TY - THES A1 - Technau, Marc T1 - On Beatty sets and some generalisations thereof T1 - Über Beatty-Mengen und einige Verallgemeinerungen dieser N2 - Beatty sets (also called Beatty sequences) have appeared as early as 1772 in the astronomical studies of Johann III Bernoulli as a tool for easing manual calculations and - as Elwin Bruno Christoffel pointed out in 1888 - lend themselves to exposing intricate properties of the real irrationals. Since then, numerous researchers have explored a multitude of arithmetic properties of Beatty sets; the interrelation between Beatty sets and modular inversion, as well as Beatty sets and the set of rational primes, being the central topic of this book. The inquiry into the relation to rational primes is complemented by considering a natural generalisation to imaginary quadratic number fields. N2 - Zu gegebener Beatty-Menge \(\mathscr{B}(\alpha,\beta) = \{ n\alpha+\beta : n\in\mathbb{N} \}\) mit irrationalem \(\alpha>1\) und \(\beta\in\mathbb{R}\), sowie gegebener Primzahl \(p\) und hierzu teilerfremdem \(z\) untersuchen wir das Problem der Auffindung von Punkten \((m,\tilde{m})\) auf der modularen Hyperbel \[ \mathscr{H}_{z,p} = \{(m,\tilde{m}) \in \mathbb{Z}^2\cap[1,p )^2 : m\tilde{m}\equiv z\mod p\} \] mit \(\max\{ m, \tilde{m} \}\) so klein wie möglich, d.h. wir für gewisse \(\alpha\) beweisen nichttriviale Abschätzungen für \[ \min\{ \max\{ m, \tilde{m} \} : (m,\tilde{m})\in\mathscr{H}_{z,p}, \, m\in\mathscr{B}(\alpha,\beta) \}. \] Der Beweis fußt auf neuen Abschätzungen für unvollständige Kloosterman-Summen entlang \(\mathscr{B}(\alpha,\beta)\), welche durch das Speisen einer Methode von Banks und Shparlinski mit neuen Abschätzungen für die periodische Autokorrelation der endlichen Folge \[ 0,\, \operatorname{e}_p(y\overline{1}),\, \operatorname{e}_p(y\overline{2}),\, \ldots,\, \operatorname{e}_p(y\overline{p-1}), \quad \text{with \(y\) indivisible by \(p\)}, \] erhalten werden; (Hierbei bezeichnet \(\overline{m}\) die eindeutige natürliche Zahl \(m'\in[1,p)\) mit \(mm'\equiv 1\bmod p\) und wir schreiben \(\operatorname{e}_p(x) = \exp(2\pi i x/p)\).) Für letzteres adaptieren wir Ideen von Kloosterman. Des weiteren untersuchen wir Mengen der Form \(\{\lfloor m\alpha_1+n\alpha_2+\beta\rfloor : m,n\in\mathbb{N} \}\). Wir zeigen, dass diese stets in einer gewöhnlichen Beatty-Menge \(\mathscr{B}(\tilde{\alpha},\tilde{\beta})\) enthalten sind und geben zulässige Werte für \(\tilde{\alpha}\) und \(\tilde{\beta}\) an. Das Komplement \(\mathscr{C} = \mathscr{B}(\tilde{\alpha},\tilde{\beta}) \setminus \{\lfloor m\alpha_1+n\alpha_2+\beta\rfloor : m,n\in\mathbb{N} \}\) erweist sich als endliche Menge und wir bestimmen obere Schranken für das Supremum von \(\mathscr{C}\). Die Beweise gründen sich auf einfache Verteilungseigenschaften der Folge der Nachkommastellen \(\{n\alpha_1^{-1}\alpha_2\}\), \(n=1,2,\ldots\), sofern \(\alpha_1^{-1}\alpha_2\) irrational ist, und berufen sich anderenfalls auf die Endlichkeit der Frobenius-Zahl einer geeignet gewählten Instanz des Frobeniusschen Münzproblems. Abschließend verallgemeinern wir die Definition von Beatty-Mengen auf imaginär-quadratische Zahlkörper in einer natürlichen Weise. Hat der fragliche Zahlkörper Klassenzahl \(1\), so können wir zeigen, dass diese Beatty-artigen Mengen unendlich viele Primelemente enthalten, sofern der zugehörige Parameter \(\alpha\) nicht im betrachteten Zahlkörper enthalten ist. Für den speziellen Zahlkörper \(\mathbb{Q}(i)\) erhalten wir unter Benutzung des Hurwitzschen Kettenbruch-Algorithmus eine Zahlkörper-Variante eines früheren Resultats von Steuding und dem Autor, welches ein Beatty-Analogon des klassischen Linnikschen Satzes über die kleinste Primzahl in einer arithmetischen Progression darstellt. Die erwähnten Resultate werden durch Zahlkörper-Varianten von klassischen Ergebnissen über die Verteilung von \(\{ p\vartheta \}\), \(p=2,3,5,7,11,\ldots\), \(\vartheta\in\mathbb{R}\setminus\mathbb{Q}\), erhalten; Diese wurden kürzlich von Baier mittels der Harmanschen Siebmethode für \(\mathbb{Q}(i)\) bewiesen. Wir übertragen die zugehörigen Überlegungen auf Zahlkörper mit Klassenzahl \(1\). N2 - For Beatty sets \(\mathscr{B}(\alpha,\beta) = \{ n\alpha+\beta : n\in\mathbb{N} \}\) with irrational \(\alpha>1\) and \(\beta\in\mathbb{R}\), and \(p\) prime and coprime to \(z\), we investigate the problem of detecting points \((m,\tilde{m})\) on the modular hyperbola \[ \mathscr{H}_{z,p} = \{(m,\tilde{m}) \in \mathbb{Z}^2\cap[1,p )^2 : m\tilde{m}\equiv z\mod p\} \] with \(\max\{ m, \tilde{m} \}\) as small as possible, i.e., we obtain non-trivial estimates for \[ \min\{ \max\{ m, \tilde{m} \} : (m,\tilde{m})\in\mathscr{H}_{z,p}, \, m\in\mathscr{B}(\alpha,\beta) \} \] for certain \(\alpha\). The proof rests on new estimates for incomplete Kloosterman sums along \(\mathscr{B}(\alpha,\beta)\) which are in turn obtained on supplying a method due to Banks and Shparlinski with a new estimate for the periodic autocorrelation of the finite sequence \[ 0,\, \operatorname{e}_p(y\overline{1}),\, \operatorname{e}_p(y\overline{2}),\, \ldots,\, \operatorname{e}_p(y\overline{p-1}), \quad \text{with \(y\) indivisible by \(p\)}, \] (\(\overline{m}\) denoting the unique integer \(m'\in[1,p)\) with \(mm'\equiv 1\bmod p\) and \(\operatorname{e}_p(x) = \exp(2\pi i x/p)\), the latter being obtained from adapting an argument due to Kloosterman. Furthermore, we investigate sets of the shape \(\{\lfloor m\alpha_1+n\alpha_2+\beta\rfloor : m,n\in\mathbb{N} \}\). We show that they are always contained in some ordinary Beatty set \(\mathscr{B}(\tilde{\alpha},\tilde{\beta})\) where we give admissible choices for \(\tilde{\alpha}\) and \(\tilde{\beta}\). Their respective complement \(\mathscr{C}\) in this ordinary Beatty set is