TY - THES A1 - Krähenbühl Amstalden, Maria Cecilia T1 - Development of a bacterial responsive antibiotic release system T1 - Entwicklung eines Bakterien-responsiven Antibiotikumsfreisetzungssystems N2 - A major problem regarding public health is the emergence of antibiotic resistant bacterial strains, especially methicillin resistant Staphylococcus aureus (MRSA). This is mainly attributed to the unnecessary overuse of antimicrobial drugs by patients; however, one aspect that is often neglected is their untargeted mechanism of action, affecting not only the infection itself but also commensal bacteria which are often opportunistic pathogens causing many diseases as well. Therefore, our goal was to develop a bioresponsive antibiotic delivery system triggered by virulence factors. The designed system is comprised of a polymer to enhance its pharmacokinetic profile, a peptide cleavable linker, and the antibiotic agent itself. The bacterial protease aureolysin which is expressed by S. aureus during infections would cleave the linker and partially release the antibiotic which would be still attached to a remaining tetrapeptide. These would be cleaved by a group of proteases naturally present in plasma called aminopeptidases, finally releasing the compound. In the first part of this project, we searched for a suitable sequence to serve as a cleavable linker. It should be sensitive towards the target bacterial protease but not be cleaved by any human enzymes to guarantee the specificity of the system. Therefore, we synthesized three peptide sequences via Solid Phase Peptide Synthesis and incubated them with aureolysin as well as with many human matrix Metalloproteases. The analysis and quantification of enzymatic activity was monitored chromatographically (RP-HPLC). The plasminogen originated sequence was chosen since it was not sensitive towards MMPs, but cleaved by aureolysin. In the second part, we tried to incorporate the chosen peptide sequences as crosslinkers in hydrogel formulations. The purpose was to physically incorporate the antibiotic within the hydrogel, which would be released by the cleavage of those sequences and the consequent loosening the hydrogel net. For that purpose we used a commercially available hydrogel kit with a PVA matrix modified with maleimide, which allows a conjugation reaction with thiol functionalized crosslinkers. Three fluorophores were chosen to serve as antibiotic models and a diffusion assay was performed. Only the glomerular structured Green Fluorescent Protein (GFP) presented a low diffusion rate, thus the aureolysin release assays were performed only using this prototype. Assays showed that with a low hydrogel polymer concentration, the fluorophore either quickly diffused into the medium or was not released at all. The physical incorporation of the antibiotic within the hydrogel pores was therefore abolished as a suitable release approach. For a second attempt, we covalently bound a fluorophore to the linker, which was conjugated to the hydrogel matrix. The incubation with aureolysin and subsequent RP-HPLC analysis showed a peak with the same retention time correspondent to the fragment product after cleavage of the free linker. This is a proof that the concept of linking the peptide sequence to the antibiotic is a promising strategy for its bioresponsive release. Within the third part of this study, we analyzed the degradation of the resulted fragment after aureolysin activity and subsequent full release of the antibiotic by human aminopeptidases. We determined the concentration of those enzymes in human plasma and synthesized the fragment by conjugating the tetrapeptide sequence to aminofluorescein via EDC/NHS reaction. By incubating the construct with the lowest aminopeptidase concentration measured in plasma, the fluorophore was completely released within two hours, showing the efficacy of these enzymes as bioresponsive agents. The last part was the construction of the PEGylated linker-antibiotic. For this purpose