TY - THES A1 - Reggane, Maude T1 - Lowering lattice forces of crystalline bases T1 - Erniedrigung der Gitterenergie von kristallinen basischen Wirkstoffen N2 - The number of active pharmaceutical ingredients (APIs) exhibiting a low solubility in aqueous media or a slow dissolution rate kept rising over the past years urging formulation scientists to explore new ways to tackle poor solubility and to enable oral absorption from such compounds. Bioavailability of poorly water-soluble compounds can be improved by increasing the dissolution rate and/or by increasing the gastro intestinal concentration through transient supersaturation. The dissolution rate of the API can be typically modified by the choice of the physical form, the polymorphic form, the powder surface area, and the local pH, while a transient supersaturation can be extended mainly by nucleation or crystallization inhibiting effects. In the present thesis, three strategies were explored to tailor the dissolution rate, the supersaturation and the hydrotropic solubilization of APIs, weak bases, respectively. The first part of this thesis followed a bioinspired approach to extend the kinetic solubility of salts and co-crystals. API salts and co-crystals are high energy forms that can generate supersaturated solutions with respect to any more stable form, typically the most stable API form in physiological environment. The transient kinetic stabilization of supersaturated states, also termed “parachute effect”, is considered to improve bioavailability and is one aspect of the formulation that can be tailored. Inspiration from plants, which store high concentrations of aromatic bases in their vacuoles via complexation with polyphenols, sparked the evaluation to use hydroxybenzoic acid derivatives for salt or co-crystal engineering. Imatinib was chosen as the model compound for this investigation as its aromaticity and flat molecular architecture could favor interactions with hydroxybenzoic acid derivatives. One 1:1 Imatinib syringate co-crystal (I-SYA (1:1)) and one 1:2 Imatinib syringate co-crystal salt (I-SYA (1:2)) were obtained. Their dissolution assays in simulated intestinal fluid (SIF; a 50 mM phosphate buffer of pH 6.8) revealed that they formed stable solutions for several hours and days, respectively, in contrast to the marketed Imatinib mesylate salt (approx. 1h). This kinetic stability in solution was linked to the nucleation inhibition of the less soluble Imatinib hydrate by syringic acid (SYA). In solution 1H-NMR studies evidenced the aggregation of Imatinib and SYA. The amphiphilic nature of both Imatinib and SYA is considered to drive their association in solution, additionally, multiple intermolecular interactions such as hydrogen bonds and π-π stacking are likely to contribute. The association in solution enabled a phase of extended supersaturation, i.e., a parachute against desupersaturation, while no negative impact of aggregation on the permeability of both Imatinib and SYA was observed. A prerequisite to reach supersaturation is a rapid dissolution and release of the API from the formulation. Accordingly, the second and third part of this thesis is focused on the so-called “spring effect” of amorphous solid dispersions (ASDs). The addition of a hydrotropic agent, meaning a molecule that can solubilize poorly water-soluble APIs in aqueous solutions (well-known examples of hydrotropes are benzoic acid and nicotinamide) into an amorphous Ciprofloxacin-polymer matrix led to ternary systems with a significantly faster release and higher concentration of the API in SIF as compared to binary ASDs consisting of Ciprofloxacin (CPX) and polymer only. The stronger spring could be rationalized by an improved wetting of the ASD, or/and by a hydrotropic solubilization effect, although these hypotheses need further investigation. Marked differences in the dissolution profiles of binary ASDs were observed in biorelevant fasted simulated intestinal fluid (FaSSIF; a medium containing Na taurocholate (3 mM) and lecithin (0.75 mM) at pH 6.5) as compared to SIF. In FaSSIF, API release from binary polymeric ASDs was largely improved, and the duration of supersaturation was extended. This suggests that the bile salt Na taurocholate and lecithin present in FaSSIF do improve both dissolution rate and supersaturation of ASDs, the two pillars of ASDs as oral enabling formulations. Indeed, bile salts are endogenous surfactants which, together with phospholipids, play an important role in the wetting, solubilization, and absorption of lipophilic compounds. The aim of the third part of the present thesis was to study ASDs as formulation principles reducing the strong positive food effect of Compound A. By inclusion of Na taurocholate (NaTC) within the matrix of polymeric ASDs a significant improvement of the dissolution rate and the kinetic solubility in SIF were achieved. Transient supersaturated states of up to four orders of magnitude over the equilibrium solubility