shown to be finite and bounds for the supremum of \(\mathscr{C}\) are provided. The proofs are based on basic distribution properties of the sequence of fractional parts \(\{n\alpha_1^{-1}\alpha_2\}\), \(n=1,2,\ldots\), when \(\alpha_1^{-1}\alpha_2\) is irrational, and appeal to the finiteness of the Frobenius number associated with a suitably chosen instance of the Frobenius coin problem otherwise. Lastly, we generalise the definition of Beatty sets to imaginary quadratic number fields in a natural fashion. Assuming the number field in question to have class number \(1\), we are able to show that these Beatty-type sets contain infinitely many prime elements provided that the parameter corresponding to \(\alpha\) from above is not contained in the number field. When the number field is \(\mathbb{Q}(i)\), then, using the Hurwitz continued fraction expansion, we obtain a number field analogue of a previous result of Steuding and the author, who gave a Beatty set analogue of Linnik's famous theorem on the least prime number in an arithmetic progression. These results are obtained from number field analogues of classical results about the distribution of \(\{ p\vartheta \}\), \(p=2,3,5,7,11,\ldots\), \(\vartheta\in\mathbb{R}\setminus\mathbb{Q}\), which were worked out recently by Baier for \(\mathbb{Q}(i)\) using Harman's sieve method. We generalise these arguments to imaginary quadratic number fields with class number \(1\). KW - Zahlentheorie KW - Beatty sequence KW - Kloosterman sum KW - prime number KW - distribution modulo one KW - Diophantine approximation KW - imaginary quadratic field Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-163303 SN - 978-3-95826-088-7 (Print) SN - 978-3-95826-089-4 (Online) N1 - Parallel erschienen als Druckausgabe in Würzburg University Press, ISBN 978-3-95826-088-7, 21,80 EUR. PB - Würzburg University Press CY - Würzburg ET - 1. Auflage ER - TY - THES A1 - Stumpf, Pascal T1 - On coverings and reduced residues in combinatorial number theory T1 - Über Abdeckungen und prime Restklassen in kombinatorischer Zahlentheorie N2 - Our starting point is the Jacobsthal function \(j(m)\), defined for each positive integer \(m\) as the smallest number such that every \(j(m)\) consecutive integers contain at least one integer relatively prime to \(m\). It has turned out that improving on upper bounds for \(j(m)\) would also lead to advances in understanding the distribution of prime numbers among arithmetic progressions. If \(P_r\) denotes the product of the first \(r\) prime numbers, then a conjecture of Montgomery states that \(j(P_r)\) can be bounded from above by \(r (\log r)^2\) up to some constant factor. However, the until now very promising sieve methods seem to have reached a limit here, and the main goal of this work is to develop other combinatorial methods in hope of coming a bit closer to prove the conjecture of Montgomery. Alongside, we solve a problem of Recamán about the maximum possible length among arithmetic progressions in the least (positive) reduced residue system modulo \(m\). Lastly, we turn towards three additive representation functions as introduced by Erdős, Sárközy and Sós who studied their surprising different monotonicity behavior. By an alternative approach, we answer a question of Sárközy and demostrate that another conjecture does not hold. N2 - Der Startpunkt dieser Arbeit ist die Jacobsthal-Funktion \(j(m)\), die für jede natürliche Zahl \(m\) als die kleinste Zahl definiert ist, so dass je \(j(m)\) aufeinanderfolgende ganze Zahlen mindestens eine zu \(m\) teilerfremde Zahl enthalten. Es hat sich herausgestellt, dass Verbesserungen oberer Abschätzungen für \(j(m)\) gleichzeitig zu Fortschritten im Verständnis der Verteilung der Primzahlen in arithmetischen Folgen führen. Bezeichnet \(P_r\) das Produkt der ersten \(r\) Primzahlen, dann besagt eine Vermutung von Montgomery, dass \(j(P_r)\) bis auf einen konstanten Faktor durch \(r (\log r)^2\) von oben abgeschätzt werden kann. Allerdings scheinen die hier bisher sehr vielversprechenden Siebmethoden eine Grenze erreicht zu haben, und das Hauptziel dieser Arbeit ist es andere kombinatorische Methoden zu entwickeln, in der Hoffnung einem Beweis der Vermutung von Montgomery ein wenig näher zu kommen. Auf diesem Weg lösen wir nebenbei ein Problem von Recamán über die maximal mögliche Länge unter den arithmetischen Folgen im kleinsten (positiven) primen Restklassensystem modulo \(m\). Außerdem wenden wir uns am Ende drei additiven Darstellungsfunktionen zu, wie sie von Erdős, Sárközy und Sós eingeführt wurden, die deren überraschend unterschiedliches Monotonieverhalten untersucht haben. Mit einem alternativen Ansatz beantworten wir hier eine Frage von Sárközy und zeigen auf, dass eine andere Vermutung nicht bestehen kann. KW - Kombinatorische Zahlentheorie KW - coverings KW - reduced residues KW - Jacobsthal function Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-293504 ER - TY - THES A1 - Srichan, Teerapat T1 - Discrete Moments of Zeta-Functions with respect to random and ergodic transformations T1 - Diskrete Momente von Zetafunktionen mit zufälligen und ergodentheoretischen Transformationen N2 - In the thesis discrete moments of the Riemann zeta-function and allied Dirichlet series are studied. In the first part the asymptotic value-distribution of zeta-functions is studied where the samples are taken from a Cauchy random walk on a vertical line inside the critical strip. Building on techniques by Lifshits and Weber analogous results for the Hurwitz zeta-function are derived. Using Atkinson’s dissection this is even generalized to Dirichlet L-functions associated with a primitive character. Both results indicate that the expectation value equals one which shows that the values of these