we chose the tetracycline like antibiotic chelocardin (CHD) as our prototype. The conjugation of the linker- CHD to the polymer was performed by copper free click chemistry. The cleavage rate of the linker by aureolysin was very similar to the one obtained for the free peptide, indicating that the PEGylation does not interfere on the enzymatic activity. However, by trying to increase the loading ratio of chelocardin onto the polymer, we observed a very low cleavage rate for the system, indicating the formation of aggregates by those constructs. The designed system has proved to be a smart strategy for the delivery on demand of antibiotics in which the drug is only released by the presence of S. aureus during their virulent state. N2 - Ein weltweites Problem des Gesundheitswesens ist die Entstehung von antibiotikaresistenten Bakterienstämmen, besonders Methicillin-resistenter Staphylococcus aureus (MRSA). Eine wichtige Ursache für Resistenzentwicklungen ist die unüberlegte Verschreibung von Antibiotika; allerdings das breite Wirkspektrum der meisten Substanzen ist ein stets vernachlässigter Aspekt. Dies betrifft nicht nur die Pathogene selbst, sondern auch die bakterielle Mikroflora des Patienten, die opportunistische Pathogene darstellen und in machen Fallen ebenfalls verschiedene Erkrankungen hervorrufen können. Unser Ziel ist die Entwicklung eines bioresponsiven Freisetzungssystems für Antibiotika. Das System besteht aus einem Polymer zur Optimierung der Pharmakokinetik, einem Peptidlinker sowie dem eigentlichen Antibiotikum. Die bakterielle Protease Aureolysin wird von S. aureus exprimiert, sobald sich das Bakterium in seinem virulenten Zustand befindet. Das Enzym schneidet den Linker, wodurch das Antibiotikum zum Teil freigesetzt wird. Da es noch an Aminosäureartefakte gebunden ist, muss es im Anschluss durch eine Aminopeptidase, einer Gruppe von Exoproteasen des humanen Plasmas, abgespalten werden. Die erste Phase des Projektes war die Suche nach einer passenden Peptidsequenz, die als Linker geeignet ist. Diese soll nur durch die Zielprotease und nicht durch andere humane Proteasen geschnitten werden, um die Spezifizität des Systems zu gewährleisten. Es wurden drei Sequenzen ausgewählt und mittels Festphasen-Peptidsynthese hergestellt. Diese wurden mit Aureolysin sowie humanen Matrix-Metalloproteasen (MMP) inkubiert; die Produkte wurden chromatographisch (RP-HPLC) charakterisiert und die enzymatische Aktivität bestimmt. Die von Plasminogen abgeleitete Sequenz wurde von keiner der Matrix-Metalloproteasen geschnitten, wohl aber von Aureolysin. Eine ausführliche Analyse des Aureolysin-Verdaus zeigte, dass der Linker innerhalb weniger Stunden komplett geschnitten wird. In der zweiten Phase wurde die Peptidsequenz als Crosslinker in verschiedene Hydrogelmatrices inkorporiert. Die Strategie war der physikalische Einschluss des Antibiotikums in das Hydrogel und die anschließende Freisetzung durch Spaltung dieser Sequenzen und Lockerung des Hydrogelnetzes auf molekularer Ebene. Hierfür wurde ein kommerzielles Hydrogelkit mit Maleinsäureamid-modifizierter PVA Matrix verwendet, die mit Thiol-funktionalisierten Linkern konjugiert werden können. Drei verschiedene Fluorophore wurden als Modelle für die Diffusionsversuche verwendet. Nur das glomeruläre green fluorescent protein (GFP) besaß eine ausreichend niedrige Diffusionskonstante und wurde deshalb als Prototyp für die weiteren Schneidversuche verwendet. Die Ergebnisse zeigen, dass der Fluorophor bei niedrigen Matrixkonzentrationen schnell aus den Poren in das umgebende Medium diffundiert, während er bei höheren Konzentrationen nicht freigesetzt wird. Die physikalische Inkorporierung des Antibiotikums wurde aus diesen Gründen verworfen und nicht durchgeführt. Als zweiter Versuch wurde der Fluorophor kovalent an den Linker gekoppelt, welcher im Anschluß an die Matrix konjugiert wurde. Die Inkubation mit Aureolysin und die nachfolgende RP-HPLC-Analyse zeigte einen Peak bei der Retentionszeit entsprechend