were obtained. Two ASDs were selected for further in vivo evaluation in dog. The first was a NaTC/Eudragit E based ASD meant to dissolve and release Compound A in the acidic environment of the stomach, where its solubility is the highest. The second relied on the release of Compound A in the neutral environment of the duodenum and jejunum by using an enterically dissolving polymer, HPMC-P. Releasing the API at the site of its putative absorption was an attempt to control supersaturation levels in the duodenum and to prevent portioning and thus dilution effects during transfer from the stomach. In fasted dogs, exposure from the NaTC/HPMC-P ASD was close to that of the reference Compound A formulation under fed conditions, which suggests an improved dissolution rate and kinetic solubility under fasted conditions (historical data). The exposure from the NaTC/Eudragit E ASD was twice as low as from the NaTC/HPMC-P ASD, and also lower compared to Compound A reference formulation, whereas in vitro the parachute effect of the NaTC/Eudragit E ASD was largely superior to that of the NaTC/HPMC-P ASD. A difference in the extend of the parachute could be related to differences in the thermodynamic activity of dissolved molecules from the two ASDs. Indeed, the high instability of the NaTC/HPMC-P ASD could stem from a high thermodynamic activity driving diffusion through membranes, whereas less instable solutions of NaTC/Eudragit E could indicate solubilization effects which often translate into a lower flux through the biological membrane. Additionally, the pH of the environment where dissolution takes place might be an important factor for absorption, and could also account for the difference in exposure from the two ASDs. The aim of this thesis was to explore how the intimate environment of weak, poorly soluble bases could be functionalized to improve dissolution rate and kinetic solubility. The investigations highlighted that the performance of enabling oral delivery formulations of weak bases in aqueous media can be enhanced at different levels. At one end initial dissolution rate of ASDs can be tailored by introducing hydrotropes or/and bile salts within the polymeric matrix of ASDs. Bile salts, when combined with appropriate polymers, had also a precipitation inhibition effect enabling the maintenance of supersaturation for a bio-relevant period of time. These results set the ground for further investigations to comprehend specific interactions between bile salts and APIs, and potentially polymers at the molecular level. It will be interesting to explore how such complex systems can be exploited in the formulation design of poorly water-soluble APIs. In addition, it was observed that the duration of supersaturation generated by salts/co-crystals can be extended by the pertinent selection of counterions or coformers. The in vivo relevance of these tunings remains to be evaluated, as translation from closed, in vitro systems to the highly dynamic gastrointestinal environment is not straightforward. A better understanding of the contribution of each kinetic stage (dissolution, supersaturation, and precipitation) and their interplay with physiological factors impacting absorption is essential to facilitate the design of formulations with improved pharmacokinetics. N2 - Die Anzahl chemischer Wirkstoffe, welche sich schlecht oder langsam auflösen, hat in den vergangenen Jahren stetig zugenommen. Aus diesem Grunde müssen Entwickler neuer Formulierungen Wege finden, um die Löslichkeit und damit die Absorbtion dieser Wirkstoffe zu verbessern. Grundsätzlich kann die Bioverfügbarkeit schlecht wasserlöslicher Wirkstoffe verbessert werden, wenn die Auflöserate verbessert wird und/oder durch höhere Konzentrationen der Wirkstoffe am Resorptionsort, beispielsweise durch kontrollierte Übersättigungen. Die Auflösungsrate eines Wirkstoffes kann durch die Wahl der physikalischen Form (Salz und Polymorph), Modifikation der spezifischen Oberfläche (Mahlen) und lokalem pH Wert (Ionisierungszustand) maßgeblich beeinflusst werden. Im Falle von kontrollierten Übersättigungen, kann die Verlängerung der Dauer der Übersättigung durch die Unterdrückung der Bildung von Kristallisationskeimen erreicht werden. In der vorliegenden Promotionsarbeit wurden neue Strategien entlang dieser Herausforderungen für schwach basische Wirkstoffe untersucht und entwickelt. Im ersten Teil der Arbeit wurden biomimetische Strategien angewandt, um die physikalischen und biopharmazeutischen Eigenschaften basischer Wirkstoffe zu verbessern. Dieses erfolgte mit der Absicht, durch strukturelles Design von Salzen oder Co-Kristallen das Ausfallen des Wirkstoffes aus Lösungen hinauszögern und eine Aufklärung der zugrundeliegenden Mechanismen vorzunehmen. Dabei konnten mit ausgesuchten Wirkstoff-Salzen oder Co-Kristallen Lösungen erzeugt werden, welche zu Übersättigungen führten. Diese thermodynamisch instabilen allerdings (vorübergehend) kinetisch gehemmt vorliegenden