zeta-function are small on average. The second part deals with the logarithmic derivative of the Riemann zeta-function on vertical lines and here the samples are with respect to an explicit ergodic transformation. Extending work of Steuding, discrete moments are evaluated and an equivalent formulation for the Riemann Hypothesis in terms of ergodic theory is obtained. In the third and last part of the thesis, the phenomenon of universality with respect to stochastic processes is studied. It is shown that certain random shifts of the zeta-function can approximate non-vanishing analytic target functions as good as we please. This result relies on Voronin's universality theorem. N2 - Die Dissertation behandelt diskrete Momente der Riemannschen Zetafunktion und verwandter Dirichletreihen. Im ersten Teil wird die asymptotische Werteverteilung von Zetafunktionen studiert, wobei die Werte zufällig auf einer vertikalen Geraden im kritischen Streifen gemäß einer Cauchyschen Irrfahrt summiert werden. Auf einer Vorarbeit von Lifshits und Weber aufbauend werden analoge Resultate für die Hurwitz Zetafunktion erzielt. Mit Hilfe der Atkinsonschen Formel gelingt eine weitere Verallgemeinerung für Dirichletsche L-Funktion zu einem primitiven Charakter. Beide Ergebnisse zeigen, dass der Erwartungswert stets eins beträgt, womit die jeweilige Zetafunktion im Mittel betragsmäßig klein ist. Der zweite Teil befasst sich mit der logarithmischen Ableitung der Riemannschen Zetafunktion auf vertikalen Geraden, wobei hier die Werte einer ergodischen Transformation entstammen. Eine Arbeit von Steuding verallgemeinernd werden diskrete Momente berechnet und eine äquivalente Formulierung der Riemannschen Vermutung in ergodentheoretischer Sprache erzielt. Im dritten und letzten Teil der Dissertation wird das Phänomen der Universalität unter dem Aspekt stochastischer Prozesse studiert. Es wird gezeigt, dass gewisse zufällige Translate der Zetafunktion nullstellenfreie analytische Zielfunktionen beliebig gut approximieren. Dieses Ergebnis basiert auf dem Voroninschen Universalitätssatz. KW - Riemannsche Zetafunktion KW - Zeta-function KW - random walk KW - ergodic transformation KW - Dirichlet-Reihe KW - Riemann Hypothesis Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-118395 ER - TY - THES A1 - Sourmelidis, Athanasios T1 - Universality and Hypertranscendence of Zeta-Functions T1 - Universalität und Hypertranszendenz von Zetafunktionen N2 - The starting point of the thesis is the {\it universality} property of the Riemann Zeta-function $\zeta(s)$ which was proved by Voronin in 1975: {\it Given a positive number $\varepsilon>0$ and an analytic non-vanishing function $f$ defined on a compact subset $\mathcal{K}$ of the strip $\left\{s\in\mathbb{C}:1/2 < \Re s< 1\right\}$ with connected complement, there exists a real number $\tau$ such that \begin{align}\label{continuous} \max\limits_{s\in \mathcal{K}}|\zeta(s+i\tau)-f(s)|<\varepsilon. \end{align} } In 1980, Reich proved a discrete analogue of Voronin’s theorem, also known as {\it discrete universality theorem} for $\zeta(s)$: {\it If $\mathcal{K}$, $f$ and $\varepsilon$ are as before, then \begin{align}\label{discretee} \liminf\limits_{N\to\infty}\dfrac{1}{N}\sharp\left\{1\leq n\leq N:\max\limits_{s\in \mathcal{K}}|\zeta(s+i\Delta n)-f(s)|<\varepsilon\right\}>0, \end{align} where $\Delta$ is an arbitrary but fixed positive number. } We aim at developing a theory which can be applied to prove the majority of all so far existing discrete universality theorems in the case of Dirichlet $L$-functions $L(s,\chi)$ and Hurwitz zeta-functions $\zeta(s;\alpha)$, where $\chi$ is a Dirichlet character and $\alpha\in(0,1]$, respectively. Both of the aforementioned classes of functions are generalizations of $\zeta(s)$, since $\zeta(s)=L(s,\chi_0)=\zeta(s;1)$, where $\chi_0$ is the principal Dirichlet character mod 1. Amongst others, we prove statement (2) where instead of $\zeta(s)$ we have $L(s,\chi)$ for some Dirichlet character $\chi$ or $\zeta(s;\alpha)$ for some transcendental or rational number $\alpha\in(0,1]$, and instead of $(\Delta n)_{n\in\mathbb{N}}$ we can have: \begin{enumerate} \item \textit{Beatty sequences,} \item \textit{sequences of ordinates of $c$-points of zeta-functions from the Selberg class,} \item \textit{sequences which are generated by polynomials.} \end{enumerate} In all the preceding cases, the notion of {\it uniformly distributed sequences} plays an important role and we draw attention to it wherever we can. Moreover, for the case of polynomials, we employ more advanced techniques from Analytic Number Theory such as bounds of exponential sums and zero-density estimates for Dirichlet $L$-functions. This will allow us to prove the existence of discrete second moments of $L(s,\chi)$ and $\zeta(s;\alpha)$ on the left of the vertical line $1+i\mathbb{R}$, with respect to polynomials. In the case of the Hurwitz Zeta-function $\zeta(s;\alpha)$, where $\alpha$ is transcendental or rational but not equal to $1/2$ or 1, the target function $f$ in (1) or (2), where $\zeta(\cdot)$ is replaced by $\zeta(\cdot;\alpha)$, is also allowed to have zeros. Until recently there was no result regarding the universality of $\zeta(s;\alpha)$ in the literature whenever $\alpha$ is an algebraic irrational. In the second half of the thesis, we prove that a weak version of statement \eqref{continuous} for $\zeta(s;\alpha)$ holds for all but finitely many algebraic irrational $\alpha$ in $[A,1]$, where $A\in(0,1]$ is an arbitrary but fixed real number. Lastly, we prove that the ordinary Dirichlet series $\zeta(s;f)=\sum_{n\geq1}f(n)n^{-s}$ and $\zeta_\alpha(s)=\sum_{n\geq1}\lfloor P(\alpha n+\beta)\rfloor^{-s}$ are hypertranscendental, where $f:\mathbb{N}\to\mathbb{C}$ is a {\it Besicovitch almost periodic arithmetical function}, $\alpha,\beta>0$ are such that $\lfloor\alpha+\beta\rfloor>1$ and $P\in\mathbb{Z}[X]$ is such that $P(\mathbb{N})\subseteq\mathbb{N}$. N2 - Der Ausgangspunkt dieser Dissertation ist die folgende {\it Universalit\"atseigenschaft} der Riemannschen Zetafunktion $\zeta(s)$, die von Voronin 1975 nachgewiesen wurde: {\it Zu gegebenem $\varepsilon>0$ und einer analytischen nullstellenfreien Funktion $f$, die auf einer kompakten Teilmenge $\mathcal{K}$ des Streifens $\left\{s\in\mathbb{C}:1/2 < \Re s< 1\right\}$ mit zusammenh\"angendem Komplement definiert ist, existiert eine reelle Zahl $\tau$, so dass \begin{align}\label{continuouus} \max\limits_{s\in \mathcal{K}}|\zeta(s+i\tau)-f(s)|<\varepsilon.