dem Fragmentprodukt, das durch Inkubation des freien Linkers entsteht. Die kovalente Bindung zwischen der antimikrobiellen Substanz und dem Linker ist eine vielversprechende Strategie für eine bio-responsive Freisetzung. In der dritten Phase des Projektes wurde die Zersetzung des resultierenden Fragments nach Aureolysin-Verdau und die anschließende vollständige Freisetzung des Antibiotikums durch humane Aminopeptidasen untersucht. Die Konzentration an Aminopeptidasen im humanen Plasma wurde bestimmt und die durch Aureolysin entstehende Peptidsequenz an Aminofluorescein mittels EDC/NHS-Reaktion gekoppelt. Die Inkubation des Konstruktes mit der niedrigsten Aminopeptidase-Konzentration, die im Plasma bestimmt werden konnte zeigte, dass der Fluorophor in zwei Stunden vollständig freigesetzt wurde. Die letzte Phase hat sich mit der PEGylierung des Linker-Antibiotikum-Komplexes beschäftigt. Das Tetracyclin-analoge Antibiotikum Chelocardin wurde als Prototyp ausgewählt und am Helmholtz-Institut für Pharmazeutische Forschung des Saarlandes synthetisiert. Die Konjugation des Linker-CHD-Konstruktes an das Polymer wurde mittels kupferfreier Click-Chemie durchgeführt. Der PEGylierte Linker wurde in einer ähnlichen Rate durch Aureolysin geschnitten wie der freie Linker, was beweist, dass das Polymer keinen Einfluss auf die enzymatische Aktivität hat. Allerdings wurde während der Optimierung der Beladung von CHD je Polymermolekül eine sehr niedrige Freisetzung des Antibiotikums beobachtet, was durch Aggregatbildung der Konstrukte erklärt werden kann. Das entwickelte System ist eine interessante Delivery-Strategie für Antibiotika, welche hierdurch nur durch virulente S. aureus-Erreger freigesetzt werden. KW - Arzneimittelforschung KW - Universität Würzburg. Lehrstuhl für Pharmazeutische Technologie und Biopharmazie KW - Targeted drug delivery KW - Wirkstofffreisetzung KW - Antibiotic KW - Release system Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-163386 ER - TY - THES A1 - Steiger, Christoph T1 - Drug delivery of therapeutic gases – strategies for controlled and local delivery of carbon monoxide T1 - Zielgerichtete Freisetzung von therapeutischen Gasen - Strategien zur kontrollierten und lokalen Freisetzung von Kohlenstoffmonoxid N2 - The isoenzyme heme oxygenase 1 (HO-1) is a key element for maintaining cellular homeostasis. Upregulated in response to cellular stress, the HO-1 degrades heme into carbon monoxide (CO), biliverdin, and Fe2+. By means of a local cell-protective feedback loop the enzyme triggers numerous effects including anti-oxidative, anti-apoptotic, and anti-inflammatory events associated with complex signalling patterns which are largely orchestrated by CO. Various approaches to mimic this physiological HO-1 / CO system aiming for a treatment of medical conditions have been described [1]. These preclinical studies commonly applied CO systemically via (i) inhalation or (ii) using CO-Releasing Molecules (CORMs) [2]. The clinical use of these approaches, however, is challenged by a lack of practicability and substantial safety issues associated with the toxicity of high systemic doses of CO that are required for triggering therapeutic effects. Therefore, one rational of this thesis is to describe and evaluate strategies for the local delivery of CO aiming for safe and effective CO therapeutics of tomorrow. N2 - Das Isoenzym Hämoxygenase 1 (HO-1) ist ein zentraler Bestandteil in der Aufrechterhaltung der zellulären Homöostase. Es wird durch zellulären Stress induziert und baut daraufhin Häm zu Kohlenstoffmonoxid (CO), Biliverdin und Fe2+ ab. Im Sinne eines lokalen Rückkopplungsmechanismus stößt es damit eine Vielzahl physiologischer Mechanismen mit anti-oxidativen, anti-apoptotischen und anti-inflammatorischen Effekten an, welche zumeist durch CO reguliert und durch ein komplexes Netzwerk aus Signaltransduktionsprozessen vermittelt werden. Es wurden zahlreiche Versuche unternommen, diesen als HO-1 / CO System bezeichneten Mechanismus