TY - THES A1 - Bendias, Michel Kalle T1 - Quantum Spin Hall Effect - A new generation of microstructures T1 - Quantum Spin Hall Effekt - Eine neue Generation an Mikrostrukturen N2 - The presented thesis summarizes the results from four and a half years of intense lithography development on (Cd,Hg)Te/HgTe/(Cd,Hg)Te quantum well structures. The effort was motivated by the unique properties of this topological insulator. Previous work from Molenkamp at al.\ has proven that the transport through such a 2D TI is carried by electrons with opposite spin, counter-propagating in 1D channels along the sample edge. However, up to this thesis, the length of quantized spin Hall channels has never been reported to exceed 4 µm. Therefore, the main focus was put on a reproducible and easy-to-handle fabrication process that reveals the intrinsic material parameters. Every single lithography step in macro as well as microscopic sample fabrication has been re-evaluated. In the Development, the process changes have been presented along SEM pictures, microgaphs and, whenever possible, measurement responses. We have proven the conventional ion milling etch method to damage the remaining mesa and result in drastically lower electron mobilities in samples of microscopic size. The novel KI:I2:HBr wet etch method for macro and microstructure mesa fabrication has been shown to leave the crystalline structure intact and result in unprecedented mobilities, as high as in macroscopic characterization Hall bars. Difficulties, such as an irregular etch start and slower etching of the conductive QW have been overcome by concentration, design and etch flow adaptations. In consideration of the diffusive regime, a frame around the EBL write field electrically decouples the structure mesa from the outside wafer. As the smallest structure, the frame is etched first and guarantees a non-different etching of the conductive layer during the redox reaction. A tube-pump method assures reproducible etch results with mesa heights below 300 nm. The PMMA etch mask is easy to strip and leaves a clean mesa with no redeposition. From the very first attempts, to the final etch process, the reader has been provided with the characteristics and design requirements necessary to enable the fabrication of nearly any mesa shape within an EBL write field of 200 µm. Magneto resistance measurement of feed-back samples have been presented along the development chronology of wet etch method and subsequent lithography steps. With increasing feature quality, more and more physics has been revealed enabling detailed evaluation of smallest disturbances. The following lithography improvements have been implemented. They represent a tool-box for high quality macro and microstructure fabrication on (CdHg)Te/HgTe of almost any kind. The optical positive resist ECI 3027 can be used as wet and as dry etch mask for structure sizes larger than 1 µm. It serves to etch mesa structures larger than the EBL write field. The double layer PMMA is used for ohmic contact fabrication within the EBL write field. Its thickness allows to first dry etch the (Cd,Hg)Te cap layer and then evaporate the AuGe contact, in situ and self-aligned. Because of an undercut, up to 300 nm can be metalized without any sidewalls after the lift-off. An edge channel mismatch within the contact leads can be avoided, if the ohmic contacts are designed to reach close to the sample and beneath the later gate electrode. The MIBK cleaning step prior to the gate application removes PMMA residuals and thereby improves gate and potential homogeneity. The novel low HfO2-ALD process enables insulator growth into optical and EBL lift-off masks of any resolvable shape. Directly metalized after the insulator growth, the self-aligned method results in thin and homogeneous gate electrode reproducibly withholding gate voltages to +-10 V. The optical negative resist ARN 4340 exhibits an undercut when developed. Usable as dry etch mask and lift-off resist, it enables an in-situ application of ohmic contacts first etching close to the QW, then metalizing AuGe. Up to 500 nm thickness, the undercut guarantees an a clean lift-off with no sidewalls. The undertaken efforts have led to micro Hall bar measurements with Hall plateaus and SdH-oszillations in up to now unseen levels of detail. The gap resistance of several micro Hall bars with a clear QSH signal have been presented in Quantum Spin Hall. The first to exhibit longitudinal resistances close to the expected h/2e2 since years, they reveal unprecedented details in features and characteristics. It has been shown that their protection against backscattering through time reversal symmetry is not as rigid as previously claimed. Values below and above 12.9 kΩ been explained, introducing backscattering within the Landauer-Büttiker formalism of edge channel transport. Possible reasons have been discussed. Kondo, interaction and Rashba-backscattering arising from density inhomogeneities close to the edge are most plausible to explain features on and deviations from a quantized value. Interaction, tunneling and dephasing mechanisms as well as puddle size, density of states and Rashba Fields are gate voltage dependent. Therefore, features in the QSH signal are fingerprints of the characteristic potential landscape. Stable up to 11 K, two distinct but clear power laws have been found in the higher temperature dependence of the QSH in two samples. However, with ΔR = Tα, α = ¼ in one (QC0285) and α = 2 in the other (Q2745), none of the predicted dependencies could be confirmed. Whereas, the gap resistances of QC0285 remains QSH channel dominated up to 3.9 T and thereby confirmed the calculated lifting of the band inversion in magnetic field. The gate-dependent oscillating features in the QSH signal of Q2745 immediately increase in magnetic field. The distinct field dependencies allowed the assumption of two different dominant backscattering mechanisms. Resulting in undisturbed magneto transport and unprecedented QSH measurements The Novel Micro Hall Bar Process has proven to enable the fabrication of a new generation of microstructures. N2 - In der vorliegenden Dissertation wurden die Ergebnisse von viereinhalb Jahren lithographischer Prozessentwicklung an (Cd,Hg)Te/HgTe/(Cd,Hg)Te Quantum Well Strukturen präsentiert. Motiviert wurde der Aufwand mit den einzigartigen Eigenschaften des zweidimensionalen Topologischen Isolators. In früheren Arbeiten von Molenkamp et al. ist gezeigt worden, dass der Stromtransport im Quantum Spin Hall (QSH) Regime durch zwei Randkanäle mit Elektronen entgegengerichteter Spin- und Propagationsrichtung erfolgt. Trotz der Vorhersage geschützten Randkanaltransports durch Zeit-Umkehr Invarianz, gab es bis zu der hier vorgenommenen Prozessoptimierung keine ungestörten Quantum Spin Hall Messungen oberhalb einer Länge von 4 µm. Deswegen wurde das Hauptaugenmerk der Entwicklung auf einen möglichst einfachen, reproduzierbaren und ungestörten Herstellungsprozess für QSH Mikrostrukturen gelegt. Die Ergebnisse der vollständigen Überarbeitung jedes einzelnen Lithographie-Schrittes für marko- und mikroskopische Probenstrukturierung wurden in Development erläutert. Die Anpassungen wurden anhand von Elektronen-, Lichtmikroskop-Aufnahmen und wann immer möglich auch Messungen motiviert, überprüft und für besser befunden. Es wurde aufgezeigt, dass das bisher übliche Verfahren zum ätzen der Mesa mit beschleunigen Argon-Ionen das Material auch lateral beschädigt und mit drastisch reduzierten Elektronen-Beweglichkeiten in mikroskopischen Proben einhergeht. Ein neuartiger KI:I2:HBr nass-Ätzprozess hingegen, hat sich als nicht invasiv erwiesen. Ohne die Kristallstruktur zu zerstören lassen sich damit Mikrostrukturen herstellen, welche sich durch beispiellos hohe Beweglichkeiten und Signalgüte auszeichnen. Schwierigkeiten, wie der unregelmäßige Ätz-Start und das langsamere Ätzen der leitfähigen Schicht sind durch Konzentrations-, Design- und Flussanpassungen sukzessive gelöst worden. Unter Beachtung des diffusiven Ätz-Charakters, sorgt ein schmaler Rahmen um das Schreibfeld des Elektronen Mikroskops für eine elektrische Entkopplung der späteren Mesa innen, mit dem Elektronen-Reservoir außen. Damit wird sichergestellt, dass die Leitfähigkeit des Quantentroges in der Redoxreaktion des Ätzens eine untergeordnete Rolle spielt. Durch den regulierbaren Fluss einer Schlauchpumpe lassen sich so reproduzierbar saubere Mesas auch unterhalb 300 nm Höhe herstellen. Die PMMA Ätzmaske kann rückstandsfrei entfernen werden. Über die ersten Versuche, bis hin zum letztendlichen Prozess, wurde dem Leser dabei das notwendige Wissen und Verständnis zur Durchführung der Mikrostrukturierung an die Hand gegeben. Unter Beachtung der charakteristischen Eigenheiten des nasschemischen Prozesses, lassen sich so nahezu alle Mesa-Formen innerhalb eines 200x200 µm2 Schreibfeldes realisieren. Anhand von Hall-Messungen an Kontrollproben, wurde die sukzessive Erhöhung der Probenqualität durch den Ätzprozess und die vollständige Überarbeitung der darauf folgenden Lithographie-Prozesse bewiesen. Mit mehr und mehr Physik in den Messungen haben sich selbst kleine Auswirkungen des Lithographie-Prozesses auf die Probeneigenschaften testen lassen. Die folgenden Verbesserungen tragen maßgeblich zu diesem Ergebnis bei. Hier angewendet auf Mikro-Hall-Bars, lassen sich die Prozesse für die Herstellung fast jedweder Struktur auf (Cd,Hg)Te/HgTe anpassen. Der optische positiv Photo-Lack ECI 3027 kann sowohl als Nass- und auch Trockenätzmaske verwendet werden. Mit einer minimalen Auflösung größer 1 µ m wurde er hier eingesetzt, um Strukturen um das Elektronenmikroskop-Schreibfeld zu ätzen. Der PMMA Doppellagen Resist ist dick und weist nach dem Entwickeln ein unterhöhltes Lackprofil auf. Dies erlaubt ihn zuerst zum Heranätzen und dann zum Metallisieren der Ohmschen Kontakte zu nutzen. Bis zu 300 nm Metall können dabei ohne Überhöhungen in-situ und selbstjustierend aufgebracht werden. Es wurde gezeigt, dass Kontakte nahe der Hall-Bar bis unterhalb der späteren Gate-Elektrode, in höheren Magnetfeldern nicht zu Störungen der Messung führen. Der MIBK Reinigungs Schritt vor dem Aufbringen der Gate-Elektrode entfernt PMMA Rückstände vorheriger Prozesse. In Hall-Messungen wurde gezeigt, dass dies die Homogenität des Gate-Einflusses deutlich verbessert. Der neuartige Tieftemperatur HfO2 ALD Prozess ermöglicht Isolator Wachstum auf Photo-Resist und PMMA Lift-off Masken. Dies wiederum ermöglicht eine Gate-Metallisierung direkt im Anschluss. Dadurch lassen sich auch kleine Gate-Elektroden mit homogenem Potential-Einfluss herstellen, welche reproduzierbar Spannungen bis +-10 V aushalten. Der optische negativ Photo-Lack ARN 4340 ermöglicht das Heranätzen und Metallisieren von Ohmschen Kontakten in Strukturgrößen größer 1 µm. Das ebenfalls unterhöhlte Lackprofil erlaubt dabei die Aufbringung von bis zu 500 nm dicken Schichten und einen problemlosen Lift-off. Die unternommenen Anstrengungen haben dabei zu den bisher Besten und Detailsreichsten Messungen von Hall-Plateaus und Shubnikov-De Haas Oszillationen in (Cd,Hg)Te/ HgTe Mikrostrukturen geführt. Messungen mit einem klaren QSH Signal im Längswiderstand