\tag*{(1)} \end{align} } Im Jahr 1980 bewies Reich folgendes diskrete Analogon des Voroninschen Satzes, welches auch als {\it diskretes Universalit\"atstheorem} f\"ur $\zeta(s)$ bekannt ist: {\it Sind $\mathcal{K}$, $f$ und $\varepsilon$ wie oben, so gilt \begin{align}\label{discreteeee} \liminf\limits_{N\to\infty}\dfrac{1}{N}\sharp\left\{1\leq n\leq N:\max\limits_{s\in \mathcal{K}}|\zeta(s+i\Delta n)-f(s)|<\varepsilon\right\}>0,\tag*{(2)} \end{align} wobei $\Delta$ eine beliebige, aber fest gew\"ahlte positive reelle Zahl bezeichnet. } Unser Ziel ist die Entwicklung einer Theorie, welche die Mehrheit der bislang bewiesenen diskreten Universalit\"atstheoreme im Fall Dirichletscher $L$-Funktionen $L(s,\chi)$ und Hurwitzscher Zetafunktionen $\zeta(s;\alpha)$ (wobei $\chi$ ein Dirichlet-Charakter ist und $\alpha\in(0,1]$) umfasst. Beide genannten Funktionenklassen verallgemeinern $\zeta(s)$, denn $\zeta(s)=L(s,\chi_0)=\zeta(s;1)$, wobei $\chi_0$ der Hauptcharakter modulo 1 ist. Neben anderen Resultaten beweisen wir Aussage (2) mit $L(s,\chi)$ f\"ur einen beliebigen Dirichlet-Charakter $\chi$ bzw. $\zeta(s;\alpha)$ f\"ur ein transzendentes oder rationales $\alpha\in(0,1]$ anstelle von $\zeta(s)$ sowie $(\Delta n)_{n\in\mathbb{N}}$ ersetzt durch eine der nachstehenden Folgen: \begin{enumerate} \item \textit{Beatty-Folgen,} \item \textit{Folgen von Imagin\"arteilen der $c$-Punkte einer beliebigen Zetafunktion der Selbergklasse,} \item \textit{Folgen, die durch ein Polynom generiert werden.} \end{enumerate} In all diesen F\"allen spielt der Begriff einer {\it gleichverteilten Folge} eine wichtige Rolle, und wir schenken diesem Aspekt besondere Beachtung im Folgenden. Speziell f\"ur den Fall der Polynome benutzen wir weitere fortgeschrittene Techniken der Analytischen Zahlentheorie, wie besipielsweise Schranken f\"ur Exponentialsummen und Nullstellen-Dichtigkeitsabsch\"atzungen f\"ur Dirichletsche $L$-Funktionen. Dies erlaubt uns, die Existenz gewisser diskreter quadratischer Momente f\"ur $L(s,\chi)$ und $\zeta(s;\alpha)$ links der vertikalen Geraden $1+i\mathbb{R}$ im Polynom-Fall zu beweisen. Im Fall der Hurwitzschen Zetafunktion $\zeta(s;\alpha)$, wobei $\alpha$ transzendent oder rational, aber ungleich $1/2$ oder 1 ist, kann die zu approximierende Funktion $f$ in (1) oder (2), wobei $\zeta(\cdot)$ durch $\zeta(\cdot;\alpha)$ zu ersetzen ist, sogar Nullstellen besitzen. Bis vor kurzem waren hinsichtlich der Universalit\"at von $\zeta(s;\alpha)$ in der Literatur f\"ur algebraisch-irrationale $\alpha$ keine Ergebnisse erzielt worden. Im zweiten Teil der Dissertation beweisen wir eine schwache Version der Aussage \eqref{continuous} f\"ur $\zeta(s;\alpha)$ f\"ur alle algebraisch-irrationalen $\alpha\in[A,1]$ bis auf h\"ochstens endlich viele Ausnahmen, wobei $A\in(0,1]$ eine beliebige, aber fest gew\"ahlte reelle Zahl ist. Schlie\ss{}lich weisen wir die Hypertranszendenz der gew\"ohnlichen Dirichlet-Reihen $\zeta(s;f)=\sum_{n\geq1}f(n)n^{-s}$ und $\zeta_\alpha(s)=\sum_{n\geq1}\lfloor P(\alpha n+\beta)\rfloor^{-s}$ nach, wobei $f:\mathbb{N}\to\mathbb{C}$ irgendeine {\it Besicovitch-fastperiodische zahlentheoretische Funktion} ist, $\alpha,\beta>0$ der Ungleichung $\lfloor\alpha+\beta\rfloor>1$ gen\"ugt und $P\in\mathbb{Z}[X]$ die Bedingung $P(\mathbb{N})\subseteq\mathbb{N}$ erf\"ullt. KW - Analytische Zahlentheorie KW - Universality KW - Zeta-Functions KW - Hypertranscendence KW - Zetafunktion KW - Universalität KW - Dirichlet-Reihe Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193699 ER - TY - THES A1 - Schmeller, Christof T1 - Uniform distribution of zero ordinates of Epstein zeta-functions T1 - Gleichverteilung von Imaginärteilen nichttrivialer Nullstellen der Epsteinschen Zetafunktion N2 - The dissertation investigates the wide class of Epstein zeta-functions in terms of uniform distribution modulo one of the ordinates of their nontrivial zeros. Main results are a proof of a Landau type theorem for all Epstein zeta-functions as well as uniform distribution modulo one for the zero ordinates of all Epstein zeta-functions asscoiated with binary quadratic forms. N2 - Die vorliegende Arbeit untersucht, bei welchen Epsteinschen Zetafunktionen die Imaginärteile der nichttrivialen Nullstellen gleichverteilt modulo eins sind. Als zentrales Ergebnis wird dies für alle Epsteinschen Zetafunktionen, die durch binäre quadratische Formen gebildet werden, bewiesen. Außerdem wird unter anderem Landau's Theorem für alle Epsteinschen Zetafunktionen gezeigt. KW - Zetafunktion KW - Epstein, Paul KW - Gleichverteilung KW - Epstein zeta-function KW - Uniform distribution modulo one KW - Landau type theorem Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-251999 ER - TY - THES A1 - Rehberg, Martin T1 - Weighted uniform distribution related to primes and the Selberg Class T1 - Gewichtete Gleichverteilung im Zusammenhang mit Primzahlen und der Selberg-Klasse N2 - In the thesis at hand, several sequences of number theoretic interest will be studied in the context of uniform distribution modulo one.