nachzuahmen, um dadurch eine Behandlung von verschiedenen Krankheitszuständen zu ermöglichen. In diesen präklinischen Studien wurde CO regelmäßig systemisch (i) per Inhalation oder (ii) in Form von CO freisetzenden Verbindungen (CO-Releasing Molecules - CORM) verabreicht . Die klinische Anwendung dieser Strategien ist jedoch durch Sicherheitsrisiken erheblich erschwert, insbesondere durch die Toxizität der notwendigen hohen systemischen Dosen von CO. Entsprechend beschäftigt sich diese Dissertation unter anderem mit der Beschreibung und Evaluation von Strategien zur lokalen Verabreichung von CO, mit dem Ziel sichere und effektive Konzepte zu dessen Anwendung zu entwickeln. KW - Targeted drug delivery KW - drug delivery KW - therapeutic gases KW - Kohlenmonoxid Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-141054 ER - TY - THES A1 - Spieler, Valerie T1 - Bioinspired drug delivery of interleukin-4 T1 - Bioinspirierte Wirkstofffreisetzung von Interleukin-4 N2 - Chronic inflammatory diseases such as rheumatoid arthritis, type 2 diabetes and cardiovascular diseases, are associated with the homeostatic imbalance of one of several physiological systems combined with the lack of spontaneous remission, which causes the disease to persevere throughout patients’ lives. The inflammatory response relies mainly on tissue-resident, pro-inflammatory M1 type macrophages and, consequently, a chance for therapeutic intervention lies in driving macrophage polarization towards the anti-inflammatory M2 phenotype. Therefore, anti-inflammatory cytokines that promote M2 polarization, including interleukin-4 (IL4), have promising therapeutic potential. Unfortunately, their systemic use is hampered by a short serum half-life and dose-limiting toxicity. On the way towards cytokine therapies with superior safety and efficacy, this thesis is focused on designing bioresponsive delivery systems for the anti-inflammatory cytokine IL4. Chapter 1 describes how anti-inflammatory cytokines are tightly regulated in chronic, systemic inflammation as in rheumatoid arthritis but also in acute, local inflammation as in myocardial infarction. Both diseases show a characteristic progression during which anti-inflammatory cytokine delivery is of variable benefit. A conventional, passive drug delivery system is unlikely to release the cytokines such that the delivery matches the dynamic course of the (patho-)physiological progress. This chapter presents a blueprint for active drug delivery systems equipped with a 24/7 inflammation detector that continuously senses for matrix metalloproteinases (MMP) as surrogate markers of the disease progress and responds by releasing cytokines into the affected tissues at the right time and place. Because they are silent during phases of low disease activity, bioresponsive depots could be used to treat patients in asymptomatic states, as a preventive measure. The drug delivery system only gets activated during flares of inflammation, which are then immediately suppressed by the released cytokine drug and could prevent the steady damage of subclinical chronic inflammation, and therefore reduce hospitalization rates. In a first proof of concept study on controlled cytokine delivery (chapter 2), we developed IL4-decorated particles aiming at sustained and localized cytokine activity. Genetic code expansion was deployed to generate muteins with the IL4’s lysine 42 replaced by two different unnatural amino acids bearing a side chain suitable for click chemistry modification. The new IL4 muteins were thoroughly characterized to ensure proper folding and full bioactivity. Both muteins showed cell-stimulating ability and binding affinity to IL4 receptor alpha similar to those of wild type IL4. Copper-catalyzed (CuAAC) and strain-promoted (SPAAC) azide–alkyne cycloadditions were used to site-selectively anchor IL4 to agarose particles. These particles had sustained IL4 activity, as demonstrated by the induction of TF-1 cell proliferation and anti-inflammatory M2 