von mehreren Mikro-Hall-Bars wurden präsentiert. Nach jahrelangen Bemühungen weisen diese Proben erstmalig wieder einen Bandlücken-Widerstand nahe der erwarteten Quantisierung von zwei Randkanälen auf. Es wurde aufgezeigt, dass die vermeintliche geschützten Randzustände durchaus rück-streuen. Mit der Implementierung von Streuern im Landauer-Büttiker Formalismus für Randkanaltransport lassen sich Abweichungen unter- und oberhalb der erwarteten 12.9 kΩ begründen. Als mögliche Ursachen wurden Dichte-Inhomogenitäten ausgemacht, welche in Kondo-, Wechselwirkungs- und Rashba-Rückstreuprozessen resultieren. Im komplexen Zusammenspiel von Wechselwirkung, Tunnelprozessen und Spin-Dephasierung, der unbekannten Verteilung von Inhomogenitäten, ihrer Größe und Dichte sowie der Feldabhängig-keit aller Parameter, hat sich keiner der diskutierten Mechanismen als dominant bewiesen. In noch nie dagewesenen Details erwies sich die Gate- und Magnetfeldabhängigkeit des QSH Signals als ein Fingerabdruck der hintergründigen Potential-Landschaft. Die Signale von zwei unterschiedlichen Proben sind Temperatur- und Magnetfeldabhängig untersucht worden. Dabei haben mehrere Argumente zu der Schlussfolgerung geführt, dass unterschiedliche Rückstreumechanismen in den Proben dominieren: Mit einem flachen QSH Plateau in der einen (QC0285), und in Gate-Spannung oszillierender Merkmale auf dem QSH Signal der anderen Probe (Q2745), zeigen sich erste Unterschiede bereits in den Gate-Messungen. In Temperatur-abhängigen Messungen erweist sich deren QSH Signal zwar als stabil bis 11\,K, folgt dann aber ΔR = Tα mit α = 1/4 in QC0285 und α = 2 in Q2745. Im Magnetfeld bleibt die Bandlücke in QC0285 bis zum kritischen Feld der Invertierungsaufhebung Randkanal-Transport dominiert. Die Oszillierenden Merkmale auf dem QSH Signal in Q2745 dagegen, reagieren schon auf kleine Felder mit einer Erhöhung im Widerstand. Die unvergleichliche Qualität der hier präsentierten Hall-Messungen und QSH Signale und das bis ins letzte Detail optimierte Herstellungsverfahren, rechtfertigen es von einer neuen Generation an QSH Mikrostrukturen zu sprechen. KW - Topological insulators KW - Quecksilbertellurid KW - Quantum Spin Hall Effect KW - Lithography KW - Macroscopic transport KW - Quecksilbertellurid KW - Topologischer Isolator KW - Quanten-Hall-Effekt Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-168214 ER - TY - THES A1 - Röding, Sebastian T1 - Coherent Multidimensional Spectroscopy in Molecular Beams and Liquids Using Incoherent Observables T1 - Kohärente Multidimensionale Spektroskopie in Molekularstrahlen und Flüssigkeiten durch inkohärente Observablen N2 - Das Ziel der vorliegenden Arbeit war die Umsetzung einer experimentellen Herangehensweise, welche die kohärente zweidimensionale (2D) Spektroskopie an Proben in unterschiedlichen Aggregatzuständen ermöglicht. Hierzu wurde zunächst ein Aufbau für flüssige Proben realisiert, in welchem die emittierte Fluoreszenz als Messsignal zur Aufnahme der 2D Spektren genutzt wird. Im Gegensatz zu dieser bereits etablierten Methode in der flüssigen Phase stellt die in dieser Arbeit außerdem vorgestellte 2D Spektroskopie an gasförmigen Proben in einem Molekularstrahl einen neuen Ansatz dar. Hierbei werden zum ersten Mal Kationen mittels eines Flugzeitmassenspektrometers als Signal verwendet und somit ionen-spezifische 2D Spektren isolierter Moleküle erhalten. Zusätzlich zu den experimentellen Entwicklungen wurde in dieser Arbeit ein neues Konzept zur Datenerfassung in der 2D Spektroskopie entworfen, welches mit Hilfe einer optimierten Signalabtastung und eines Compressed-Sensing Rekonstruktionsalgorithmus die Aufnahmezeit der Daten deutlich reduziert. Charakteristisch für die in dieser Arbeit eingesetzte Variante der 2D Spektroskopie ist die Verwendung einer phasenkohärenten Sequenz bestehend aus vier Laserimpulsen in einer kollinearen Laserstrahlgeometrie zur Anregung der Probe. Diese Impulssequenz wurde durch einen Laserimpulsformer erzeugt, der durch Änderung der relevanten Laserimpulsparameter mit der Wiederholrate des Lasers eine schnelle Datenerfassung ermöglicht. Die Antwort der Probe auf diese Anregung wurde durch inkohärente Observablen gemessen, welche proportional zur Population des angeregten Zustandes sind, wie zum Beispiel Fluoreszenz oder Ionen. Um aus diesem Signal während der Datenanalyse die gewünschten nichtlinearen Beiträge zu extrahieren, wurde die Messung mit verschiedenen Kombinationen der relativen Phase zwischen den Laserimpulsen wiederholt ("Phase Cycling"). Der Aufbau zur 2D Spektroskopie in flüssiger Phase mit Fluoreszenz-Detektion wurde an Hand von 2D Spektren des Laserfarbstoffes Cresyl Violett charakterisiert. Hierbei wurden Oszillationen in verschiedenen Bereichen des 2D Spektrums beobachtet, welche durch vibronische Kohärenzen hervorgerufen werden und mit früheren Beobachtungen in der Literatur übereinstimmen. Mit dem gleichen Datensatz wurde im nächsten Schritt das neue Konzept zur optimierten Datenerfassung demonstriert. Um ein optimiertes Schema für die Signalabtastung zu finden, wurde ein genetischer Algorithmus implementiert, wobei nur ein Viertel der eigentlichen Datenpunkte zur Messwerterfassung verwendet werden sollte. Dies reduziert die Zeitdauer der Datenerfassung auf ein Viertel der ursprünglichen Messzeit. Die Rekonstruktion des vollständigen Signales erfolgte mit Hilfe einer neuartigen, kompakten Darstellung von 2D Spektren basierend auf der von Neumann Basis. Diese Herangehensweise benötigte im Vergleich zur üblicherweise verwendeten Fourier Basis nur ein Sechstel der Koeffizienten um das Signal vollständig darzustellen und ermöglichte so die erfolgreiche Rekonstruktion der Oszillationen in Cresyl Violett aus einem reduzierten Datensatz. Mit Hilfe der neuartigen kohärenten 2D Spektroskopie an Molekularstrahlen wurden Übergänge von hoch angeregten Rydberg-Zuständen ins ionische Kontinuum in Stickstoffdioxid untersucht. Als dominierender Beitrag stellte sich hierbei der Übergang in auto-ionisierende Zustände heraus. Ein wesentlicher Vorteil der Datenerfassung über ein Flugzeitmassenspektrometer ist die Möglichkeit der gleichzeitigen Aufnahme von 2D Spektren der Edukte und Produkte einer chemischen Reaktion. Dies wurde in Experimenten zur Mehrphotonenionisation gezeigt, in denen deutliche Unterschiede in den 2D Spektren des Stickstoffdioxid-Kations und des Stickstoffmonoxid-Fragmentes sichtbar wurden, welche auf unterschiedliche Antwortfunktionen zurückzuführen sind. Die in dieser Arbeit entwickelten experimentellen Techniken ermöglichen die schnelle Aufnahme von 2D Spektren für Proben in unterschiedlichen Aggregatzuständen und erlauben einen zuverlässigen, direkten Vergleich der Ergebnisse. Sie sind deshalb ein Wegbereiter für zukünftige Untersuchungen der Eigenschaften quantenmechanischer Kohärenzen in photophysikalischen Prozessen oder während photochemischer Reaktionen in unterschiedlichen Aggregatzuständen. N2 - The aim of the present work was to implement an experimental approach that enables coherent two-dimensional (2D) electronic spectroscopy of samples in various states of matter. For samples in the liquid phase, a setup was realized that utilizes the sample fluorescence for the acquisition of 2D spectra. Whereas the liquid-phase approach has been established before, coherent 2D spectroscopy on gaseous samples in a molecular beam as developed in this work is in fact a new method. It employs for the first time cations in a time-of-flight mass spectrometer for signal detection and was used to obtain the first ion-selective 2D spectra of a molecular-beam sample. Additionally, a new acquisition concept was developed in this thesis that significantly decreases measurement times in 2D spectroscopy using optimized sparse sampling and a compressed-sensing reconstruction algorithm. Characteristic for the variant of 2D spectroscopy presented in this work is the usage of a phase-coherent sequence of four laser pulses in a fully collinear geometry for sample excitation. The pulse sequence was generated by a custom-designed pulse shaper that is capable of rapid scanning by changing the pulse parameters such as time delays and phases with the repetition rate of the laser. The sample's response was detected by monitoring incoherent observables that arise from the final-state population, for instance fluorescence or cations. Phase cycling, i.e., signal acquisition with different combinations of the relative phases of the excitation pulses, was applied to extract nonlinear signal contributions from the full signal during data analysis. Liquid-phase 2D fluorescence spectroscopy was established with the laser dye cresyl violet as a sample molecule, confirming coherent oscillations previously observed in literature that are originating from vibronic coherences in specific regions of the 2D spectrum. The data set of this experiment was used subsequently to introduce optimized sparse sampling in 2D spectroscopy. An optimization algorithm was implemented in order to find the best sampling pattern while taking only one quarter of the regular time-domain sampling points, thereby reducing the acquisition time by a factor of four. Signal recovery was based on a new and compact representation of 2D spectra using the von Neumann basis, which required about six times less coefficients than the Fourier basis to retain the relevant information. Successful reconstruction was shown by recovering the coherent oscillations in cresyl violet from a reduced data set. Finally, molecular-beam coherent 2D spectroscopy was introduced with an investigation of ionization pathways in highly-excited nitrogen dioxide, revealing transitions to discrete auto-ionizing states as the dominant contribution to the ion signal. Furthermore, the advantage of the time-of-flight approach to obtain reactant and product 2D spectra simultaneously enabled the observation of distinct differences in the multiphoton-ionization response functions of the nitrogen dioxide cation and the nitrogen oxide ionic fragment. The developed experimental techniques of this work will facilitate fast acquisition of 2D spectra for samples in various states of matter and permit reliable direct comparison of results. Therefore, they pave the way to study the properties of quantum coherences during photophysical processes or photochemical reactions in different environments. KW - Femtosekundenspektroskopie KW - Ultrakurzzeitspektroskopie KW - Pump-Probe Technik KW - Fourier-Spektroskopie KW - Coherent Multidimensional Spectroscopy KW - Time-Resolved Spectroscopy KW - Photochemistry KW - Laser Pulse Shaping KW - Sparse Sampling KW - Kohärente Multidimensionale Spektroskopie KW - Zeitaufgelöste Spektroskopie KW - Photochemie KW - Laserimpulsformung KW - Sparse Sampling Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-156726 ER - TY - THES A1 - Betzold, Simon T1 - Starke Licht-Materie-Wechselwirkung und Polaritonkondensation in hemisphärischen Mikrokavitäten mit eingebetteten organischen Halbleitern T1 - Strong light-matter interaction and polariton condensation in hemispherical microcavities with embedded organic semiconductors N2 - Kavitäts-Exziton-Polaritonen (Polaritonen) sind hybride