Zustände sind mit dem Begriff „Fallschirm Effekt“ in der Literatur verknüpft, womit die Verlängerung der Übersättigungen durch geeignete Salz-/Cokristallbildung metaphorisch umschrieben ist. Diese kinetisch gehemmten und somit langanhaltend vorliegenden Übersättigungen sind entscheidend für die Verbesserung der Bioverfügbarkeit. Pflanzen nutzen diese Effekte ebenfalls aus. So können Pflanzen aromatische und schlecht wasserlösliche Basen in übersättigten Lösungen kinetisch „stabilisieren“, in dem diese an Polyphenol-Komplexe in den Vacuolen ihrer Zellen komplexiert vorliegen. Hier wurden diese bei Pflanzen beobachteten Effekte für Hydroxybenzoesäure-Derivate übernommen untersucht und zur pharmazeutischen Verbesserung des Wirkstoffes Imatinib angewandt. Das aromatische Imatinib hat eine flache molekulare Struktur, die mit Hydroxybenzoesäure-Derivaten interagieren sollte. Es wurde ein 1:1 Imatinib-Syringat Co-Kristall (I-SYA (1:1)) sowie ein 1:2 Imatinib-Syringat Co-Kristall Salz (I-SYA (1:2)) hergestellt. Mittels dieser Salze konnten beeindruckende kinetisch „stabilisierte“ und übersättigte Lösungen des Imatinib realisiert werden, die beispielsweise in künstlicher Darmflüssigkeit (SIF) über Stunden beziehungsweise Tage vorlagen. Dieses steht im Gegensatz zum handelsüblichen Imatinib-Mesylat (Dauer der Übersättigung ca. 1 Stunde). Die kinetische „Stabilisierung“ der Lösung wurde mechanistisch mittels 1H-NMR Studien auf eine Unterdrückung/Verzögerung der Kristallkeimbildung des weniger löslichen Imatinib Hydrates durch Anwesenheit der Polyphenolsäure (Syringasäure) zurückgeführt. In-vitro Transportstudien durch biologische Barrieren zeigten, dass die Syringasäure die Permeabilität des Imatinib nicht nachteilig beeinflusste. Während in diesem Kapitel die Verlängerung von Übersättigungszuständen das Ziel war (Fallschirm Effekt; „parachute“), ist die Optimierung des Ausmaßes der Übersättigung das Ziel der folgenden Kapitel, welches in der Literatur als „Feder-Effekt“ („spring“) bekannt geworden ist. Eine Voraussetzung zum Erreichen von Übersättigung ist die rasche Auflösung und Freisetzung des Wirkstoffes aus der Formulierung. Diesen „Feder-Effekt“ wurde hier in amorphen Feststoffdispersionen (ASDs) erreicht. Zielführend war die Anwendung hydrotroper Moleküle, welche in wässerigen Lösungen lösungsvermittelnd auf schlecht wasserlösliche Substanzen wirken. Diese Formulierungen führten bei amorphen Wirkstoff-Polymer Gemischen zu ternären Systemen mit deutlich schnellerer Wirkstofffreisetzung und es konnten deutlich höhere Konzentration an gelöstem Wirkstoff in simulierten gastrointestinalen Flüssigkeiten erreicht werden, als dieses im Vergleich zu binären ASDs der Fall war, die lediglich aus Wirkstoff und Polymer zusammengesetzt waren. Im Übrigen konnte gezeigt werden, dass sich die Auflösungsprofile der ASDs in verschiedenen Medien unterschieden. Durch diesen Vergleich in unterschiedlichen Medien konnte die Bedeutung des Taurocholats und des Lezithins (beide Moleküle sind Bestandteil der Gallenflüssigkeit) für die Verbesserung der Auflösungsrate von ASDs gezeigt werden. Gallensalze können in diesem Sinne als „endogene Tenside“ verstanden werden, die zusammen mit Phospholipiden eine wichtige Rolle in der Lösungsvermittlung und Absorption von lipophilen Substanzen haben. Während im vorhergehenden Teil die Bedeutung von Gallensalzen für Auflösungsphänomene aus ASDs im Zentrum des Interesses lag, wurde nun eine andere Herausforderung pharmazeutischer Entwicklungen adressiert, der sogenannte „Food effect“. Dieser Effekt meint die nahrungsbedingte Änderung der Bioverfügbarkeit von Wirkstoffen. In diesen Arbeiten führte der Zusatz von Natriumtaurocholat in eine ASD Matrix zu einer Verbesserung der Auflösungsrate und der kinetischen Löslichkeit in simulierten intestinalen Flüssigkeiten mit der bemerkenswerten Verbesserung der kinetischen Löslichkeit um bis zu vier log Einheiten im Vergleich zur thermodynamischen Löslichkeit. Zwei ASD Formulierungen wurden für eine Studie am Hund ausgewählt, die eine bestehend aus Natriumtaurocholat/Eudragit E (Eudragit E löst sich in der sauren Umgebung des Magens auf) und die andere aus Natriumtaurocholat/HPMC-P (HPMC-P setzt Wirkstoffe in der pH-neutraler Umgebung des Dünndarms frei). Unerwartet waren die resultierenden Wirkstoff-Blutspiegel. Die Blutspiegel nach Verabreichung der NaTC/Eudragit E ASD waren nur etwa halb so hoch als jene von NaTC/HPMC-P, was im Gegensatz zu den in-vitro Konzentrationsprofilen steht. Eine mögliche Erklärung ist, dass instabile Lösungen, wie sie für die Natriumtaurocholat/HPMC-P ASD in vitro beobachtet wurden, die Diffusion durch die biologische Membran antreiben, wogegen dieser Effekt umso geringer ausfällt, je stabiler die erzeugte Lösung ist, wie das im Falle der Natriumtaurocholat/Eudragit E ASD in vitro der Fall war. Ein anderer Faktor, der in diesem Zusammenhang zu diskutieren ist, ist der unterschiedliche pH–Wert am Ort, an dem beide ASD den Wirkstoff