polarization of M-CSF-generated human macrophages. This approach of site-directed IL4 anchoring on particles demonstrates that cytokine-functionalized particles can provide sustained and spatially controlled immune-modulating stimuli. The idea of a 24/7 sensing, MMP driven cytokine delivery system, as described in the introductory chapter, was applied in chapter 3. There, we simulated the natural process of cytokine storage in the extracellular matrix (ECM) by using an injectable solution of IL4 for depot formation by enzyme-catalyzed covalent attachment to ECM components such as fibronectin. The immobilized construct is meant to be cleaved from the ECM by matrix-metalloproteinases (MMPs) which are upregulated during flares of inflammation. These two functionalities are facilitated by a peptide containing two sequences: a protease-sensitive peptide linker (PSL) for MMP cleavage and a sequence for covalent attachment by activated human transglutaminase FXIIIa (TGase) included in the injection mix for co-administration. This peptide was site-selectively conjugated to the unnatural amino acid at IL4 position 42 allowing to preserve wild type bioactivity of IL4. In vitro experiments confirmed the anticipated MMP response towards the PSL and TGase-mediated construct attachment to fibronectin of the ECM. Furthermore, the IL4-peptide conjugates were able to reduce inflammation and protect non-load bearing cartilage along with the anterior cruciate ligament from degradation in an osteoarthritis model in rabbits. This represents the first step towards a minimally invasive treatment option using bioresponsive cytokine depots with potential clinical value for inflammatory conditions. One of the challenges with this approach was the production of the cytokine conjugate, with incorporation of the unnatural amino acid into IL4 being the main bottleneck. Therefore, in chapter 4, we designed a simplified version of this depot system by genetically fusing the bifunctional peptide via a flexible peptide spacer to murine IL4. While human IL4 loses its activity upon C-terminal elongation, murine IL4 is not affected by this modification. The produced murine IL4 fusion protein could be effectively bound to in vitro grown extracellular matrix in presence of TGase. Moreover, the protease-sensitive linker was selectively recognized and cleaved by MMPs, liberating intact and active IL4, although at a slower rate than expected. Murine IL4 offers the advantage to evaluate the bioresponsive cytokine depot in many available mouse models, which was so far not possible with human IL4 due to species selectivity. For murine IL4, the approach was further extended to systemic delivery in chapter 5. To increase the half-life and specifically target disease sites, we engineered a murine IL4 variant conjugated with a folate-bearing PEG chain for targeting of activated macrophages. The bioactive IL4 conjugate had a high serum stability and the PEGylation increased the half-life to 4 h in vivo. Surprisingly, the folate moiety did not improve targeting in an antigen-induced arthritis (AIA) mouse model. IL4-PEG performed better in targeting the inflamed joint, while IL4-PEG-folate showed stronger accumulation in the liver. Fortunately, the modular nature of the IL4 conjugate facilitates convenient adaption of PEG chain length and the targeting moiety to further improve the half-life and localization of the cytokine. In summary, this thesis describes a platform technology for the controlled release of cytokines in response to inflammation. By restricting the release of the therapeutic to the site of inflammation, the benefit-risk ratio of this potent class of biologics can be positively influenced. Future research will help to deepen our understanding of how to perfectly combine cytokine, protease-sensitive linker and immobilization tag or targeting moiety to tackle different diseases. N2 - Chronische Entzündungskrankheiten wie rheumatoide Arthritis, Typ-2-Diabetes oder Herz-Kreislauf-Erkrankungen