Quasiteilchen, die sich aufgrund starker Kopplung von Halbleiter-Exzitonen mit Kavitätsphotonen ausbilden. Diese Quasiteilchen weisen eine Reihe interessanter Eigenschaften auf, was sie einerseits für die Grundlagenforschung, andererseits auch für die Entwicklung neuartiger Bauteile sehr vielversprechend macht. Bei Erreichen einer ausreichend großen Teilchendichte geht das System in den Exziton-Polariton-Kondensationszustand über, was zur Emission von laserartigem Licht führt. Organische Halbleiter als aktives Emittermaterial zeigen in diesem Kontext großes Potential, da deren Exzitonen neben großen Oszillatorstärken auch hohe Bindungsenergien aufweisen. Deshalb ist es möglich, unter Verwendung organischer Halbleiter selbst bei Umgebungsbedingungen äußerst stabile Polaritonen zu erzeugen. Eine wichtige Voraussetzung zur Umsetzung von integrierten opto-elektronischen Bauteilen basierend auf Polaritonen ist der kontrollierte räumliche Einschluss sowie die Realisierung von frei konfigurierbaren Potentiallandschaften. Diese Arbeit beschäftigt sich mit der Entwicklung und der Untersuchung geeigneter Plattformen zur Erzeugung von Exziton-Polaritonen und Polaritonkondensaten in hemisphärischen Mikrokavitäten, in die organische Halbleiter eingebettet sind. N2 - Cavity exciton-polaritons (polaritons) are hybrid quasiparticles which are formed due to the strong coupling of excitons with cavity photons. These quasiparticles exhibit a variety of interesting properties, rendering them very promising for both fundamental research and the development of novel opto-electronic devices. Once a suitably high particle density is reached, the system undergoes the transition into a state of exciton-polariton condensation, which leads to the emission of laser-like light. Organic semiconductors as active emitter material hold enormous potential in this context, as their excitons show both large oscillator strengths and high binding energies. Therefore it is possible to generate extremely stable polaritons using organic semiconductors even at ambient conditions. An important prerequisite for the implementation of integrated devices based on polaritons is the controlled spatial confinement and the realization of arbitrary potential landscapes. The present work deals with the development and investigation of suitable platforms for the generation of exciton-polaritons and polariton condensates in hemispheric microcavities with embedded organic semiconductors. KW - Exziton-Polariton KW - Organischer Halbleiter KW - Fourier-Spektroskopie KW - Laser KW - Optischer Resonator KW - FDTD Simulation KW - Hemisphärische Kavität Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-266654 ER - TY - THES A1 - Hetterich, Daniel Marcus T1 - Localization within disordered systems of star-like topology T1 - Lokalisierung in ungeordneten Systemen sternförmiger Topologie N2 - This Thesis investigates the interplay of a central degree of freedom with an environment. Thereby, the environment is prepared in a localized phase of matter. The long-term aim of this setup is to store quantum information on the central degree of freedom while exploiting the advantages of localized systems. These many-body localized systems fail to equilibrate under the description of thermodynamics, mostly due to disorder. Doing so, they form the most prominent phase of matter that violates the eigenstate thermalization hypothesis. Thus, many-body localized systems preserve information about an initial state until infinite times without the necessity to isolate the system. This unique feature clearly suggests to store quantum information within localized environments, whenever isolation is impracticable. After an introduction to the relevant concepts, this Thesis examines to which extent a localized phase of matter may exist at all if a central degree of freedom dismantles the notion of locality in the first place. To this end, a central spin is coupled to the disordered Heisenberg spin chain, which shows many-body localization. Furthermore, a noninteracting analog describing free fermions is discussed. Therein, an impurity is coupled to an Anderson localized environment. It is found that in both cases, the presence of the central degree of freedom manifests in many properties of the localized environment. However, for a sufficiently weak coupling, quantum chaos, and thus, thermalization is absent. In fact, it is shown that the critical disorder, at which the metal-insulator transition of its environment occurs in the absence of the central degree of freedom, is modified by the coupling strength of the central degree of freedom. To demonstrate this, a phase diagram is derived. Within the localized phase, logarithmic growth of entanglement entropy, a typical signature of many-body localized systems, is increased by the coupling to the central spin. This property is traced back to resonantly coupling spins within the localized Heisenberg chain and analytically derived in the absence of interactions. Thus, the studied model of free fermions is the first model without interactions that mimics the logarithmic spreading of entanglement entropy known from many-body localized systems. Eventually, it is demonstrated that observables regarding the central spin significantly break the eigenstate thermalization hypothesis within the localized phase. Therefore, it is demonstrated how a central spin can be employed as a detector of many-body localization. N2 - Im Fokus dieser Dissertation steht die gegenseitige Wechselwirkung eines zentralen Freiheitsgrades und seiner Umgebung, die sich in einer lokalisierten Phase befindet. Das langfristige Ziel einer solchen Konfiguration ist die Speicherung von Quanteninformation auf einem solchen zentralen Freiheitsgrad, während gleichzeitig die Vorteile der lokalisierten Phase ausgenutzt werden. Insbesondere nähern sich Systeme mit Vielteilchenlokalisierung keinem thermodynamischen Gleichgewichtszustand und verletzen die Eigenzustandsthermalisierungshypothese. Als Konsequenz bleibt Information über jeden beliebigen Anfangszustand während einer Zeitentwicklungauch bis zu unendlichen Zeiten erhalten, ohne dass das System räumlich isoliert werden muss. Diese einzigartige Eigenschaft drängt lokalisierte Umgebungen als Speichermedium für Quanteninformation geradezu auf. Nach einer Einführung zu den relevanten Begriffen und Theorien verfolgt diese Dissertation daher die Frage, ob eine lokalisierte Phase in der Gegenwart eines zentralen Freiheitsgrades überhaupt existieren kann, obgleich der zentrale Freiheitsgrad einen wohldefinierten Begriff von Lokalitäat verbietet. Mit diesem Ziel vor Augen wird ein zentraler Spin an die ungeordnete Heisenberg-Spinkette, die Vielteilchenlokalisierung zeigt, gekoppelt. Außerdem wird ein nichtwechselwirkendes Analogon, bestehend aus freien Fermionen, untersucht, wobei eine zentrale Störstelle an eine Anderson-lokalisierte Umgebung gekoppelt wird. In beiden Fällen zeigt sich, dass sich die Gegenwart des zentralen Freiheitsgrades in vielen Eigenschaften der lokalisierten Umgebung widerspiegelt. Trotzdem ist Quantenchaos und demzufolge jegliche Thermalisierung für hinreichend kleine Kopplungsstärken an den zentralen Freiheitsgrad abwesend. Vielmehr hängt die kritische Unordnung, bei welcher der Übergang der Umgebung zwischen einer metallischen und lokalisierten Phase stattfindet, von dieser Kopplungsstärke ab. Hierzu wird ein Phasendiagramm abgeleitet. Innerhalb der lokalisierten Phase zeigt sich, dass das für vielteilchenlokalisierte typische logarithmische Wachstum der Verschrönkungsentropie durch den zentralen Spin verstärkt wird. Dieses Phänomen lässt sich aus der resonanten Kopplung von Spins der Umgebung durch den zentralen Spin erklären und wird im nichtwechselwirkenden Modell analytisch demonstriert. Ferner wird gezeigt, dass quantenmechanische Observablen des zentralen Spins ebenfalls die Eigenzustandsthermalisierungshypothese in der vielteilchenlokalisierten Phase brechen. Demzufolge kann der zentrale Spin als Indikator für Vielteilchenlokalisierung zunutze gemacht werden. KW - Localization KW - Decoherence KW - Central Spin KW - Phase Transition KW - Disorder KW - Quanteninformatik KW - Anderson-Lokalisation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-169318 ER - TY - THES A1 - Grimm, Philipp Martin T1 - Locally driven complex plasmonic nanoantenna systems T1 - Lokal angetriebene komplexe plasmonische Nanoantennen-Systeme N2 - Metallic nanostructures possess the ability to support resonances in the visible wavelength regime which are related to localized surface plasmons. These create highly enhanced electric fields in the immediate vicinity of metal surfaces. Nanoparticles with dipolar resonance also radiate efficiently into the far-field and hence serve as antennas for light. Such optical antennas have been explored during the last two decades, however, mainly as standalone units illuminated by external laser beams and more recently as electrically driven point sources, yet merely with basic antenna properties. This work advances the state of the art of locally driven optical antenna systems. As a first instance, the electric driving scheme including inelastic electron tunneling over a nanometer gap is merged with Yagi-Uda theory. The resulting antenna system consists of a suitably wired feed antenna, incorporating a tunnel junction, as well as several nearby parasitic elements whose geometry is optimized using analytical and numerical methods. Experimental evidence of unprecedented directionality of light emission from a nanoantenna is provided. Parallels in the performance between radiofrequency and optical Yagi-Uda arrays are drawn. Secondly, a pair of electrically connected antennas with dissimilar resonances is harnessed as electrodes in an organic light emitting nanodiode prototype. The organic material zinc phthalocyanine, exhibiting asymmetric injection barriers for electrons and holes, in conjunction with the electrode resonances, allows switching and controlling the emitted peak wavelength and directionality as the polarity of the applied voltage is inverted. In a final study, the near-field based transmission-line driving of rod antenna systems is thoroughly explored. Perfect impedance matching, corresponding to zero back-reflection, is achieved when the antenna acts as a generalized coherent perfect absorber at a specific frequency. It thus collects all guided, surface-plasmon mediated input power and transduces it to other nonradiative and radiative dissipation channels. The coherent interplay of losses and interference effects turns out to be of paramount importance for this delicate scenario, which is systematically obtained for various antenna resonances. By means of the here developed semi-analytical toolbox, even more complex nanorod chains, supporting topologically nontrivial localized edge states, are studied. The results presented in this work facilitate the design of complex locally driven antenna systems for optical wireless on-chip communication, subwavelength pixels, and loss-compensated integrated plasmonic nanocircuitry which extends to the realm of topological plasmonics. N2 - Metallische Nanostrukturen besitzen die Fähigkeit, Resonanzen