freisetzen. Übergreifendes Ziel der Promotionsarbeit war die Optimierung der unmittelbaren Umgebung von schwachen, schlecht löslichen Basen, um die Auflösungsgeschwindigkeit und kinetische Löslichkeit der Wirkstoffe zu verbessern. Einerseits lässt sich die Auflösungsrate durch den Zusatz von hydrotropen Substanzen und/oder Gallensalzen zur Polymermatrix von ASDs steigern. Die Kombination von Gallensalzen mit geeigneten Polymeren konnte effektiv das Ausfallen des Wirkstoffes begrenzen und die Dauer von Übersättigungen deutlich verbessern. Diese interessanten Kombinationen sollten für andere Polymere zukünftig untersucht werden, so dass die spezifischen Wechselwirkungen zwischen Gallensalzen und Wirkstoff, gegebenenfalls auch mit Polymeren, auf molekularer Ebene besser verstanden werden können. In einem Teil der Promotionsarbeit wurde auch gezeigt, dass die Dauer der Übersättigung durch eine gezielte Auswahl von Gegenionen oder von Co-Kristallbildnern verlängert werden kann. Die in vivo Relevanz dieser Ansätze, sind vor dem Hintergrund der sehr dynamischen Verhältnisse im Magen-Darm-Trakt zu bewerten. Darüber hinaus ist ein besseres Verständnis des Zusammenspiels der kinetischen Phasen der Freisetzung (Auflösung, Übersättigung und Ausfällung) mit physiologischen Einflussgrößen zu erarbeiten, um zuverlässig Darreichungsformen mit besseren pharmazeutischen Eigenschaften zu entwickeln. KW - Kokristallisation KW - Bioverfügbarkeit KW - Löslichkeit KW - Gallensalze KW - Arzneimittel KW - amorphous solid dispersion KW - cocrystal KW - Imatinib KW - lattice forces KW - solubility KW - bioavailability KW - permeability Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-163803 ER - TY - THES A1 - Krähenbühl Amstalden, Maria Cecilia T1 - Development of a bacterial responsive antibiotic release system T1 - Entwicklung eines Bakterien-responsiven Antibiotikumsfreisetzungssystems N2 - A major problem regarding public health is the emergence of antibiotic resistant bacterial strains, especially methicillin resistant Staphylococcus aureus (MRSA). This is mainly attributed to the unnecessary overuse of antimicrobial drugs by patients; however, one aspect that is often neglected is their untargeted mechanism of action, affecting not only the infection itself but also commensal bacteria which are often opportunistic pathogens causing many diseases as well. Therefore, our goal was to develop a bioresponsive antibiotic delivery system triggered by virulence factors. The designed system is comprised of a polymer to enhance its pharmacokinetic profile, a peptide cleavable linker, and the antibiotic agent itself. The bacterial protease aureolysin which is expressed by S. aureus during infections would cleave the linker and partially release the antibiotic which would be still attached to a remaining tetrapeptide. These would be cleaved by a group of proteases naturally present in plasma called aminopeptidases, finally releasing the compound. In the first part of this project, we searched for a suitable sequence to serve as a cleavable linker. It should be sensitive towards the target bacterial protease but not be cleaved by any human enzymes to guarantee the specificity of the system. Therefore, we synthesized three peptide sequences via Solid Phase Peptide Synthesis and incubated them with aureolysin as well as with many human matrix Metalloproteases. The analysis and quantification of enzymatic activity was monitored chromatographically (RP-HPLC). The plasminogen originated sequence was chosen since it was not sensitive towards MMPs, but cleaved by aureolysin. In the second part, we tried to incorporate the chosen peptide sequences as crosslinkers in hydrogel formulations. The purpose was to physically incorporate the antibiotic within the hydrogel, which would be released by the cleavage of those sequences and the consequent loosening the hydrogel net. For that purpose we used a commercially available hydrogel kit with a PVA matrix modified with maleimide, which allows a conjugation reaction with thiol functionalized crosslinkers. Three fluorophores were chosen to serve as antibiotic models and a diffusion assay was performed. Only the glomerular structured Green Fluorescent Protein (GFP) presented a low diffusion rate, thus the aureolysin release assays were performed only using this prototype. Assays showed that with a low hydrogel polymer concentration, the fluorophore either quickly diffused into the medium or was not released at all. The physical incorporation of the antibiotic within the hydrogel pores was therefore abolished as a suitable release approach. For a second attempt, we covalently bound a fluorophore to the linker, which was conjugated to the hydrogel matrix. The incubation with aureolysin and subsequent RP-HPLC analysis showed a peak with the same retention time correspondent to the fragment product after cleavage of the free linker. This is a proof that the concept of linking the peptide sequence to the antibiotic is a