werden durch das Ungleichgewicht eines von mehreren physiologischen Systemen in Verbindung mit fehlender spontaner Remission verursacht, wodurch die Krankheiten lebenslang bestehen bleiben. Die zugrunde liegenden Entzündungsreaktionen beruhen hauptsächlich auf im Gewebe vorhandenen Makrophagen und deren Polarisation in Richtung des entzündlichen M1-Phänotyps, was gleichzeitig die Möglichkeit einer therapeutischen Intervention bietet. Entzündungshemmende Zytokine, einschließlich Interleukin-4 (IL4), haben ein großes therapeutisches Potenzial, da sie Makrophagen in Richtung des entzündungshemmenden M2-Phänotyps zu polarisieren vermögen. Leider ist ihre systemische Anwendung durch eine kurze Serumhalbwertszeit und dosislimitierende Toxizität eingeschränkt. Auf dem Weg zu Zytokintherapeutika mit verbesserter Sicherheit und Wirksamkeit konzentriert sich diese Arbeit auf die Entwicklung von bioresponsiven Freisetzungssystemen für das entzündungshemmende Zytokin IL4. Kapitel 1 beschreibt, wie entzündungshemmende Zytokine bei chronischen systemischen Entzündungen wie rheumatoider Arthritis im Vergleich zu akuten lokalen Entzündungen wie dem Myokardinfarkt reguliert werden. Beide Erkrankungen zeigen einen charakteristischen Verlauf, währenddessen die Freisetzung von entzündungshemmenden Zytokinen von unterschiedlich großem Nutzen ist. Gewöhnliche, passive Arzneimittelfreisetzungssysteme sind nicht in der Lage, Zytokine in idealer Menge zur optimalen Unterdrückung des dynamischen, (patho-)physiologischen Verlaufs der Krankheit freizusetzen. In diesem Kapitel werden deshalb aktive Arzneimittelfreisetzungssysteme vorgestellt, die mit einer Sensorik für die Entzündung ausgestattet sind, mit der sie kontinuierlich die Konzentration von Matrix-Metalloproteinasen (MMP) als Indikatoren für den Krankheitsverlauf erfassen können. Somit kann das aktive Arzneimittelfreisetzungssystem krankes Gewebe zum richtigen Zeitpunkt und am richtigen Ort mit Zytokinen behandeln. Solche bioresponsiven Depots können zur vorbeugenden Behandlung von asymptomatischen Patienten eingesetzt werden, da sie während Phasen geringer Krankheitsaktivität inaktiv sind. Das Freisetzungssystem wird erst durch Entzündungsschübe aktiviert, die dann sofort durch die freigesetzten Zytokine unterdrückt werden. Dadurch könnte die dauerhafte Schädigung durch subklinische, chronische Entzündung verhindert und als Konsequenz die Hospitalisierungsrate gesenkt werden. In einer ersten Machbarkeitsstudie wurden in Kapitel 2 IL4-dekorierte Partikel mit dem Ziel entwickelt, eine langanhaltende und lokalisierte Zytokinaktivität zu gewährleisten. Dazu wurden IL4-Muteine erzeugt, bei denen das Lysin 42 mittels Erweiterung des genetischen Codes durch zwei verschiedene unnatürliche Aminosäuren ersetzt wurde, die jeweils eine für Klick-Chemie geeignete Seitenkette tragen. Die IL4-Muteine wurden ausführlich charakterisiert, um eine korrekte Faltung und volle Bioaktivität sicherzustellen. Beide Muteine zeigten zellstimulierende Fähigkeit und Bindungsaffinität an IL4-Rezeptor-alpha, die mit der von Wildtyp-IL4 vergleichbar ist. Anschließend wurde kupferkatalysierte (CuAAC) und kupferfreie (SPAAC) Azid-Alkin-Cycloaddition verwendet, um IL4 ortsspezifisch auf Agarosepartikeln zu verankern. Die Partikel waren in der Lage, die IL4-Aktivität über längere Zeit aufrecht zu erhalten, was durch TF-1-Zellproliferation und M2-Polarisation von M-CSF-generierten, humanen Makrophagen gezeigt werden konnte. Dieser Ansatz der ortsspezifischen Verankerung von IL4 auf Agarosepartikeln zeigt, dass zytokinfunktionalisierte Partikel anhaltende und räumlich kontrollierte, immunmodulierende Stimuli liefern können. Die Idee eines MMP-gesteuerten Zytokinfreisetzungssystems mit 24/7-Sensorik, das im Einleitungskapitel vorgestellt wurde, wurde in Kapitel 3 umgesetzt. Der natürliche Prozess der Zytokinspeicherung in der extrazellulären Matrix (EZM) wurde mithilfe einer injizierbaren IL4-Lösung zur enzymatischen Depotbildung durch kovalente Bindung an