im sichtbaren Wellenlängenbereich zu unterstützen, die mit lokalisierten Oberflächenplasmonen in Verbindung stehen. Diese erzeugen hochverstärkte elektrische Felder in der unmittelbaren Nähe von Metalloberflächen. Nanopartikel mit dipolarer Resonanz strahlen zudem effizient in das Fernfeld ab und dienen somit als Antennen für Licht. Solche optischen Antennen wurden in den letzten zwei Jahrzehnten erforscht, allerdings hauptsächlich als eigenständige Einheiten, welche von externen Laserstrahlen angeregt werden, und in jüngerer Zeit als elektrisch getriebene Punktquellen, die jedoch lediglich über grundlegende Antenneneigenschaften verfügen. Diese Arbeit erweitert den aktuellen Stand von lokal getriebenen optischen Antennensystemen. In einem ersten Fallbeispiel wird das elektrische Antriebsschema einschließlich inelastischem Elektronentunneln über einen Nanometer-Spalt mit der Yagi-Uda-Theorie zusammengeführt. Das resultierende Antennensystem besteht aus einer passend verdrahteten, gespeisten Antenne, die einen Tunnelübergang enthält, sowie mehreren nahe gelegenen parasitären Elementen, deren Geometrie mit analytischen und numerischen Methoden optimiert wird. Experimentelle Befunde für eine ungeahnte Direktionalität der Lichtemission von einer Nanoantenne werden erbracht. Es werden Parallelen im Leistungsverhalten zwischen Radiofrequenz- und optischen Yagi-Uda-Anordnungen gezogen. Als zweites wird ein Paar elektrisch kontaktierter Antennen mit unterschiedlichen Resonanzen als Elektroden in einem Prototyp einer organischen lichtemittierenden nanoskaligen Diode eingesetzt. Das organische Material Zinkphthalocyanin, welches asymmetrische Injektionsbarrieren für Elektronen und Löcher aufweist, ermöglicht in Verbindung mit den Elektrodenresonanzen die Schaltbarkeit und Kontrolle der emittierten Wellenlänge und der Direktionalität bei Umkehr der Polarität der angelegten Spannung. In einer abschließenden Studie wird der nahfeldbasierte Antrieb von stäbchenförmigen Antennsystemen mittels eines Wellenleiters detailliert untersucht. Perfekte Impedanzanpassung, entsprechend einer verschwindenden Rückreflexion, wird erreicht, wenn die Antenne bei einer spezifischen Frequenz als verallgemeinerter kohärenter perfekter Absorber agiert. Hierbei nimmt sie die gesamte wellenleitergeführte Eingangsleistung, vermittelt durch ein Oberflächenplasmon, auf, und überträgt sie auf andere nichtstrahlende und strahlende Dissipationskanäle. Das kohärente Zusammenspiel von Verlusten und Interferenzeffekten erweist sich für dieses empfindliche Szenario, das systematisch für verschiedene Antennenmoden erzeugt wird, als äußerst wichtig. Mit Hilfe des hier entwickelten semi-analytischen Werkzeugsets werden auch komplexere Ketten aus Nanostäbchen untersucht, bei denen topologisch nichttriviale lokalisierte Randzustände auftreten. Die in dieser Arbeit vorgestellten Ergebnisse erleichtern die Entwicklung komplexer lokal angetriebener Antennensysteme für optische drahtlose Kommunikation auf einem Computerchip, Subwellenlängenpixel und verlustkompensierte integrierte plasmonische Nanoschaltkreise, welche sich bis auf das Gebiet der topologischen Plasmonik erstrecken. KW - Plasmonik KW - Nanooptik KW - Nanophotonik KW - Finite-Differenzen-Methode KW - OLED KW - Optical antenna KW - Directional emission KW - Zinc phthalocyanine KW - Coherent perfect absorption KW - Su-Schrieffer-Heeger chain KW - Optische Antenne KW - Gerichtete Abstrahlung KW - Zinkphthalocyanin KW - Kohärente perfekte Absorption KW - Su-Schrieffer-Heeger-Kette Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-303152 ER - TY - THES A1 - Ochs, Maximilian Thomas T1 - Electrically Connected Nano-Optical Systems: From Refined Nanoscale Geometries to Selective Molecular Assembly T1 - Elektrisch Kontaktierte Nano-Optische Systeme: Von Komplexen Geometrien bis zur Gezielten Oberflächenmodifikation N2 - Metallic nano-optical systems allow to confine and guide light at the nanoscale, a fascinating ability which has motivated a wide range of fundamental as well as applied research over the last two decades. While optical antennas provide a link between visible radiation and localized energy, plasmonic waveguides route light in predefined pathways. So far, however, most experimental demonstrations are limited to purely optical excitations, i.e. isolated structures are illuminated by external lasers. Driving such systems electrically and generating light at the nanoscale, would greatly reduce the device footprint and pave the road for integrated optical nanocircuitry. Yet, the light emission mechanism as well as connecting delicate nanostructures to external electrodes pose key challenges and require sophisticated fabrication techniques. This work presents various electrically connected nano-optical systems and outlines a comprehensive production line, thus significantly advancing the state of the art. Importantly, the electrical connection is not just used to generate light, but also offers new strategies for device assembly. In a first example, nanoelectrodes are selectively functionalized with self-assembled monolayers by charging a specific electrode. This allows to tailor the surface properties of nanoscale objects, introducing an additional degree of freedom to the development of metal-organic nanodevices. In addition, the electrical connection enables the bottom-up fabrication of tunnel junctions by feedback-controlled dielectrophoresis. The resulting tunnel barriers are then used to generate light in different nano-optical systems via inelastic electron tunneling. Two structures are discussed in particular: optical Yagi-Uda antennas and plasmonic waveguides. Their refined geometries, accurately fabricated via focused ion beam milling of single-crystalline gold platelets, determine the properties of the emitted light. It is shown experimentally, that Yagi-Uda antennas radiate light in a specific direction with unprecedented directionality, while plasmonic waveguides allow to switch between the excitation of two propagating modes with orthogonal near-field symmetry. The presented devices nicely demonstrate the potential of electrically connected nano-optical systems, and the fabrication scheme including dielectrophoresis as well as site-selective functionalization will inspire more research in the field of nano-optoelectronics. In this context, different future experiments are discussed, ranging from the control of molecular machinery to optical antenna communication. N2 - Nano-optische Systeme ermöglichen es, Licht auf der Nanoskala zu fokussieren und zu leiten - eine faszinierende Fähigkeit, die in den letzten zwei Jahrzehnten ein breites Spektrum an Grundlagen- und angewandter Forschung motiviert hat. Während optische Antennen lokalisierte Energie mit sichtbarer Strahlung verknüpfen, leiten plasmonische Wellenleiter das Licht in vordefinierte Bahnen. Bislang jedoch beschränken sich die meisten Experimente auf isolierte Strukturen, die durch externe Lichtquellen angeregt werden. Die elektrisch getriebene Lichterzeugung auf der Nanoskala reduziert den Platzbedarf dieser Systeme erheblich und ebnet so den Weg für optische Nano-Schaltkreise. Allerdings stellen sowohl die Lichtemission als auch die Kontaktierung der Nanostrukturen erhebliche Herausforderungen dar. In dieser Arbeit werden verschiedene elektrisch kontaktierte nano-optische Systeme vorgestellt. Eine zentrale Rolle spielt dabei die Kontaktierung - nicht nur für die Lichterzeugung, sondern auch für die Fabrikation der jeweiligen Strukturen. In einem ersten Beispiel werden Nanoelektroden durch Anlegen einer Spannung selektiv mit molekularen Monolagen beschichtet. Dadurch können die chemischen und elektronischen Oberflächeneigenschaften von Nanoobjekten maßgeschneidert werden, was einen zusätzlichen Freiheitsgrad bei der Entwicklung von optoelektronischen Nanosystemen darstellt. Darüber hinaus ermöglicht die elektrische Kontaktierung die Herstellung von Tunnelbarrieren mittels Dielektrophorese, was die Lichterzeugung in verschiedenen nano-optischen Systemen durch inelastisches Elektronentunneln ermöglicht. Hier werden zwei Strukturen diskutiert: optische Yagi-Uda-Antennen und plasmonische Wellenleiter. Ihre ausgeklügelten Geometrien, hergestellt aus einkristallinen Goldflocken mittels fokussiertem Ionenstrahl, bestimmen die Eigenschaften des emittierten Lichts. Es wird gezeigt, dass Yagi-Uda-Antennen das Licht gezielt in eine bestimmte Richtung abstrahlen, während plasmonische Wellenleiter das Schalten zwischen zwei propagierenden Moden ermöglichen. Damit demonstriert diese Arbeit das Potenzial von elektrisch kontaktierten nano-optischen Systemen und wird - in Kombination mit Dielektrophorese und selektiver Funktionalisierung - weitere Forschungen auf dem Gebiet der Nano-Optoelektronik anregen. In diesem Zusammenhang werden verschiedene zukünftige Experimente, von der Steuerung molekularer Maschinen bis zur optischen Antennenkommunikation, diskutiert. KW - Nanooptik KW - Antenne KW - Nanometerbereich KW - Wellenleiter KW - Optischer Richtfunk KW - Nanoantenne KW - Nanoantenna KW - Self-assembled Monolayer KW - Nanoscale KW - Optical Antenna KW - Plasmonic Waveguide KW - Optische Antenne KW - Plasmonischer Wellenleiter Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-291140 ER - TY - THES A1 - Genheimer, Ulrich T1 - The Photophysics of Small Organic Molecules for Novel Light Emitting Devices T1 - Die Photophysik kleiner organischer Moleküle für innovative lichtemittierende Bauteile N2 - This PhD thesis addresses the photophysics of selected small organic molecules with the purpose of using them for efficient and even novel light sources. In particular, the studies presented focused on revealing the underlying exciton dynamics and determining the transition rates between different molecular states. It was shown how the specific properties and mechanisms of light emission in fluorescent molecules, molecules with phosphorescence or thermally activated delayed fluorescence (TADF), biradicals, and multichromophores can be utilized to build novel light-emitting devices. The main tool employed here was the analysis of the emitters’ photon statistics, i.e. the analysis of the temporal distribution of emitted photons, during electrical or optical excitation. In the introduction of this work, the working principle of an organic light-emitting diode (OLED) was introduced, while Chapter 2 provided the physical background of the relevant properties of organic molecules and their interaction with light. In particular, the occurrence of discrete energy levels in organic semiconductors and the process of spontaneous light emission were discussed. Furthermore, in this chapter a mathematical formalism was elaborated with the goal to find out what kind of information about the studied molecule can be obtained by analyzing its photon statistics. It was deduced that the intensity correlation function g (2)(t) contains information about the first two factorial moments of the photon statistics and that higher order factorial moments do not contain any additional information about the system under study if the system is always in the same state after the emission of a photon. To conclude the