promising strategy for its bioresponsive release. Within the third part of this study, we analyzed the degradation of the resulted fragment after aureolysin activity and subsequent full release of the antibiotic by human aminopeptidases. We determined the concentration of those enzymes in human plasma and synthesized the fragment by conjugating the tetrapeptide sequence to aminofluorescein via EDC/NHS reaction. By incubating the construct with the lowest aminopeptidase concentration measured in plasma, the fluorophore was completely released within two hours, showing the efficacy of these enzymes as bioresponsive agents. The last part was the construction of the PEGylated linker-antibiotic. For this purpose we chose the tetracycline like antibiotic chelocardin (CHD) as our prototype. The conjugation of the linker- CHD to the polymer was performed by copper free click chemistry. The cleavage rate of the linker by aureolysin was very similar to the one obtained for the free peptide, indicating that the PEGylation does not interfere on the enzymatic activity. However, by trying to increase the loading ratio of chelocardin onto the polymer, we observed a very low cleavage rate for the system, indicating the formation of aggregates by those constructs. The designed system has proved to be a smart strategy for the delivery on demand of antibiotics in which the drug is only released by the presence of S. aureus during their virulent state. N2 - Ein weltweites Problem des Gesundheitswesens ist die Entstehung von antibiotikaresistenten Bakterienstämmen, besonders Methicillin-resistenter Staphylococcus aureus (MRSA). Eine wichtige Ursache für Resistenzentwicklungen ist die unüberlegte Verschreibung von Antibiotika; allerdings das breite Wirkspektrum der meisten Substanzen ist ein stets vernachlässigter Aspekt. Dies betrifft nicht nur die Pathogene selbst, sondern auch die bakterielle Mikroflora des Patienten, die opportunistische Pathogene darstellen und in machen Fallen ebenfalls verschiedene Erkrankungen hervorrufen können. Unser Ziel ist die Entwicklung eines bioresponsiven Freisetzungssystems für Antibiotika. Das System besteht aus einem Polymer zur Optimierung der Pharmakokinetik, einem Peptidlinker sowie dem eigentlichen Antibiotikum. Die bakterielle Protease Aureolysin wird von S. aureus exprimiert, sobald sich das Bakterium in seinem virulenten Zustand befindet. Das Enzym schneidet den Linker, wodurch das Antibiotikum zum Teil freigesetzt wird. Da es noch an Aminosäureartefakte gebunden ist, muss es im Anschluss durch eine Aminopeptidase, einer Gruppe von Exoproteasen des humanen Plasmas, abgespalten werden. Die erste Phase des Projektes war die Suche nach einer passenden Peptidsequenz, die als Linker geeignet ist. Diese soll nur durch die Zielprotease und nicht durch andere humane Proteasen geschnitten werden, um die Spezifizität des Systems zu gewährleisten. Es wurden drei Sequenzen ausgewählt und mittels Festphasen-Peptidsynthese hergestellt. Diese wurden mit Aureolysin sowie humanen Matrix-Metalloproteasen (MMP) inkubiert; die Produkte wurden chromatographisch (RP-HPLC) charakterisiert und die enzymatische Aktivität bestimmt. Die von Plasminogen abgeleitete Sequenz wurde von keiner der Matrix-Metalloproteasen geschnitten, wohl aber von Aureolysin. Eine ausführliche Analyse des Aureolysin-Verdaus zeigte, dass der Linker innerhalb weniger Stunden komplett geschnitten wird. In der zweiten Phase wurde die Peptidsequenz als Crosslinker in verschiedene Hydrogelmatrices inkorporiert. Die Strategie war der physikalische Einschluss des Antibiotikums in das Hydrogel und die anschließende Freisetzung durch Spaltung dieser Sequenzen und Lockerung des Hydrogelnetzes auf molekularer Ebene. Hierfür wurde ein kommerzielles Hydrogelkit mit Maleinsäureamid-modifizierter PVA Matrix verwendet, die mit Thiol-funktionalisierten Linkern konjugiert werden können. Drei verschiedene Fluorophore wurden als Modelle für die Diffusionsversuche verwendet. Nur das glomeruläre green fluorescent protein (GFP) besaß eine ausreichend niedrige Diffusionskonstante und wurde deshalb als Prototyp für die weiteren Schneidversuche verwendet. Die Ergebnisse zeigen, dass der Fluorophor bei niedrigen Matrixkonzentrationen schnell aus den Poren in das umgebende Medium diffundiert, während er bei höheren Konzentrationen nicht freigesetzt wird. Die physikalische Inkorporierung des Antibiotikums wurde aus diesen Gründen verworfen und nicht durchgeführt. Als zweiter Versuch wurde der Fluorophor kovalent an den Linker gekoppelt, welcher im Anschluß an die Matrix konjugiert wurde. Die Inkubation mit Aureolysin und die nachfolgende RP-HPLC-Analyse zeigte einen Peak bei der Retentionszeit entsprechend dem Fragmentprodukt, das durch Inkubation des freien Linkers entsteht. Die kovalente Bindung zwischen der antimikrobiellen Substanz und dem Linker ist eine vielversprechende Strategie für eine bio-responsive Freisetzung. In der dritten Phase des Projektes wurde die