EZM-Komponenten, z. B. Fibronektin, simuliert. Nach der Bindung soll das Konstrukt durch Matrix-Metalloproteinasen (MMPs), die während Entzündungsschüben hochreguliert werden, aus der EZM freigesetzt werden können. Eine Peptidsequenz, die ein Protease-sensitives Verbindungsstück und eine Sequenz, mit der das Zytokin bei gleichzeitiger Injektion von aktivierter menschlicher Transglutaminase FXIIIa (TGase) kovalent auf der EZM immobilisiert wird enthält, wurde ortsspezifisch über eine unnatürliche Aminosäure an Position 42 von IL4 gekoppelt. Dadurch wurde die Bioaktivität von IL4 vollständig erhalten, während das Protease-sensitive Verbindungsstück auf MMPs reagierte und das Konstrukt durch TGase an das Fibronektin der EZM gebunden werden konnte. Die IL4-Peptid-Konjugate waren in einem Osteoarthritis-Modell bei Kaninchen in der Lage, die Entzündung des Kniegelenks zu verringern und den nicht-tragenden Knorpel sowie das vordere Kreuzband vor Degradation zu schützen. Dies ist der erste Schritt in Richtung einer minimalinvasiven Behandlung durch Verwendung von bioresponsiven Zytokindepots mit potenziellem klinischem Nutzen bei Entzündungserkrankungen. Eine der Herausforderungen bei diesem Vorgehen war die Herstellung der Zytokinkonjugate, wobei der Einbau der unnatürlichen Aminosäure in IL4 den größten Engpass darstellte. Deshalb wurde in Kapitel 4 eine vereinfachte Version dieses Depotsystems entworfen, indem das bifunktionelle Peptid über eine flexible Verbindungssequenz mit murinem IL4 genetisch fusioniert wurde. Während humanes IL4 bei C-terminaler Verlängerung an Aktivität verliert, ist murines IL4 durch die Modifikation nicht beeinflusst. Die murinen IL4-Fusionsproteine konnten in Gegenwart von TGase wirksam an in vitro generierte extrazelluläre Matrix gebunden werden. Darüber hinaus wurde das Protease-sensitive Verbindungsstück selektiv von MMPs erkannt und gespalten, wobei intaktes und aktives IL4 freigesetzt wurde, wenn auch mit einer langsameren Rate als erwartet. Murines IL4 bietet die Möglichkeit das bioresponsive Zytokindepot in den vielen verfügbaren Mausmodellen zu testen, was mit humanem IL4 aufgrund der Speziesselektivität nicht möglich ist. Für murines IL4 wurde die Entwicklung in Kapitel 5 auf die systemische Applikation ausgeweitet. Um die Serumhalbwertszeit zu erhöhen und eine Wirkstofflokalisation im entzündeten Gewebe zu erreichen, wurde eine murine IL4-Variante entwickelt, die mit einer Folat-tragenden PEG-Kette konjugiert wurde, um aktivierte M1 Makrophagen zu adressieren. Das bioaktive IL4-Konjugat wies eine hohe Serumstabilität auf und die PEGylierung erhöhte die Halbwertszeit in vivo auf 4 h. Allerdings konnte durch die Konjugation der Folatgruppe an IL4 die Wirkstofflokalisation in einem Mausmodell mit Antigen-induzierter Arthritis (AIA) nicht verbessert werden. IL4-PEG akkumulierte sich stärker im entzündeten Gelenk, während IL4-PEG-Folat eine stärkere Anreicherung in der Leber zeigte. Erfreulicherweise erleichtert der modulare Aufbau des IL4-Konjugats die bequeme Anpassung der PEG-Kettenlänge und der zielorientierten Einheit, um die Halbwertszeit und Lokalisierung des Zytokins weiter zu verbessern. Zusammenfassend beschreibt diese Arbeit eine Plattformtechnologie zur kontrollierten Freisetzung von Zytokinen als Reaktion auf Entzündungen. Durch die Beschränkung der Freisetzung des Therapeutikums auf den Ort der Entzündung kann das Nutzen-Risiko-Verhältnis dieser potenten Klasse von Biologika positiv beeinflusst werden. Zukünftige Forschungen werden dazu beitragen zu verstehen, wie Zytokin, Protease-sensitives Verbindungsstück und Immobilisierungsanhängsel oder etwaige zielorientierte Einheiten zur Bekämpfung verschiedener Krankheiten perfekt kombiniert werden können. KW - Targeted drug delivery KW - Kontrollierte Wirkstofffreisetzung KW - Interleukin 4 KW - Cytokine KW - Drug delivery platform KW - Protease-sensitive release KW - Site-specific protein conjugation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193590 ER -