In the first part we deduce for positive and real \(z\not=1\) a discrepancy estimate for the sequence \( \left((2\pi )^{-1}(\log z)\gamma_a\right) \), where \(\gamma_a\) runs through the positive imaginary parts of the nontrivial \(a\)-points of the Riemann zeta-function. If the considered imaginary parts are bounded by \(T\), the discrepancy of the sequence \( \left((2\pi )^{-1}(\log z)\gamma_a\right) \) tends to zero like \( (\log\log\log T)^{-1} \) as \(T\rightarrow \infty\). The proof is related to the proof of Hlawka, who determined a discrepancy estimate for the sequence containing the positive imaginary parts of the nontrivial zeros of the Riemann zeta-function.

The second part of this thesis is about a sequence whose asymptotic behaviour is motivated by the sequence of primes. If \( \alpha\not=0\) is real and \(f\) is a function of logarithmic growth, we specify several conditions such that the sequence \( (\alpha f(q_n)) \) is uniformly distributed modulo one. The corresponding discrepancy estimates will be stated. The sequence \( (q_n)\) of real numbers is strictly increasing and the conditions on its counting function \( Q(x)=\#\lbrace q_n \leq x \rbrace \) are satisfied by primes and primes in arithmetic progessions. As an application we obtain that the sequence \( \left( (\log q_n)^K\right)\) is uniformly distributed modulo one for arbitrary \(K>1\), if the \(q_n\) are primes or primes in arithmetic progessions. The special case that \(q_n\) equals the \(\textit{n}\)th prime number \(p_n\) was studied by Too, Goto and Kano.

In the last part of this thesis we study for irrational \(\alpha\) the sequence \( (\alpha p_n)\) of irrational multiples of primes in the context of weighted uniform distribution modulo one. A result of Vinogradov concerning exponential sums states that this sequence is uniformly distributed modulo one. An alternative proof due to Vaaler uses L-functions. We extend this approach in the context of the Selberg class with polynomial Euler product. By doing so, we obtain two weighted versions of Vinogradov's result: The sequence \( (\alpha p_n)\) is \( (1+\chi_{D}(p_n))\log p_n\)-uniformly distributed modulo one, where \( \chi_D\) denotes the Legendre-Kronecker character. In the proof we use the Dedekind zeta-function of the quadratic number field \( \Bbb Q (\sqrt{D})\). As an application we obtain in case of \(D=-1\), that \( (\alpha p_n)\) is uniformly distributed modulo one, if the considered primes are congruent to one modulo four. Assuming additional conditions on the functions from the Selberg class we prove that the sequence \( (\alpha p_n) \) is also \( (\sum_{j=1}^{\nu_F}{\alpha_j(p_n)})\log p_n\)-uniformly distributed modulo one, where the weights are related to the Euler product of the function. N2 - In der vorliegenden Arbeit werden verschiedene zahlentheoretisch interessante Folgen im Kontext der Theorie der Gleichverteilung modulo eins untersucht.

Im ersten Teil wird für positiv reelles \( z\not = 1\) für die Folge \( \left((2\pi )^{-1}(\log z)\gamma_a\right) \) eine Diskrepanzabschätzung hergeleitet, wobei \( \gamma_a\) die positiven Imaginärteile der nichttrivialen \(a\)-Stellen der Riemannschen Zetafunktion durchlaufe: Sind die eingehenden Imaginäteile durch \(T\) beschränkt, dann strebt für \(T\rightarrow \infty\) die Diskrepanz der Folge \( \left((2\pi )^{-1}(\log z)\gamma_a\right) \) wie \( (\log\log\log T)^{-1}\) gegen Null. Der Beweis knüpft an das Vorgehen von Hlawka an, welcher eine Diskrepanzabschätzung für die Folge, in der die positiven Imaginärteile der nichttrivialen Nullstellen der Riemannschen Zetafunktion eingehen, ermittelte.

Der zweite Teil der Arbeit widmet sich einer Folge deren Wachstumsverhalten durch Primzahlen motiviert ist. Ist \(\alpha\not = 0\) reell und \(f\) eine logarithmisch wachsende Funktion, dann werden mehrere Bedingungen an \(f\) angegeben, unter denen die Folge \( (\alpha f(q_n)) \) gleichverteilt modulo eins ist. Entsprechende Diskrepanzabschätzungen der Folgen werden angegeben. Die Folge reeller Zahlen \( (q_n) \) ist selbst streng wachsend und die Bedingungen, die dabei an deren Zählfunktion \(Q(x)=\#\lbrace q_n \leq x \rbrace\) gestellt werden, sind von Primzahlen und Primzahlen in arithmetischen Progressionen erfällt. Als Anwendung ergibt sich, dass die Folge \( \left( (\log q_n)^K\right) \) für beliebiges \(K>1\) gleichverteilt modulo eins ist, etwa wenn die \(q_n\) Primzahlen oder Primzahlen in arithmetischen Progessionen durchlaufen. Der Spezialfall das \(q_n\) als die \(n\)te Primzahl \(p_n\) gewählt wird, wurde von Too, Goto und Kano untersucht.