Zersetzung des resultierenden Fragments nach Aureolysin-Verdau und die anschließende vollständige Freisetzung des Antibiotikums durch humane Aminopeptidasen untersucht. Die Konzentration an Aminopeptidasen im humanen Plasma wurde bestimmt und die durch Aureolysin entstehende Peptidsequenz an Aminofluorescein mittels EDC/NHS-Reaktion gekoppelt. Die Inkubation des Konstruktes mit der niedrigsten Aminopeptidase-Konzentration, die im Plasma bestimmt werden konnte zeigte, dass der Fluorophor in zwei Stunden vollständig freigesetzt wurde. Die letzte Phase hat sich mit der PEGylierung des Linker-Antibiotikum-Komplexes beschäftigt. Das Tetracyclin-analoge Antibiotikum Chelocardin wurde als Prototyp ausgewählt und am Helmholtz-Institut für Pharmazeutische Forschung des Saarlandes synthetisiert. Die Konjugation des Linker-CHD-Konstruktes an das Polymer wurde mittels kupferfreier Click-Chemie durchgeführt. Der PEGylierte Linker wurde in einer ähnlichen Rate durch Aureolysin geschnitten wie der freie Linker, was beweist, dass das Polymer keinen Einfluss auf die enzymatische Aktivität hat. Allerdings wurde während der Optimierung der Beladung von CHD je Polymermolekül eine sehr niedrige Freisetzung des Antibiotikums beobachtet, was durch Aggregatbildung der Konstrukte erklärt werden kann. Das entwickelte System ist eine interessante Delivery-Strategie für Antibiotika, welche hierdurch nur durch virulente S. aureus-Erreger freigesetzt werden. KW - Arzneimittelforschung KW - Universität Würzburg. Lehrstuhl für Pharmazeutische Technologie und Biopharmazie KW - Targeted drug delivery KW - Wirkstofffreisetzung KW - Antibiotic KW - Release system Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-163386 ER - TY - THES A1 - Schüßler [geb. Hecht], Nina Kristin Petra T1 - Novel formulation principles for bioavailability enhancement of poorly water-soluble and poorly permeable drugs T1 - Neue Formulierungen zur Verbesserung der Bioverfügbarkeit von schlecht wasserlöslichen und schlecht permeablen Arzneistoffen N2 - Since four decades, high-throughput screenings have been conducted in drug discovery, fuelling the identification of potential new drug candidates. This approach, however, often promotes the detection of compounds with undesired physico-chemical properties like poor aqueous solubility or low membrane permeability. Indeed, dissolution and absorption of a drug are prerequisites for systemic exposure and therapeutic effects. Therefore, innovative strategies to optimize unfavourable performance of new drug candidates are in great demand in order to increase drug concentrations at the site of action whilst simultaneously reducing drug variability. In chapter I of this research work, hydrophobic ion pairing (HIP) is discussed as a promising strategy to improve the bioavailability of BCS class III compounds, which have high aqueous solubility and low permeability. The review points out the limitations of poorly absorbable drugs and details the approach of pairing these APIs with hydrophobic counterions. Apart from the motivation to tailor physico-chemical, biopharmaceutical and toxicological properties of BCS class III compounds, the hydrophobic ion pairing facilitates their formulation into drug delivery systems. Besides advantageous effects, disadvantages of the ion pair formation, such as the decreased aqueous solubility of the ions pair, are critically outlined. Finally, the review covers an overview of non-invasive administration routes permitted after ion pair formation, including oral/enteral, buccal, nasal, ocular and transdermal drug administration. Overall, the HIP approach offers substantial benefits regarding the bioavailability enhancement of BCS class III compounds. Chapter II concerns GHQ168 developed by Holzgrabe et al., a BCS class II compound characterized by low aqueous solubility and high permeability. GHQ168 was developed for the treatment of human African trypanosomiasis (HAT), a tropical disease for which novel active compounds are urgently needed. This lead compound was found to be very active against trypanosoma brucei brucei and trypanosoma brucei rhodesiense in cell culture assays, however, the low aqueous solubility prevented further preclinical development. To target this drawback, two different approaches were selected, including (I) the chemical modification and (II) the spray drying of GHQ168. The newly synthesized set of derivatives as well as the spray dried GHQ168 were subjected to a physico-chemical and microbiological characterization. It turned out that both approaches successfully improved aqueous solubility, however, for the derivatives of GHQ168 at the expense of activity. Furthermore, the pharmacokinetic parameters of GHQ168 and of the most active derivatives, GHQ242 and GHQ243, were evaluated. Elimination half-lives between 1.5 to 3.5 h after intraperitoneal administration and modest to strong serum albumin binding for GHQ243 (45%) and GHQ168 (80%) and very high binding (> 99%) for GHQ242 were