggest reversible formation of the pyridine adduct 37. This was also confirmed experimentally in solution by a Van´t Hoff equilibrium analysis and in the solid state by removal of pyridine from 37 to yield pure 29. In contrast, the formation of 36 is irreversible. Chapter 5 Synthesis and comparison of new diborenes In the context of this work, a series of new NHC thienylborane adducts (42-50) was also synthesized and successfully reduced to the corresponding diborenes (51-58) in the majority of cases (Scheme 14). Scheme 14. Synthesis of NHC thienylborane adducts 42-50 and the rediction to the corresponding diborenes 51-58. Most of the compounds were completely characterized, enabling comparison of NMR spectroscopic and structural data. The 11B NMR resonances of 51-58 were observed within a narrow range (20.2 to 22.5 ppm), which was consistent with that of previously reported analogues X and XI (21.3 and 22.4 ppm).[17] In the solid state, the diborenes displayed a B−B distance of 1.576(4) Å (51) to 1.603(4) Å (54), with no apparent trend, depending on their substitution. These bond lenghts are almost identical to already known IMe-stabilized 1,2-diaryldiborenes (1.585(4) to 1.593(5) Å).[16-17] Some of these diborenes were not stable in solution depending on the substitution pattern, and therefore could not be isolated. Nevertheless, UV-vis spectroscopic data of 51, 52, 57 and 58 were obtained (Figure 3). Figure 3. UV-vis-absorption spectra of 51, 52, 57 and 58. Careful analysis of the UV-vis spectra of 51, 52, 57 and 58 revealed some dependence of the absorption maxima upon the substitution patter of the thienyl substituents and the NHC ligands. The comparison of diborene 51-58 showed that the substitution pattern has a decisive influence on the position of the frontier orbitals, which significantly alters the properties of the diborene. Thus, the introduction of a diphenylamino group on the thienyl residue prevents the coplanarity of the thiophenes with the diborene plane, which is why these species are very unstable due to the lack of π-conjugation. This influence on coplanarity and stability was also observed, albeit to a lesser extent, in the Me3Si-substituted thiophene derivatives. The influence of different NHCs was also investigated. While the introduction of IMeMe has nearly no influence on the absorption maxima, the use of IPr leads to a significant shift. Within this study the most stable diborene proved to be [(IMe)BTh]2 (X). KW - Borylene KW - Borylene KW - Diboren KW - Borylanion KW - cAAC KW - niedervalent KW - Diborene KW - low-valent Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158866 ER -