introductory part, Chapter 3 introduced the utilized characterization methods including confocal microscopy of single molecules, time correlated single photon counting and temperature dependent photoluminescence measurements. To provide the background necessary for an understanding of for the following result chapters, in Section 4.1 a closer look was taken at the phenomenon of blinking and photobleaching of individual molecules. For a squaraine-based fluorescent emitter rapid switching between a bright and dark state was observed during photoexcitation. Using literature transition rates between the molecular states, a consistent model was developed that is able to explain the distribution of the residence times of the molecule in the bright and dark states. In particular, an exponential and a power-law probability distribution was measured for the time the molecule resides in tis bright and dark state, respectively. This behavior as well as the change in photoluminescence intensity between the two states was conclusively explained by diffusion of residual oxygen within the sample, which had been prepared in a nitrogen-filled glovebox. For subsequent samples of this work, thin strips of atomic aluminum were deposited on the matrices to serve as oxygen getter material. This not only suppressed the efficiency of photobleaching, but also noticeably prolonged the time prior to photobleaching, which made many of the following investigations possible in the first place. For emitters used in displays, emission properties such as narrow-band luminescence and short fluorescence lifetimes are desired. These properties can be influenced not only by the emitter molecule itself, but also by the interaction with the chosen environment. Therefore, before focusing on the photophysics of individual small organic molecules, Section 4.2 highlighted the interaction of a perylene bisimide-based molecular species with its local environment in a disordered polymethyl methacrylate matrix. In a statistical approach, individual photophysical properties were measured for 32 single molecules and correlations in the variation of the properties were analyzed. This revealed how the local polarity of the molecules’ environment influences their photophysics. In particular, it was shown how an increase in local polarity leads to a red-shifted emission, narrower emission lines, broader vibronic splitting between different emission lines in combination with a smaller Huang-Rhys parameter, and a longer fluorescence lifetime. In the future, these results may help to embed individual chromophores into larger macromolecules to provide the chromophore with the optimal local environment to exhibit the desired emission properties. The next two sections focused on a novel and promising class of chromophores, namely linear coordinated copper complexes, synthesized in the group of Dr. Andreas Steffen at the Institute of Inorganic Chemistry at the University of Würzburg. In copper atoms, the d-orbitals are fully occupied, which prevents undesirable metal-centered d-d⋆ states, which tend to lie low in energy and recombine non-radiatively. Simultaneously, the copper atom provides a flexible coordination geometry, while complexes in their linear form are expected to exhibit the least amount of excited state distortions. Depending on the chosen ligands, these copper complexes can exhibit phosphorescence as well as temperature activated delayed fluorescence. In Section 4.3, a phosphorescent copper complex with a chlorine atom and a 1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethyl-2-pyrrolidine-ylidene- ligand was tested for its suitability as an optically active material in an OLED. For this purpose, an OLED with a polyspirobifluorene-based copolymer matrix and the dopant at a concentration of 20 wt% was electrically excited. Deconvolution of the emission spectrum in contributions from the matrix and the dopant revealed that 60 % of the OLEDs emission was due to the copper complex. It was also shown that the shape of the emission spectrum of the copper complex remains unchanged upon incorporation into the OLED, but is red-shifted by about 233 meV. In Section 4.4, a second copper complex exhibiting thermally activated delayed fluorescence was analyzed. This complex comprised a carbazolate as well as a 2-(2,6- diisopropyl)-phenyl-1,1-diphenyl-isoindol-2-ium-3-ide ligand and was examined in the solid state and at the single-molecule level, where single photon emission was recorded up to an intensity of 78’000 counts per second. The evaluation of the second-order autocorrelation function of the emitted light proved an efficient transition between singlet and triplet excited states on the picosecond time scale. In the solid state, the temperature- dependent fluorescence decay of the complex was analyzed after pulsed photoexcitation in the temperature range between 300 K and 5 K. From these measurements, a small singlet-triplet energy gap of only 65 meV and a triplet sublevel splitting of 3.0 meV were derived. The transition rates between molecular states could also be determined. Here, the fast singlet decay time of τS1 = 9.8ns proved the efficient thermally activated delayed fluorescence process, which was demonstrated for the first time for this new class of copper(I) complexes thus. While the use of thermally activated delayed fluorescence is a potential way to harness otherwise long-living dark triplet states, radicals completely avoid dark triplet states. However, this usually comes with the huge drawback of the molecules being chemically unstable. Therefore, two chemically stable biradical species were synthesized in the framework of the DFG research training school GRK 2112 on Molecular biradicals: structure, properties and reactivity, by Yohei Hattori in the group of Prof. Dr. Christoph Lambert and Rodger Rausch in the group of Prof. Dr. Frank Würthner at the Institute of Organic Chemistry at the University of Würzburg, respectively. In Section 4.5, it was investigated how these molecules can be used in OLEDs. In the first isoindigo based biradical (6,6’-bis(3,5-di-tert-butyl-4-phenoxyl)-1,1’-bis(2- ethylhexyl)-[3,3’-biindolinyl-idene]-2,2’-dione) two tert-butyl moieties kinetically block chemical reactions at the place of the lone electrons and an electron-withdrawing core shifts the electron density into the center of the chromophore. With these properties, it was possible to realize a poly(p-phenylene vinylene) copolymer based OLED doped with the biradical and to observe luminescence during optical as well as electrical excitation. Analyzing shapes of the photo- and electroluminescence spectra at different doping concentrations, Förster resonance energy transfer was determined to be the dominant transition mechanism for excitons from the matrix to the biradical dopants. Likewise, OLEDs could be realized with the second diphenylmethylpyridine based birad- ical (4-(5-(bis(2,4,6-trichlorophenyl)methyl)-4,6-dichloropyridin-2-yl)-N-(4-(5-(bis(2,4,6- -trichlorophenyl)methyl)-4,6-dichloropyridin-2-yl)phenyl)-N-(4-methoxyphenyl)aniline) as dopant. In this biradical, chlorinated diphenylmethyl groups protect the two unpaired electrons. Photo- and electroluminescence spectra showed an emission in the near in- frared spectral range between 750 nm and 1000 nm. Also, Förster resonance energy trans- fer was the dominant energy transfer mechanism with an transfer efficiency close to 100 % even at doping concentrations of only 5 wt%. In addition to demonstrating the working OLEDs based in biradicals, the detection of luminescence of the two biradical species in devices also constitutes an important step toward making use of experimental techniques such as optically detected electron spin resonance, which could provide information about the electronic states of the emitter and their spin manifold during OLED operation. Another class of emitters studied are molecules in which several chromophores are co- valently linked to form a macrocyclic system. The properties of these multichromophores were highlighted in Section 4.6. Here, it was analyzed how the photophysical behavior of the molecules is affected by the covalent linking, which determines the interaction be- tween the chromophores. The first multichromophore, 2,2’-ditetracene, was synthesized by Lena Ross in the group of Prof. Dr. Anke Krüger at the Institute of Organic Chemistry at the University of Würzburg and was analyzed in this work both at the single-molecule level and in its aggregated crystalline form. While the single crystals were purified and grown in a vertical sublimation oven, the samples for the single molecule studies were prepared in matrices of amorphous polymethyl methacrylate and crystalline anthracene. Tetracene was analyzed concurrently to evaluate the effects of covalent linking. In samples where the distance between two molecules is sufficiently large, tetracene and 2,2’-ditracene show matching emission profiles with the only difference in the Franck-Condon factors and a de- creased photoluminescence decay time constant from 14 ns for tetracene to 5 ns for 2,2’- ditracene, which can be attributed to the increased density of the vibrational modes in 2,2’-ditracene. Evaluation of the photon statistics of individual 2,2’-ditracene molecules however showed that the system does not behave as two individual chromophores but as a collective state, preserving the spectral properties of the two tetracene chromophores. Complementary calculations performed by Marian Deutsch in the group of Prof. Dr. Bernd Engels at the Institute of Physical and Theoretical Chemistry at the University of Würzburg helped to understand the processes in the materials and could show that the electronic and vibronic modes of 2,2’-ditracene are superpositions of the modes occurring in tetracene. In contrast, single-crystalline 2,2’-ditetracene behaves significantly different than tetracene, namely exhibiting a red shift in photoluminescence of 150 meV, caused by an altered crys- talline packing that lowers the S1-state energy level. Temperature-dependent photolu- minescence measurements revealed a rich emission pattern from 2,2’-ditetracene single crystals. The mechanisms behind this were unraveled using photoluminescence lifetime density analysis in different spectral regions of the emission spectrum and at different tem- peratures. An excimer state was identified that is located about 5 meV below the S1-state, separated by a 1 meV barrier, and which can decay to the ground state with a time constant of 9 ns. Also, as the S1-state energy level is lowered below the E(S1) ≥ 2 ×E(T1) threshold, singlet fission is suppressed in 2,2’-ditetracene in contrast to tetracene. Therefore, at low temperatures, photoluminescence is enhanced by a factor of 46, which could make 2,2’- ditetracene a useful material for future applications in devices such as OLEDs or lasers. The second multichromophore species, para-xylylene bridged perylene bisimide macrocycles, were synthesized by Peter Spenst in the group of Prof. Dr. Frank Würthner at the Institute of Organic Chemistry at the University of Würzburg, by linking three and four perylene bisimides, respectively. To reveal the exciton