detected. The spray dried formulation of GHQ168, as well as GHQ242 and GHQ243 were investigated in two in vivo studies in mice infected with t. b. rhodesiense (STIB900), referred to as (I) stringent model and (II) early-treatment model. In the stringent model (2 applications/day on day 3-6 after infection) the mean survival duration (MSD) of mice treated with spray dried GHQ168 exceeded the MSD of the untreated control group (17 days versus 9 days), a difference that was statistically significant. In contrast, no statistical difference was observed for GHQ242 (14 days) and GHQ243 (12 days). GHQ168 was further assessed in the early-treatment model (2 applications/day on day 1-4 after infection) and again a statistically significant improvement of MSD (32 days (end of observation period) versus 7 days) was observed. Finally, exciting antitrypanosomal efficacy for the spray dried formulation of GHQ168 was demonstrated. NADPH oxidases (NOX) were found to be the main source of endothelial reactive oxygen species (ROS) formation. Chapter III reports on the formulation studies on triazolopyrimidine derivatives from the VAS library, a set of NADPH oxidase inhibitors. These were developed for the treatment of elevated ROS levels, which contribute to the development of cardiovascular diseases. Although in vitro results from numerous studies indicated promising efficacy and selectivity for the VAS-compounds, the low water solubility impeded the in vivo translation and further preclinical development. For this reason, three derivatives, VAS2870, VAS3947, and VAS4024 were physico-chemically characterized and VAS3947, the most soluble compound, was selected for further formulation studies. These approaches included (I) spray drying, (II) microemulsification and (III) complexation with cyclodextrins in order to develop formulations for oral and parenteral application. Solubility improvement of VAS3947 was successfully demonstrated for all preparations as expressed by supersaturation ratios in comparison to the solubility of the unformulated compound. For seven spray dried formulations, the ratio ranged from 3-9, and the ratio for four microemulsions was 8-19 after 120 min, respectively. The six cyclodextrin formulations achieved the highest supersaturation ratio between 3 and 174 after 20 hours. NMR measurements elucidated the inclusion of VAS3947 within the CD’s cavity as well as the interaction with its outer surface. Ultimately, NOX inhibitors were opened for oral and parenteral administration for the first time. After successful solubility improvement of VAS3947, further investigations towards in vivo studies were conducted including stability studies with a focus on stability in solution and in plasma as presented in chapter IV. Furthermore, permeability and cytotoxicity assays were performed for the first time. It turned out that VAS3947 was instable in buffer and when exposed to light. Moreover, the compound showed decomposition in the presence of mouse microsomes and in human plasma. The VAS compounds contain an oxazol moiety linked to the triazolopyrimidine skeleton via a thioether. This structural element is responsible for the efficacy of the compound class, however it is susceptible to hydrolysis and to further degradation reactions. Moreover, VAS3947 harmed membrane integrity in the cell permeability assays and cytotoxicity investigations in HEK-293 and HEP-G2 cells revealed IC50 values in the same concentration range as reported for efficacy assays. Summarized, it was demonstrated that substances from the VAS library were no appropriate model compounds for ROS investigations nor suitable candidates for further preclinical development. N2 - Seit vier Jahrzehnten werden Hochdurchsatz-Screenings in der Arzneimittelforschung durchgeführt, was die Erkennung von potentiellen Wirkstoffkandidaten vorantreibt. Diese Vorgehensweise begünstigt jedoch häufig die Identifizierung von Substanzen mit unerwünschten physikochemischen Eigenschaften wie geringer Wasserlöslichkeit oder geringer Membranpermeabilität. Der Bioverfügbarkeitstheorie zufolge sind die Auflösung und die Absorption eines Arzneistoffs Voraussetzung für die systemische Verfügbarkeit und die therapeutische Wirkung. Daher werden innovative Strategien, die die ungünstigen Eigenschaften neuer Wirkstoffkandidaten optimieren, dringend benötigt, um die Arzneistoffkonzentration am Wirkort zu erhöhen und gleichzeitig Wirkstoffschwankungen zu reduzieren. In Kapitel I dieser Forschungsarbeit wird die hydrophobe Ionenpaarbildung als vielversprechende Strategie diskutiert, um die Bioverfügbarkeit von BCS Klasse III Substanzen zu verbessern, die sich durch hohe Wasserlöslichkeit und geringe Permeabilität auszeichnen. Der Review zeigt die Grenzen von schlecht absorbierbaren Arzneistoffen auf und stellt den Ansatz vor, diese mit hydrophoben Gegenionen zu kombinieren. Abgesehen von der Motivation, die physikochemischen, biopharma-zeutischen und toxikologischen Eigenschaften von