Im letzten Teil der Arbeit wird für irrationales \(\alpha\) die Folge \( (\alpha p_n) \) irrationaler Vielfacher von Primzahlen im Rahmen der gewichteten Gleichverteilung modulo eins untersucht. Nach einem Resultat von Vinogradov über Exponentialsummen ist diese Folge gleichverteilt modulo eins. Ein alternativer Beweis von Vaaler verwendet L-Funktionen. Dieser Ansatz wird im Kontext von Funktionen aus der Selberg-Klasse mit polynomiellem Eulerprodukt ausgebaut. Dabei werden zwei gewichtete Versionen des vinogradovschen Resultats gewonnen: Die Folge \( (\alpha p_n) \) ist \( (1+\chi_{D}(p_n))\log p_n\)-gleichverteilt modulo eins, wobei \(\chi_{D}\) den Legendre-Kronecker Charakter bezeichnet. Der Beweis verwendet die Dedekindsche Zetafunktion zum quadratischen Zahlkörper \(\Bbb Q (\sqrt{D})\). Als Anwendung ergibt sich etwa für \(D=-1\), dass \( (\alpha p_n) \) gleichverteilt modulo eins ist, wenn die durchlaufenen Primzahlen kongruent zu eins modulo vier sind. Unter zusätzlichen Bedingungen an die Funktionen aus der Selberg-Klasse lässt sich weiter zeigen, das die Folge \( (\alpha p_n) \) auch \( (\sum_{j=1}^{\nu_F}{\alpha_j(p_n)})\log p_n\)-gleichverteilt modulo eins, wobei die Gewichte in direktem Zusammenhang mit dem Eulerprodukt der Funktion stehen. KW - Zahlentheorie KW - weighted uniform distribution modulo one KW - gewichtete Gleichverteilung modulo eins KW - Selberg Class KW - prime number KW - quadratic number field KW - Selberg Klasse KW - Diskrepanz KW - Primzahl KW - Selbergsche L-Reihe KW - Quadratischer Zahlkörper KW - Zetafunktion KW - Gleichverteilung Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-209252 ER - TY - THES A1 - Oswald, Nicola T1 - Hurwitz's Complex Continued Fractions - A Historical Approach and Modern Perspectives T1 - Hurwitz' komplexe Kettenbrüche N2 - The thesis ’Hurwitz’s Complex Continued Fractions - A Historical Approach and Modern Perspectives.’ deals with two branches of mathematics: Number Theory and History of Mathematics. On the first glimpse this might be unexpected, however, on the second view this is a very fruitful combination. Doing research in mathematics, it turns out to be very helpful to be aware of the beginnings and development of the corresponding subject. In the case of Complex Continued Fractions the origins can easily be traced back to the end of the 19th century (see [Perron, 1954, vl. 1, Ch. 46]). One of their godfathers had been the famous mathematician Adolf Hurwitz. During the study of his transformation from real to complex continued fraction theory [Hurwitz, 1888], our attention was arrested by the article ’Ueber eine besondere Art der Kettenbruch-Entwicklung complexer Grössen’ [Hurwitz, 1895] from 1895 of an author called J. Hurwitz. We were not only surprised when we found out that he was the elder unknown brother Julius, furthermore, Julius Hurwitz introduced a complex continued fraction that also appeared (unmentioned) in an ergodic theoretical work from 1985 [Tanaka, 1985]. Those observations formed the Basis of our main research questions: What is the historical background of Adolf and Julius Hurwitz and their mathematical studies? and What modern perspectives are provided by their complex continued fraction expansions? In this work we examine complex continued fractions from various viewpoints. After a brief introduction on real continued fractions, we firstly devote ourselves to the lives of the brothers Adolf and Julius Hurwitz. Two excursions on selected historical aspects in respect to their work complete this historical chapter. In the sequel we shed light on Hurwitz’s, Adolf’s as well as Julius’, approaches to complex continued fraction expansions. Correspondingly, in the following chapter we take a more modern perspective. Highlights are an ergodic theoretical result, namely a variation on the Döblin-Lenstra Conjecture [Bosma et al., 1983], as well as a result on transcendental numbers in tradition of Roth’s theorem [Roth, 1955]. In two subsequent chapters we are concernced with arithmetical properties of complex continued fractions. Firstly, an analogue to Marshall Hall’s Theorem from 1947 [Hall, 1947] on sums of continued fractions is derived. Secondly, a general approach on new types of continued fractions is presented building on the structural properties of lattices. Finally, in the last chapter we take up this approach and obtain an upper bound for the approximation quality of diophantine approximations by quotients of lattice points in the complex plane generalizing a method of Hermann Minkowski, improved by Hilde Gintner [Gintner, 1936], based on ideas from geometry of numbers. N2 - Die Arbeit ’Hurwitz’s Complex Continued Fractions - A Historical Approach and Modern Perspectives.’ beschäftigt sich übergreifend mit zwei Teilbereichen der Mathematik: Zahlentheorie und Geschichte der Mathematik. Im ersten Teil wird ein historischer Blick auf das Leben und Wirken der Gebrüder Adolf und Julius Hurwitz gegeben. Insbesondere ihre akademische Laufbahn und ihr Einfluss auf die Entwicklung der komplexen Kettebruchtheorie werden beleuchtet. Im zweiten zahlentheoretischen Teil werden verschiedene Perspektiven auf Ergebnisse zur Approximationsgüte gegben. Hier stehen ein ergodentheoretisches Resultat, ein komplexes Analogon zur Döblin-Lenstra-Vermutung, im Vordergrund, sowie eine Verallgemeinerung auf Gitter. Aufbauend auf Methoden aus der ’Geometrie der Zahlen’ von Hermann Minkowski wird eine obere Approximationsschranke für allgemeine Gitter gegeben. KW - Adolf Hurwitz KW - Complex Continued Fractions KW - Julius Hurwitz KW - Brüder Hurwitz KW - Kettenbruch Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-106040 ER - TY - THES A1 - Mönius, Katja T1 - Algebraic and Arithmetic Properties of Graph Spectra T1 - Algebraische und Arithmetische Eigenschaften von Graph Spektren N2 - In the present thesis we investigate algebraic and arithmetic properties of graph spectra. In particular, we study the algebraic degree of a graph, that is the dimension of the splitting field of the characteristic polynomial of the associated adjacency matrix over the rationals, and examine the question whether there is a relation between the algebraic degree of a graph and its structural properties. This generalizes the yet open question ``Which graphs have integral spectra?'' stated by Harary and Schwenk in 1974. We provide an overview of graph products since they are useful to study graph spectra and, in particular, to construct families of integral graphs. Moreover, we present a relation between the diameter, the maximum vertex degree and the algebraic degree of a graph, and construct a potential family of graphs of maximum algebraic degree. Furthermore, we determine precisely the algebraic degree of circulant graphs and find new criteria for isospectrality of circulant graphs. Moreover, we