dynamics in these macrocycles, highly diluted monomers as well as trimers and tetramers were doped into matrices of polymethyl methacrylate to create thin films in which individual macrocycles could be analyzed. The emission spectra of the macrocycles remained identical to those of the monomers, indicating weak coupling between the chromophores. Single photon emission could be verified for monomers as well as macrocycles, as exciton-exciton annihilation processes suppress the simultaneous emission of two photons from one macrocycle. Nevertheless, the proof of the occurrence of a doubly excited state was obtained by excitation power dependent photon statistics measurements. The formalism developed in the theory part of this thesis for calculating the photon statistics of multichromophore systems was used here to find a theoretical model that matches the experimental results. The main features of this model are a doubly excited state, fast singlet-singlet annihilation, and an efficient transition from the doubly excited state to a dark triplet state. The occurrence of triplet-triplet annihilation was demonstrated in a subsequent experiment in which the macrocycles were excited at a laser intensity well above the saturation intensity of the monomer species. In contrast to the monomers, the trimers and tetramers exhibited neither a complete dark state nor saturation of photoluminescence. Both processes, efficient singlet-singlet and triplet-triplet annihilation make perylene bisimide macrocycles exceptionally bright single photon emitters. These advantages were utilized to realize a room temperature electrically driven fluorescent single photon source. For this purpose, OLEDs were fabricated using polyvinylcarbazole and 2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazol blends as a host material for perylene bisimide trimers. Photon antibunching could be observed in both optically and electrically driven devices, representing the first demonstration of electrically driven single photon sources using fluorescent emitters at room temperature. As expected from the previous optical experiments, the electroluminescence of the molecules was exceptionally bright, emitting about 105 photons per second, which could be seen even by eye under the microscope. Finally, in the last section 4.7 of this thesis, two additional measurement schemes were proposed as an alternative to the measurement of the second-order correlation function g (2)(t) of single molecules, which only provides information about the first two factorial moments of the molecules’ photon statistics. In the first scheme, the g (3)(t) function was measured with three photodiodes, which is a consequential extension of the Hanbury Brown and Twiss measurement with two photodiodes. It was demonstrated how measuring the g (3)(t) function is able to identify interfering emitters with non-Poisson statistics in the experiment. The second setup was designed with an electro-optic modulator that repeatedly gen- erates photoexcitation in the form of a step function. The recording of luminescence transients for different excitation intensities yields the same results as the correspond- ing g (2)-functions measured on single emitters, both in their shape and in their depen- dence on excitation power. To demonstrate this concept, the TADF emitter TXO-TPA (2- [4-(diphenylamino)phenyl]-10,10-dioxide-9H-thioxanthen-9-one) was doped at a concen- tration of 10−4 wt% in a mCP (1,3-Bis(N-carbazolyl)benzene) matrix. This concentration was low enough that TXO-TPA molecules did not interact with each other, but an ensem- ble of molecules was still present in the detection volume. The intramolecular transition rates between singlet and triplet states of TXO-TPA could be derived with an error of at most 5 %. Other experimental techniques designed to obtain this information require ei- ther lengthy measurements on single molecules, where sample preparation is also often a challenge, or temperature-dependent fluorescence lifetime measurements, which require a cryostat, which in turn places constraints on the sample design used. In future, this ap- proach could establish a powerful method to study external factors influencing molecular transition rates. Overall, this thesis has introduced new molecular materials, revealed their photophys- ical properties, and demonstrated how they can be used to fabricate efficient and even novel light sources. N2 - Diese Dissertation befasst sich mit der Photophysik ausgewählter kleiner organischer Mo- leküle mit dem Ziel, diese für effiziente und sogar neuartige Lichtquellen zu nutzen. Die vorgestellten Studien konzentrierten sich insbesondere darauf, die zugrunde liegende Ex- zitonendynamiken offenzulegen und die Übergangsraten zwischen verschiedenen mole- kularen Zuständen zu bestimmen. Es wurde gezeigt, wie die spezifischen Eigenschaften und Mechanismen der Lichtemission in fluoreszierenden Molekülen, Molekülen mit Phos- phoreszenz oder thermisch aktivierter verzögerter Fluoreszenz (TADF), Biradikalen und Multichromophoren genutzt werden können, um neuartige lichtemittierende Bauelemen- te herzustellen. Das wichtigste Instrument, das dabei zum Einsatz kam, war die Analyse der Photonenstatistik der Emitter, d. h. die Analyse der zeitlichen Verteilung der emittier- ten Photonen während der elektrischen oder optischen Anregung. In der Einleitung dieser Arbeit wurde das Funktionsprinzip organischer Leuchtdioden (OLED) vorgestellt, während in Kapitel 2 der physikalische Hintergrund relevanter Eigen- schaften organischer Moleküle, des Lichts und ihrer Wechselwirkung miteinander behan- delt wurde. Insbesondere wurden das Auftreten von diskreten Energieniveaus in organi- schen Halbleitern und der Prozess der spontanen Lichtemission erörtert. Darüber hinaus wurde in diesem Kapitel ein mathematischer Formalismus ausgearbeitet, um herauszufin- den, welche Informationen über das untersuchte Molekül durch die Analyse seiner Photo- nenstatistik gewonnen werden können. Es wurde mathematisch gezeigt, dass die Inten- sitätskorrelationsfunktion g (2)(t) Informationen über die ersten beiden faktoriellen Mo- mente der Photonenstatistik enthält und faktorielle Momente höherer Ordnung keine zu- sätzlichen Informationen über das untersuchte System enthalten, wenn sich das System nach der Emission eines Photons immer im gleichen Zustand befindet. Zum Abschluss des Grundlagenteil dieser Arbeit wurden in Kapitel 3 die verwendeten Charakterisierungs- methoden vorgestellt, darunter die konfokale Mikroskopie einzelner Moleküle, die zeitkor- relierte Einzelphotonenzählung und temperaturabhängige Photolumineszenzmessungen. Um den für das Verständnis der folgenden Ergebniskapitel notwendigen Hintergrund zu schaffen, wurde in Abschnitt 4.1 die Phänomene des Photoblinkens und des Photo- bleichens einzelner Moleküle näher betrachtet. Bei einem Squarain-basierten fluoreszierenden Emitter wurde während der Photoanregung ein schneller Wechsel zwischen ei- nem hellen und einem dunklen Zustand beobachtet. Anhand von Übergangsraten zwi- schen den Molekülzuständen, die aus der Literatur bekannt sind, wurde ein konsisten- tes Modell vorgestellt, das die Verteilung der Verweilzeiten des Moleküls in den hellen und dunklen Zuständen erklären kann. Insbesondere wurde eine Exponential- und eine Potenzgesetz-Wahrscheinlichkeitsverteilung für die Zeit gemessen, die das Molekül im hel- len bzw. dunklen Zustand verweilte. Dieses Verhalten sowie der Wechsel der Photolumi- neszenzintensität zwischen den beiden Zuständen wurde schlüssig durch diffundierenden Restsauerstoff in der Probe erklärt, die in einer mit Stickstoff gefüllten Glovebox hergestellt worden war. Auf die organischen Gast-Wirts-Filme der nachfolgenden Proben dieser Ar- beit wurden dünne Streifen aus Aluminium aufgebracht, die als Sauerstoffgetter dienten. Dadurch wurde nicht nur der Effekt des Photobleichens unterdrückt, sondern auch die Zeit bis zu diesem deutlich verlängert, was viele der folgenden Untersuchungen überhaupt erst möglich machte. Für Emitter, die in Displays verwendet werden, sind Emissionseigenschaften wie schmalbandige Lumineszenz und kurze Fluoreszenzlebensdauern wünschenswert. Diese Eigenschaften können nicht nur durch das Emittermolekül selbst, sondern auch durch die Wechselwirkung mit der Umgebung beeinflusst werden. Bevor der Fokus auf die Photophysik einzelner kleiner organischer Moleküle gelegt wurde, wurde daher in Abschnitt 4.2 die Wechselwirkung einer molekularen Spezies auf Perylenbisimid- Basis mit ihrer lokalen Umgebung in einer ungeordneten Polymethylmethacrylatmatrix untersucht. In einem statistischen Ansatz wurden individuelle photophysikalische Eigenschaften für 32 einzelne Moleküle gemessen und Korrelationen in der Variation dieser Merkmale analysiert. Dadurch wurde deutlich, wie die lokale Polarität der Umgebung der Moleküle deren Photophysik beeinflusst. Insbesondere wurde gezeigt, wie eine Erhöhung der lokalen Polarität zu einer rotverschobenen Emission, schmaleren Emissionslinien, einer breiteren vibronischen Aufspaltung zwischen verschiedenen Emissionslinien in Kombination mit einem kleineren Huang-Rhys-Parameter und einer längeren Fluoreszenzlebensdauer führt. In Zukunft könnten diese Ergebnisse dazu beitragen, einzelne Chromophore in größere Makromoleküle einzubetten, um dem Chromophor die optimale lokale Umgebung zu bieten, damit es die gewünschten Emissionseigenschaften aufweist. Die nächsten beiden Abschnitte widmeten sich einer innovativen und vielversprech- enden Klasse von Chromophoren, linear koordinierten Kupferkomplexen, die in der Gruppe von Dr. Andreas Steffen am Institut für Anorganische Chemie der Universität Würzburg synthetisiert wurden. Bei Kupferatomen sind die d-Orbitale vollständig besetzt, was unerwünschte metallzentrierte d-d⋆-Zustände verhindert, die in der Regel eine niedrige Energie besitzen und nicht strahlend rekombinieren. Gleichzeitig bietet das Kupferatom eine flexible Koordinationsgeometrie, und es wird erwartet, dass Komplexe in ihrer linearen Form die geringsten Molekülverformung nach optischer Anregung erfahren. Je nach Wahl der Liganden können diese Kupferkomplexe sowohl Phosphoreszenz als auch temperaturaktivierte verzögerte Fluoreszenz zeigen. In Abschnitt 4.3 wurde ein phosphoreszierender Kupferkomplex mit einem Chloratom und einem 1-(2,6- Diisopropylphenyl)-3,3,5,5-Tetramethyl-2-pyrrolidin-yliden-Liganden auf seine Eignung als optisch aktives Material in einer OLED untersucht. Zu diesem Zweck wurde eine OLED mit einer auf Polyspirobisfluoren basierenden Copolymermatrix und dem Dotant in einer Konzentration von 20 wt% elektrisch angeregt. Die Entfaltung des Emissionsspektrums in Beiträge der Matrix und des Dotanten ergab, dass 60 % der OLED-Emission auf den Kupferkomplex zurückzuführen war. Außerdem wurde gezeigt, dass die Form des Emissionsspektrums des Kupferkomplexes beim Einbau in die OLED unverändert bleibt, aber um etwa 233 meV rot verschoben ist. In Abschnitt 4.4 wurde ein zweiter Kupferkomplex analysiert, der eine thermisch aktivierte verzögerte Fluoreszenz (TAFD) aufweist. Dieser Komplex besteht aus einem Carbazolat sowie einem 2-(2,6-Diisopropyl)-phenyl-1,1-diphenyl-isoindol-2-ium-3-id- Liganden und wurde als Festkörper und auf Einzelmolekülebene untersucht, wobei eine Einzelphotonenemission bis zu einer Intensität von 78.000 Photonen pro Sekunde gemessen wurde. Die Auswertung der Autokorrelationsfunktion zweiter Ordnung des emittierten Lichts belegt einen effizienten Übergang zwischen den angeregten Singulett- und Triplett-Zuständen auf der Pikosekunden-Zeitskala. Im Festkörper wurde der temperaturabhängige Fluoreszenzabfall des Komplexes nach gepulster Photoanregung im Temperaturbereich zwischen 300 K und 5 K untersucht. Aus diesen Messungen wurde eine kleine Singulett-Triplett-Energielücke von nur 65 meV und eine Triplett-Subniveau- Aufspaltung von 3.0 meV ermittelt. Die Übergangsraten zwischen den entsprechenden molekularen Zuständen konnten ebenfalls bestimmt werden. Die schnelle Singulett- Zerfallszeit von τS1 = 9.8ns konnte den effizienten thermisch aktivierten verzögerten Fluoreszenzprozess zugeordnet werden, der somit erstmals für diese neue Klasse der Kupfer(I)-Komplexe nachgewiesen wurde. Während die thermisch aktivierte verzögerte Fluoreszenz eine elegante Möglichkeit ist, ansonsten dunkle Triplettzustände für die strahlende Emission zu nutzen, vermeiden Radikale Molekülspezies dunkle Triplettzustände vollständig. Dies hat jedoch in der Regel den großen Nachteil, dass die Moleküle chemisch instabil sind. Daher wurden im Rahmen des DFG-Graduiertenkollegs GRK 2112 Molecular biradicals: structure, properties and reactivity von Yohei Hattori aus der Arbeitsgruppe von Prof. Dr. Christoph Lambert und Rodger Rausch aus der Arbeitsgruppe von Prof. Dr. Frank Würthner am Institut für Organischen Chemie an der Universität Würzburg zwei chemisch stabile Radikal-Spezies synthetisiert. In Abschnitt 4.5 wurde untersucht, wie diese Moleküle in OLEDs verwendet werden können. Im ersten Biradikal auf Isoindigo-Basis (6,6’-Bis(3,5-di-tert-butyl-4-phenoxyl)-1,1’- bis(2-ethylhexyl)-[3,3’-biindolinyl-iden]-2,2’-dion) blockieren zwei tert-Butyl-Einheiten sterisch chemische Reaktionen an der Stelle des ungepaarten Elektrons und ein elek- tronenziehender Kern verschiebt die Elektronendichte ins Zentrum des Chromophors. Mit diesen Eigenschaften war es möglich, eine mit dem Biradikal dotierte OLED auf Basis eines Poly(p-phenylenvinylen)-Copolymers zu realisieren und Lumineszenz sowohl unter optischer als auch unter elektrischer Anregung zu beobachten. Die Analyse der Formen der Photo- und Elektrolumineszenzspektren bei unterschiedli- chen Dotierungskonzentrationen ergab, dass der Förster-Resonanz-Energietransfer der dominierende Übergangsmechanismus für Exzitonen von der Matrix auf die bi- radikalischen Dotierstoffe ist. Ebenso konnten OLEDs mit dem zweiten Biradikal auf Diphenylmethylpyridinbasis (4-(5-(Bis(2,4,6-trichlorphenyl)methyl)-4,6-dichlorpyridin- 2-yl)-N-(4-(5-(Bis(2,4,6-trichlorphenyl)methyl)-4,6-dichlorpyridin-2-yl)phenyl)-N-(4- methoxyphenyl)anilin) als Dotierstoff realisiert werden. In diesem Biradikal schützen chlorierte Diphenylmethylgruppen die beiden ungepaarten Elektronen. Die Photo- und Elektrolumineszenzspektren zeigten eine Emission im nahen Infrarotbereich zwischen 750 nm und 1000 nm. Ebenso war der Försterresonanz-Energietransfer der dominieren- de Energietransfermechanismus mit einer Transfereffizienz von nahezu 100 %, selbst bei Dotierungskonzentrationen von etwa 5 wt%. Neben der Demonstration funktionie- render OLEDs auf der Basis von Biradikalen stellt der Nachweis der Lumineszenz der beiden Biradikal-Spezies in den Bauteilen auch einen wichtigen Schritt zur Nutzung experimenteller Techniken wie der optisch detektierten Elektronenspinresonanz dar, die komplementäre Informationen über die elektronischen Zustände der Emitters und deren Spin-Verteilung während des OLED-Betriebs liefern können. Eine weitere untersuchte Klasse von Emittern sind Moleküle, bei denen mehrere Chro- mophore kovalent zu einem molekularen System verbunden sind. Die Eigenschaften die- ser Multichromophore wurden in Abschnitt 4.6 analysiert. Dabei wurde untersucht, wie das photophysikalische Verhalten der Moleküle durch die kovalente Bindung beeinflusst wird, welche maßgeblich die Wechselwirkung zwischen den Chromophoren bestimmt. Das erste Multichromophor, 2,2’-Ditetracen, wurde von Lena Ross in der Gruppe von Prof. Dr. Anke Krüger am Institut für Organischen Chemie an der Universität Würzburg synthetisiert und in dieser Arbeit sowohl auf Einzelmolekülebene als auch in seiner kristallinen Form analysiert. Während die Einkristalle in einem vertikalen Sublimationsofen aufgerei- nigt und gewachsen wurden, wurden die Proben für die Einzelmolekülstudien an Matrizen von Polymethylmethacrylat und kristallinem Anthracen präpariert. Simultan wurde Tetra- cen analysiert, um die Auswirkungen der kovalenten Bindung beurteilen zu können. In Proben, bei denen der Abstand zwischen zwei Gastmolekülen ausreichend groß ist, zeigen Tetracen und 2,2’-Ditracen übereinstimmende Emissionsprofile mit lediglich veränderten Franck-Condon-Faktoren und einer verringerten Photolumineszenz-Abklingzeitkonstante von 14 ns für Tetracen auf 5 ns für 2,2’-Ditracen, was auf die erhöhte Dichte der Schwin- gungsmoden in 2,2’-Ditracen zurückgeführt werden kann. Die Auswertung der Photonen- statistiken der einzelnen 2,2’-Ditracen-Moleküle zeigte, dass sich das System erwartungs- gemäß nicht wie zwei einzelne Chromophore verhält, sondern wie ein kollektiver Zustand, der jedoch die spektralen Eigenschaften der beiden Tetracen-Chromophore beibehält. Er- gänzende Berechnungen, die von Marian Deutsch in der Gruppe von Prof. Dr. Bernd Engels am Institut für Physikalische und Theoretische Chemie an der Universität Würzburg durch- geführt wurden, halfen, die Prozesse in den Materialien zu verstehen und konnten zei- gen, dass die elektronischen und vibronischen Moden von 2,2’-Ditracen eine Superpo- sition der Moden in Tetracen sind. Im Gegensatz dazu unterscheidet sich einkristallines 2,2’-Ditetracen von Tetracen. So weist es eine Rotverschiebung der Photolumineszenz von 150 meV auf, die durch eine veränderte kristalline Packung verursacht wird, die das Ener- gieniveau des S1-Zustands absenkt. Temperaturabhängige Photolumineszenzmessungen zeigten ein reichhaltiges Emissionsmuster von 2,2’-Ditetracen-Einkristallen. Die zugrun- de liegenden Mechanismen wurden mithilfe der Analyse von Photolumineszenz-Lebens- dauern in verschiedenen Spektralbereichen des Emissionsspektrums und bei unterschied- lichen Temperaturen ermittelt. Es wurde ein Excimer-Zustand identifiziert, der sich etwa 5 meV unterhalb des S1-Zustands befindet, der durch eine 1 meV-Barriere von diesem ge- trennt ist und der mit einer Zeitkonstante von 9 ns in den Grundzustand zerfallen kann. Außerdem wird die Singulett-Aufspaltung in 2,2’-Ditetracen im Gegensatz zu Tetracen un- terdrückt, da das Energieniveau des S1-Zustands unter die Schwelle von E(S1) ≥ 2×E(T1) abgesenkt wird. Folglich wird die Photolumineszenz bei niedrigen Temperaturen um einen Faktor von bis zu 46 verstärkt, was 2,2’-Ditetracen zu einem nützlichen Material für zu- künftige Anwendungen in Geräten wie OLEDs oder Lasern machen könnte. Die zweite multichromophore Spezies, para-Xylylen-verbundene Perylenbisimid-Makro- zyklen, wurden von Peter Spenst in der Gruppe von Prof. Dr. Frank Würthner am Institut der Organischen Chemie an der Universität Würzburg synthetisiert, indem drei bzw. vier Perylenbisimide miteinander verknüpft wurden. Um die Exzitonendynamik in diesen Makrozyklen zu untersuchen, wurden stark verdünnte Monomere sowie Trimere und Tetra- mere in Matrizen aus Polymethylmethacrylat mit sehr niedriger Konzentration dotiert, um dünne Filme zu erzeugen, in denen individuelle Makrozyklen analysiert werden konnten. Die Emissionsspektren der Makrozyklen blieb identisch zu denen der Monomere, was auf eine schwache Kopplung zwischen den Chromophoren hindeutet. Die Emission einzel- ner Photonen konnte sowohl für Monomere als auch für Makrozyklen nachgewiesen wer- den, da Exziton-Exziton-Annihilationsprozesse die gleichzeitige Emission von zwei Photo- nen aus einem Makromolkül unterdrücken. Der Nachweis eines doppelt angeregten Zu- stands wurde durch Messungen der von der Anregungsleistung abhängigen Photonensta- tistik erbracht. Der im theoretischen Teil dieser Arbeit entwickelte Formalismus zur Be- rechnung der Photonenstatistik von multichromophoren Systemen wurde hier verwendet, um ein theoretisches Modell zu finden, das mit den experimentellen Ergebnissen überein- stimmt. Die wichtigsten Merkmale dieses Modells sind ein doppelt angeregter Zustand, eine schnelle Singulett-Singulett-Annihilation und ein effizienter Übergang vom doppelt angeregten Zustand in einen dunklen Triplett-Zustand. Das Auftreten der Triplett-Triplett- Annihilation wurde in einem anschließenden Experiment nachgewiesen, bei dem die Ma- krozyklen mit einer Laserintensität angeregt wurden, die deutlich über der Sättigungsin- tensität der Monomerspezies lag. Im Gegensatz zu den Monomeren wiesen die Trimere und Tetramere weder einen vollständig dunklen Zustand noch eine Sättigung der Photolu- mineszenz auf. Beide Prozesse, Singulett-Singulett- und Triplett-Triplett-Annihilation, ma- chen Perylenbisimid-Makrozyklen zu außergewöhnlich hellen Einzelphotonen-Emittern. Diese Vorteile wurden genutzt, um eine elektrisch betriebene Einzelphotonenquelle bei Raumtemperatur zu realisieren. Zu diesem Zweck wurden OLEDs unter Verwendung von Polyvinylcarbazol und 2-tert-Butylphenyl-5-biphenyl-1,3,4-oxadiazol als Wirtsmaterialien für Perylenbisimid-Trimere hergestellt. Photonen-Antibunching konnte sowohl in optisch als auch in elektrisch betriebenen OLEDs beobachtet werden, was die erste Demonstrati- on von elektrisch betriebenen Einzelphotonenquellen mit fluoreszierenden Emittern bei Raumtemperatur darstellt. Wie aufgrund der vorangegangenen optischen Experimente zu erwarten war, war die Elektrolumineszenz der Moleküle außergewöhnlich hell und wies et- wa 105 Photonen pro Sekunde auf, so dass die Einzelemitteremission sogar mit dem Auge unter dem Mikroskop gesehen werden konnten. Im letzten Abschnitt 4.7 dieser Dissertation wurden schließlich zwei zusätzliche Messverfahren als Alternative zur Messung der Korrelationsfunktion zweiter Ordnung g (2)(t) einzelner Moleküle vorgeschlagen, da die g (2)(t)-Funktion nur Informationen über die ersten beiden faktoriellen Momente der Photonenstatistik der Moleküle liefert. In einem ersten Ansatz wurde die g (3)(t)-Funktion mit drei Photodioden gemessen, was eine logische Erweiterung der Messung nach Hanbury Brown und Twiss mit zwei Photodioden darstellt. Hierbei wurde gezeigt, wie die Messung der g (3)(t)-Funktion in der Lage ist, störende Emitter mit Nicht-Poisson-Statistik im Experiment zu identifizieren. Das zweite Messverfahren ist mit einem elektro-optischen Modulator ausgestattet, der wiederholt Photoanregungen in Form einer Stufenfunktion ermöglicht. Die Aufzeichnung von Lumineszenz-Transienten für verschiedene Anregungsintensitäten erzeugt am mole- kularen Ensemble die gleichen Ergebnisse wie g (2)(t)-Messungen, die an Einzelemittern durchgeführt wurden, sowohl in ihrer Form als auch in ihrer Abhängigkeit von der Anre- gungsleistung. Zur Demonstration dieses Konzepts wurde der