solve the inverse Galois problem for circulant graphs showing that every finite abelian extension of the rationals is the splitting field of some circulant graph. Those results generalize a theorem of So who characterized all integral circulant graphs. For our proofs we exploit the theory of Schur rings which was already used in order to solve the isomorphism problem for circulant graphs. Besides that, we study spectra of zero-divisor graphs over finite commutative rings. Given a ring \(R\), the zero-divisor graph over \(R\) is defined as the graph with vertex set being the set of non-zero zero-divisors of \(R\) where two vertices \(x,y\) are adjacent if and only if \(xy=0\). We investigate relations between the eigenvalues of a zero-divisor graph, its structural properties and the algebraic properties of the respective ring. N2 - In der vorliegenden Dissertation untersuchen wir algebraische und arithmetische Eigenschaften von Graph Spektren. Insbesondere studieren wir den algebraischen Grad eines Graphen, d.h. die Dimension des Zerfällungskörpers des charakteristischen Polynoms der zugehörigen Adjazenzmatrix über den rationalen Zahlen, und beschäftigen uns mit der Frage, ob es einen Zusammenhang zwischen dem algebraischen Grad eines Graphen und seinen strukturellen Eigenschaften gibt. Dies verallgemeinert die bis heute noch offene Fragestellung "Welche Graphen haben ganzzahliges Spektrum?", welche 1974 von Harary und Schwenk aufgeworfen wurde. Wir geben einen Überblick über verschiedene Graphprodukte, da diese oftmals hilfreich sind bei der Untersuchung von Graph Spektren, und konstruieren damit Familien von integralen Graphen. Außerdem stellen wir einen Zusammenhang zwischen dem Diameter, dem maximalen Eckengrad und dem algebraischen Grad von Graphen vor, und konstruieren eine potenzielle Familie von Graphen, welche alle maximalen algebraischen Grad haben. Zudem bestimmen wir den algebraischen Grad zirkulärer Graphen und finden neue Kriterien für Isospektralität solcher Graphen. Darüber hinaus lösen wir das inverse Galois Problem für zirkuläre Graphen, indem wir zeigen, dass jede endliche abelsche Erweiterung der rationalen Zahlen Zerfällungskörper eines zirkulären Graphen ist. Diese Resultate verallgemeinern einen Satz von So, in dem sämtliche integrale zirkuläre Graphen charakterisiert werden. Für unsere Beweise verwenden wir die Theorie der Schur Ringe, die bereits verwendet wurde, um das Isomorphieproblem für zirkuläre Graphen zu lösen. Zu guter Letzt untersuchen wir Spektren von Nullteilergraphen über kommutativen Ringen. Zu einem gegebenen Ring \(R\) ist der zugehörige Nullteilergraph über \(R\) definiert als der Graph, dessen Eckenmenge den Nullteilern von \(R\) entspricht, und in dem je zwei Ecken \(x,y\) benachbart sind, wenn \(xy=0\) gilt. Wir studieren Zusammenhänge zwischen den Eigenwerten von Nullteilergraphen, deren strukturellen Eigenschaften und den algebraischen Eigenschaften der entsprechenden Ringe. KW - Algebraische Zahlentheorie KW - Graph KW - Graph spectrum KW - Integral graph KW - Cayley graph KW - Schur ring KW - Zero-divisor graph KW - Kombinatorik Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230850 ER - TY - THES A1 - Meyer, Michael T1 - Practical isogeny-based cryptography T1 - Praktische Isogenie-basierte Kryptographie N2 - This thesis aims at providing efficient and side-channel protected implementations of isogeny-based primitives, and at their application in threshold protocols. It is based on a sequence of academic papers. Chapter 3 reviews the original variable-time implementation of CSIDH and introduces several optimizations, e.g. a significant improvement of isogeny computations by using both Montgomery and Edwards curves. In total, our improvements yield a speedup of 25% compared to the original implementation. Chapter 4 presents the first practical constant-time implementation of CSIDH. We describe how variable-time implementations of CSIDH leak information on private keys, and describe ways to mitigate this. Further, we present several techniques to speed up the implementation. In total, our constant-time implementation achieves a rather small slowdown by a factor of 3.03. Chapter 5 reviews practical fault injection attacks on CSIDH and presents countermeasures. We evaluate different attack models theoretically and practically, using low-budget equipment. Moreover, we present countermeasures that mitigate the proposed fault injection attacks, only leading to a small performance overhead of 7%. Chapter 6 initiates the study of threshold schemes based on the Hard Homogeneous Spaces (HHS) framework of Couveignes. Using the HHS equivalent of Shamir’s secret sharing in the exponents, we adapt isogeny based schemes to the threshold setting. In particular, we present threshold versions of the CSIDH public key encryption and the CSI-FiSh signature scheme. Chapter 7 gives a sieving algorithm for finding pairs of consecutive smooth numbers that utilizes solutions to the Prouhet-Tarry-Escott (PTE) problem. Recent compact isogeny-based protocols, namely B-SIDH and SQISign, both require large primes that lie between two smooth integers. Finding such a prime can be seen as a special case of finding twin smooth integers under the additional stipulation that their sum is a prime. N2 - Die vorliegende Dissertation stellt effiziente und Seitenkanal-geschützte Implementierungen Isogenie-basierter Verfahren bereit, und behandelt deren Verwendung in Threshold-Protokollen. Sie basiert auf einer Reihe von Veröffentlichungen. Kapitel 3 untersucht die originale variable-time Implementierung von CSIDH und beschreibt einige Optimierungen, wie etwa die effizientere Berechnung von Isogenien durch die Verwendung von Montgomery- und Edwards-Kurven. Insgesamt erreichen die Optimierungen eine Beschleuningung von 25% gegenüber der Referenzimplementierung. Kapitel 4 enthält die erste effiziente constant-time Implementierung von CSIDH. Es beschreibt inwiefern variable-time Implementierungen Informationen über private Schlüssel liefern, und entsprechende Gegenmaßnahmen. Des Weiteren werden einige Techniken zur Optimierung der Implementierung beschrieben. Insgesamt ist die constant-time Implementierung nur etwa 3x langsamer. Kapitel 5 untersucht praktische Fault-injection Attacken auf CSIDH und beschreibt Gegenmaßnahmen. Es betrachtet verschiedene Angriffsmodelle theoretisch und praktisch unter der Verwendung von low-budget Equipment. Die Gegenmaßnahmen führen zu einer sehr kleinen Performance-Verschlechterung von 7%. Kapitel 6 initiiert die Untersuchung von Threshold-Verfahren basierend auf Hard Homogeneous Spaces (HHS). Unter Verwendung der HHS-Version von Shamir Secret Sharing im Exponenten, werden Threshold-Varianten der CSIDH Verschlüsselung und des CSI-FiSh Signaturschemas definiert. Kapitel 7 enthält einen Sieb-Algorithmus zur Suche nach Paaren von aufeinanderfolgenden glatten Zahlen, unter Verwendung von Lösungen des Prouhet-Tarry-Escott-Problems. Die kürzlich veröffentlichten Isogenie-Verfahren B-SIDH und SQISign benötigen große Primzahlen, die zwischen zwei glatten ganzen Zahlen liegen. Die Suche nach solchen Primzahlen ist ein Spezialfall der Suche nach glatten benachbarten Zahlen, unter der zusätzlichen Bedingung dass deren Summe prim ist. KW - Kryptologie KW - Post-Quantum-Kryptografie KW - isogeny-based cryptography KW - CSIDH KW - elliptic curves KW - Elliptische Kurve Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246821 ER - TY - THES A1 - Christ, Thomas T1 - Value-distribution of the Riemann zeta-function and related functions near the critical line T1 - Werteverteilung der Riemannschen Zetafunktion und verwandter Funktionen nahe der kritischen Geraden N2 - The Riemann zeta-function forms a central object in multiplicative number theory; its value-distribution encodes deep arithmetic properties of the prime numbers. Here, a crucial role is assigned to the analytic behavior of the zeta-function on the so called critical line. In this thesis we study the value-distribution of the Riemann zeta-function near and on the critical line. Amongst others we focus on the following. PART I: A modified concept of universality, a-points near the critical line and a denseness conjecture attributed to Ramachandra. The critical line is a natural boundary of the Voronin-type universality property of the Riemann zeta-function. We modify Voronin's concept by adding a scaling factor to the vertical shifts that appear in Voronin's universality theorem and investigate whether this modified concept is appropriate to keep up a certain universality property of the Riemann zeta-function near and on the critical line. It turns out that it is mainly the functional equation of the Riemann zeta-function that restricts the set of functions which can be approximated by this modified concept around the critical line. Levinson showed that almost all a-points of the Riemann zeta-function lie in a certain funnel-shaped region around the critical line. We complement Levinson's result: Relying on arguments of the theory of normal families and the notion of filling discs, we detect a-points in this region which are very close to the critical line. According to a folklore conjecture (often attributed to Ramachandra) one expects that the values of the Riemann zeta-function on the critical line lie dense in the complex numbers. We show that there are certain curves which approach the critical line asymptotically and have the property that the values of the zeta-function on these curves are dense in the complex numbers. Many of our results in part I are independent of the Euler product representation of the Riemann zeta-function and apply for meromorphic functions that satisfy a Riemann-type functional equation in general. PART II: Discrete and continuous moments. The Lindelöf hypothesis deals with the growth behavior of the Riemann zeta-function on the critical line. Due to classical works by Hardy and Littlewood, the Lindelöf hypothesis can be reformulated in terms of power moments to the right of the critical line. Tanaka showed recently that the expected asymptotic formulas for these power moments are true in a certain measure-theoretical sense; roughly speaking he omits a set of Banach density zero from the path of integration of these moments. We provide a discrete and integrated version of Tanaka's result and extend it to a large class of Dirichlet series connected to the Riemann zeta-function. N2 - Die Riemannsche Zetafunktion ist ein zentraler Gegenstand der multiplikativen Zahlentheorie; in ihrer Werteverteilung liegen wichtige arithmetische Eigenschaften der Primzahlen kodiert. Besondere Bedeutung kommt hierbei dem analytischen Verhalten der Zetafunktion auf der sog. kritischen Geraden zu. Wir untersuchen in dieser Arbeit die Werteverteilung der Riemannschen Zetafunktion auf und nahe der kritischen Geraden. Wir fokusieren wir uns dabei u.a. auf folgende Punkte. TEIL I: Ein modifiziertes Universalitätskonzept, a-Stellen nahe der kritischen Geraden und eine Dichtheitsvermutung nach Ramachandra. Die kritische Gerade fungiert als natürliche Grenze für die Voroninsche Universalitätseigenschaft der Riemannschen Zetafunktion. Wir modifizieren Voronins Universalitätskonzept dahingehend, dass wir die vertikalen Translationen aus Voronins Universalitätssatz mit einer zusätzlichen Skalierung versehen. Wir untersuchen, ob durch dieses modifizierte Konzept eine abgeschwächte Universalitätseigenschaft der Riemannschen Zetafunktion um die kritschen Gerade aufrecht erhalten werden kann. Es stellt sich heraus, dass die Gestalt der Funktionen, die sich auf diese Weise durch die Zetafunktion approximieren lassen, stark von der Funktionalgleichung und der Wahl des skalierenden Faktors abhängt. Nach einem Resultat von Levinson liegen fast alle a-Stellen der Riemannschen Zetafunktion in einem trichterförmigen Bereich um die kritische Gerade. Gewisse Normalitätsargumenten sowie das Konzept der 'filling discs' erlauben uns Levinsons Resultat zu ergänzen und a-Stellen in diesem trichterförmigen Bereich aufzuspüren, die sehr nahe an der kritischen Geraden liegen. Man vermutet, dass die Werte der Riemannschen Zetafunktion auf der kritischen Geraden dicht in den komplexen Zahlen liegen. Wir nähern uns dieser Vermutung (die man oft Ramachandra zuschreibt), indem wir die Existenz gewisser Kurven nachweisen, die sich asymptotisch an die kritische Gerade anschmiegen und die Eigenschaft besitzen, dass die Werte der Zetafunktion auf diesen Kurven dicht in den komplexen Zahlen liegen. Viele unserer Ergebnisse in Teil I sind unabhängig von der Eulerproduktdarstellung der Zetafunktion und gelten allgemein für beliebige meromorphe Funktionen, die einer Funktionalgleichung vom Riemann-Typ genügen. TEIL II: Diskrete und kontinuierliche Momente. Die Lindelöf Vermutung trifft eine Aussage über das Wachstumsverhalten der Zetafunktion auf der kritischen Geraden. Nach klassischen Arbeiten von Hardy und Littlewood lässt sie sich mittels Potenzmomente der Zetafunktion rechts von der kritischen Geraden umformulieren. Tanaka konnte kürzlich nachweisen, dass die asymptotischen Formeln, die man für diese Potenzmomente erwartet in einem gewissen maßtheoretischem Sinne Gülitgkeit besitzen: grob gesprochen wird heibei eine Menge mit Banachdichte null vom Integrationsweg der Potenzmomente ausgespart. Wir stellen eine diskrete und eine integrierte Version von Tanakas Resultat zur Verfügung. Zudem verallgemeinern wir Tanakas Ergebnis auf eine große Klasse von Dirichletreihen. KW - Riemannsche Zetafunktion KW - Riemann zeta-function KW - universality KW - a-point distribution Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-97763 ER -