TADF-Emitter TXO-TPA (2- [4-(Diphenylamino)phenyl]-10,10-dioxide-9H-thioxanthen-9-one) in einer Konzentration von 10−4 wt% mit einer mCP (1,3-Bis(N-carbazolyl)benzol)-Matrix gemischt. Diese Kon- zentration war gering genug, dass die TXO-TPA-Moleküle nicht miteinander wechselwirk- ten, aber dennoch ein Ensemble von Molekülen im Detektionsvolumen vorhanden war. Die intramolekularen Übergangsraten zwischen Singulett- und Triplett-Zuständen von TXO-TPA konnten mit einem Fehler von nur 5 % abgeleitet werden. Andere experimen- telle Techniken, mit denen diese Informationen gewöhnlich gewonnen werden, erfordern entweder langwierige Messungen an einzelnen Molekülen, bei denen die Probenvorberei- tung oft eine Herausforderung darstellt, oder temperaturabhängige Messungen der Fluo- reszenzlebensdauer, für die ein Kryostat erforderlich ist, was wiederum Anforderungen an das verwendete Probendesign stellt. In Zukunft könnte dieser Ansatz eine nützliche Me- thode darstellen, um externer Faktoren, die die molekularen Übergangsraten beeinflussen, zu bestimmen und zu quantifizieren. Insgesamt wurden in dieser Arbeit neue molekulare Materialien vorgestellt, ihre photophysikalischen Eigenschaften offengelegt und demonstriert, wie sie zur Herstellung effizienter und sogar neuartiger Lichtquellen verwendet werden können. KW - Fotophysik KW - Photophysics KW - organic KW - OLED KW - Photophysik Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-320313 ER - TY - THES A1 - Menekşe, Kaan T1 - Fabrication of Organic Solar Cells, Screening of Non-Fullerene Acceptors and the Investigation of their Intermolecular Interactions T1 - Herstellung von organischen Solarzellen, Screening von Nicht-Fulleren-Akzeptoren und die Untersuchung ihrer intermolekularen Wechselwirkungen N2 - In this thesis, intermolecular acceptor-acceptor interactions in organic solar cells based on new non-fullerene acceptors are addressed. For this purpose, first the reproducibility of organic electronic devices was tested on a new facility for their fabrication. This was followed by the screening for new acceptor materials. Based on this, three molecular systems were investigated with regard to their acceptor-acceptor interactions and their influence on solar cell efficiency. N2 - In der vorliegenden Doktorarbeit werden zwischenmolekulare Akzeptor-Akzeptor Wechselwirkungen in organischen Solarzellen auf Basis von neuen nichtfulleren Akzeptoren behandelt. Dazu wurde zuerst die Reproduzierbarkeit von organischen Bauteilelementen an einer neuen Anlage zur Fertigung ebendieser getestet. Anschließend erfolgte die Suche nach neuen Akzeptormaterialien. Darauf aufbauend wurden drei Molekülsysteme hinsichtlich ihrer Akzeptor-Akzeptor Wechselwirkungen und deren Einfluss auf die Solarzelleneffizienz untersucht. KW - Organische Solarzelle KW - Nicht-Fulleren Akzeptor KW - Non-Fullerene Acceptor KW - Intermolekulare Wechselwirkungen KW - Intermolecular Interactions Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-291124 ER - TY - THES A1 - Baumgärtner, Kiana Jasmin T1 - Spectroscopic Investigation of the Transient Interplay at Hybrid Molecule-Substrate Interfaces after Photoexcitation: Ultrafast Electronic and Atomic Rearrangements T1 - Spektroskopische Untersuchung des dynamischen Zusammenspiels an hybriden Molekül-Substrat Grenzflächen: Ultraschnelle Elektronen- und Atombewegungen N2 - This thesis is aimed at establishing modalities of time-resolved photoelectron spectroscopy (tr-PES) conducted at a free-electron laser (FEL) source and at a high harmonic generation (HHG) source for imaging the motion of atoms, charge and energy at photoexcited hybrid organic/inorganic interfaces. Transfer of charge and energy across interfaces lies at the heart of surface science and device physics and involves a complex interplay between the motion of electrons and atoms. At hybrid organic/inorganic interfaces involving planar molecules, such as pentacene and copper(II)-phthalocyanine (CuPc), atomic motions in out-of-plane direction are particularly apparent. Such hybrid interfaces are of importance to, e.g., next-generation functional devices, smart catalytic surfaces and molecular machines. In this work, two hybrid interfaces – pentacene atop Ag(110) and copper(II)-phthalocyanine (CuPc) atop titanium disulfide (1T-TiSe2) – are characterized by means of modalities of tr-PES. The experiments were conducted at a HHG source and at the FEL source FLASH at Deutsches Elektronen-Synchrotron DESY (Hamburg, Germany). Both sources provide photon pulses with temporal widths of ∼ 100 fs and thus allow for resolving the non-equilibrium dynamics at hybrid interfaces involving both electronic and atomic motion on their intrinsic time scales. While the photon energy at this HHG source is limited to the UV-range, photon energies can be tuned from the UV-range to the soft x-ray-range at FLASH. With this increased energy range, not only macroscopic electronic information can be accessed from the sample’s valence and conduction states, but also site-specific structural and chemical information encoded in the core-level signatures becomes accessible. Here, the combined information from the valence band and core-level dynamics is obtained by performing time- and angle-resolved photoelectron spectroscopy (tr-ARPES) in the UV-range and subsequently performing time-resolved x-ray photoelectron spectroscopy (tr-XPS) and time-resolved photoelectron diffraction (tr-XPD) in the soft x-ray regime in the same experimental setup. The sample’s bandstructure in energy-momentum space and time is captured by a time-of-flight momentum microscope with femtosecond temporal and sub-Ångström spatial resolutions. In the investigated systems, out-of-equilibrium dynamics are traced that are connected to the transfer of charge and energy across the hybrid interfaces. While energetic shifts and complementary population dynamics are observed for molecular and substrate states, the shapes of involved molecular orbitals change in energy-momentum space on a subpicosecond time scale. In combination with theory support, these changes are attributed to iiiatomic reorganizations at the interface and transient molecular structures are reconstructed with sub-Ångström precision. Unique to the material combination of CuPc/TiSe2, a structural rearrangement on the macroscopic scale is traced simultaneously: ∼ 60 % of the molecules undergo a concerted, unidirectional in-plane rotation. This surprising observation and its origin are detailed in this thesis and connected to a particularly efficient charge transfer across the CuPc/TiSe2 interface, resulting in a charging of ∼ 45 % of CuPc molecules. N2 - Das Ziel der vorliegenden Doktorarbeit ist es, die Bewegung von Atomen, Ladungsträgern und Energie an organisch/anorganischen Grenzschichten fernab des thermischen Gleichgewichts zu visualisieren und deren Wechselwirkung zu entschlüsseln. Dies wird experimentell mittels zeitaufgelöster Photoemissionsexperimente an einer Freien-Elektronen-LaserQuelle und an einer Höher-Harmonischen-Quelle verwirklicht. Ladungs- und Energietransfer zwischen organisch/anorganischen Grenzschichten sind zentrale Komponenten für die Funktion Molekül-basierter Anwendungen, wie z.B. katalytische Oberflächen, elektronische Schalt- und Speichergeräte oder molekulare Maschinen. Sie stellen einen dynamischen Prozess dar, der sich in einem Wechselspiel aus der Bewegung von Elektronen zwischen beiden Schichten und atomaren Bewegungen innerhalb beider Schichten äußert. Planare Moleküle, wie Pentacen oder Kupfer(II)-Phthalocyanin (CuPc), eignen sich besonders um solche atomaren Bewegungen zu untersuchen, da diese aufgrund geringer Rückstellkräfte senkrecht zur Molekülebene besonders ausgeprägt sein können. In dieser Arbeit werden Ladungs- und Energietransferprozesse an zwei ausgewählten Grenzschichten untersucht: Pentacen auf Silber (Ag(110)) und CuPc auf Titan Diselenid (1T-TiSe2). Zeitaufgelöste Photoemissionsexperimente (tr-PES) wurden an einer HöherHarmonischen-Quelle und an dem Freien-Elektronen-Laser FLASH (Deutsches Elektronen-Synchrotron DESY, Hamburg, Deutschland) durchgeführt. Beide Lichtquellen liefern Photonenpulse mit einer Halbwertsbreite von etwa 100 fs und sind daher geeignet, um Nicht-Gleichgewichtsprozesse zeitlich aufzulösen, die auf der Bewegung von sowohl Elektronen als auch Atomen basieren. Die gewählte Höher-Harmonische-Quelle liefert Photonenenergien im UV-Bereich. Bei FLASH hingegen können die Photonenenergien variabel vom UV-Bereich bis hin zum Weichröntgenbereich erzeugt werden. Dieser erweiterte Energiebereich ermöglicht es, zusätzlich zur elektronischen Dynamik im Valenzbereich, auch Dynamiken kernnaher Zustände zu beobachten. Mithilfe dreier Modalitäten von zeitaufgelöster Photoemission – zeit- und winkelaufgelöste Photoelektronenspektroskopie (tr-ARPES), zeitaufgelöste Röntgenphotoelektronenspektroskopie (tr-XPS) und zeitaufgelöste Röntgenphotoelektronen-Diffraktion (tr-XPD) – werden sowohl die elektronischen als auch strukturellen Dynamiken der Grenzschicht rekonstruiert. Dabei dient tr-ARPES im UV-Bereich zur Charakterisierung der makroskopischen elektronischen Eigenschaften und tr-XPS und tr-XPD im Weichröntgenbereich dienen zur Analyse lokaler chemischer und struktureller Eigenschaften. Alle Messungen wurden unter denselben experimentellen Beidingungen durchgeführt und mithilfe eines Flugzeit-Impulsmikroskops konnte die transiente Bandstruktur mit einer Ortauflösung im Sub-Ångström-Bereich und einer Zeitauflö- sung im Femtosekunden-Bereich aufgenommen werden. In beiden untersuchten Systemen werden elektronische und strukturelle Prozesse an der Molekül–Substrat Grenzfläche beobachtet, die durch einen Ladungs- und Energietransfer in Folge optischer Anregung erklärt werden. Dieser Transfer äußert sich elektronisch durch ein Befüllen des Substrat-Leitungsbands und einem zeitgleichen Entleeren der MolekülValenzorbitale. Strukturelle Veränderungen, wie die Adsorptionshöhe oder intramolekulare Atompositionen, werden aus den sich zeitgleich verformenden Molekül-Valenzorbitalen rekonstruiert. Speziell für CuPc/TiSe2 wird ein effektiver Ladungstransfer beobachtet, wodurch 375 fs nach optischer Anregung ∼ 45 % der Moleküle einfach positiv geladen vorliegen. Diese Ladungstrennung zwischen den sich wie ein Schachbrett anordnenden positivgeladenen und neutralen Molekülen sowie dem Substrat führt zu einer Modulation des Oberflächenpotentials, welche eine energetische Verschiebung aller Grenzflächenzustände bedingt und intramolekulare Strukturveränderungen sowie eine makroskopische Reorganisation des Molekülfilms zur Folge hat: ∼ 60 % der Moleküle drehen sich innerhalb von ∼ 375 fs synchron auf dem Substrat und nehmen nach ∼ 1800 fs wieder ihre Ausgangsposition ein. Diese überraschende Beobachtung sowie die Ursache werden detaillierter in der vorliegenden Arbeit diskutiert und in den Kontext aktueller Forschung an "molekularen Schaltern" gebracht. KW - ARPES KW - Pump-Probe-Technik KW - Übergangsmetalldichalkogenide KW - Orbital KW - Molekül KW - orbital tomography KW - time-resolved KW - free electron laser KW - charge transfer KW - molecular movie Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-330531 ER -