BCS Klasse III Substanzen positiv zu beeinflussen, wird die Formulierung der hydrophoben Ionenpaare in Trägersysteme erleichtert. Neben den Vorteilen werden auch die Nachteile der hydrophoben Ionenpaarbildung, wie beispielsweise die geringere Wasserlöslichkeit der Ionenpaare, kritisch dargestellt. Abschließend gibt der Review eine Übersicht über die verschiedenen nicht-invasiven Applikationsrouten, die nach hydrophober Ionenpaarbildung realisierbar sind, was die orale/enterale, bukkale, nasale, okulare und transdermale Arzneistoffgabe umfasst. Insgesamt bietet dieser Formulierungsansatz wesentliche Vorteile im Hinblick auf die Verbesserung der Bioverfügbarkeit von BCS Klasse III Substanzen. Kapitel II befasst sich mit GHQ168, entwickelt von Holzgrabe et al., einer BCS Klasse II Substanz mit geringer Wasserlöslichkeit und hoher Permeabilität. GHQ168 wurde zur Behandlung der afrikanischen Schlafkrankheit entwickelt, einer tropischen Erkrankung, für die neue Arzneistoffe dringend benötigt werden. Diese Leitsubstanz bewies in Zellkulturversuchen sehr hohe Aktivität gegen Trypanosoma brucei brucei und Trypanosoma brucei rhodesiense, die geringe Wasserlöslichkeit verhinderte jedoch die weitere präklinische Entwicklung. Um diese Herausforderung anzugehen, wurden zwei verschiedene Ansätze gewählt, zum einen (I) die chemische Modifikation und zum anderen (II) die Sprühtrocknung von GHQ168. Die neu synthetisierten Derivate und das sprühgetrocknete GHQ168 wurden physikochemisch und mikrobiologisch charakterisiert. Beide Ansätze verbesserten erfolgreich die Wasserlöslichkeit, im Fall der Derivate von GHQ168 jedoch zu Lasten der Aktivität. Weiterhin wurden die pharmakokinetischen Eigenschaften von GHQ168 und den aktivsten Derivaten, GHQ242 und GHQ243, untersucht. Nach intraperitonealer Applikation resultierten Halbwertszeiten zwischen 1.5 und 3.5 Stunden und eine mittlere bis hohe Plasmaproteinbindung für GHQ243 (45%) und GHQ168 (80%) und eine sehr hohe Plasmaproteinbindung für GHQ242 (> 99%). Die sprühgetrocknete Formulierung von GHQ168 sowie GHQ242 und GHQ243 wurden in zwei in vivo Studien in Mäusen, die mit t. b. rhodesiense (STIB900) infiziert waren, untersucht, die Modelle werden als (I) stringent model und (II) early-treatment model bezeichnet. Im stringent model (2x tägliche Gabe an Tag 3-6 nach Infektion) war die durchschnittliche Überlebensdauer von Mäusen, die mit sprühgetrocknetem GHQ168 behandelt worden waren, statistisch signifikant höher als die der unbehandelten Kontrollgruppe (17 gegenüber 9 Tagen). Im Gegensatz hierzu wurde kein statistisch signifikanter Unterschied für GHQ242 (14 Tage) und GHQ243 (12 Tage) festgestellt. GHQ168 wurde im early-treatment model (2x tägliche Gabe an Tag 1-4 nach Infektion) weiter untersucht und erneut wurde eine statistisch signifikante Verbesserung der durchschnittlichen Überlebensdauer (32 Tage (Ende der Beobachtungsphase) gegenüber 7 Tagen) bewiesen. Letztendlich konnte für die sprühgetrocknete Formulierung von GHQ168 eine erstaunliche Aktivität gegenüber Trypanosomen gezeigt werden. NADPH-Oxidasen (NOX) wurden als Hauptproduzenten von endothelialem reaktivem Sauerstoff erkannt. Kapitel III befasst sich mit Formulierungsstudien von Triazolopyrimidinderivaten aus der VAS-Substanzbibliothek, einer Reihe von NADPH-Oxidase-Inhibitoren. Diese Substanzen wurden zur Behandlung erhöhter reaktiver Sauerstoffspezies Werte entwickelt, denn diese tragen zur Entstehung von kardiovaskulären Erkrankungen bei. Obwohl die in vitro Ergebnisse zahlreicher Studien auf die vielversprechende Wirksamkeit und Selektivität der VAS-Substanzen hinweisen, verhinderte die geringe Wasserlöslichkeit den Übertrag auf in vivo Studien sowie die weitere präklinische Entwicklung. Daher wurden drei Derivate, VAS2870, VAS3947 und VAS4024, physikochemisch charakterisiert und VAS3947, die wasserlöslichste Substanz, wurde für weitere Formulierungsentwicklungen ausgewählt. Die Formulierungsansätze umfassten (I) die Sprühtrocknung, (II) die Herstellung von Mikroemulsionen und (III) die Komplexierung mit Cyclodextrinen, um Formulierungen für die orale und parenterale Verabreichung zu entwickeln. Die Löslichkeitsverbesserung von VAS3947 konnte für alle Ansätze erfolgreich gezeigt werden und wurde als Übersättigungsrate im Vergleich zur Löslichkeit der unformulierten Substanz dargestellt. Für sieben sprühgetrocknete Formulierungen und für vier Mikroemulsionen ergab sich eine Übersättigungsrate von 3-9, beziehungsweise von 8-19 nach 120 Minuten. Die sechs Cyclodextrin-Formulierungen erreichten mit 3-174 nach 20 Stunden die höchste Übersättigungsrate. Der Einschluss von VAS3947 in die Kavität der Cyclodextrine sowie die Interaktion mit deren Außenseite wurde mittels NMR aufgeklärt. Schließlich wurde erstmals die Möglichkeit der oralen und parenteralen Gabe der NOX-Inhibitoren eröffnet. Nach erfolgreicher Löslichkeitsverbesserung von VAS3947 wurden weitere Untersuchungen mit dem Ziel von in vivo Studien durchgeführt, was Stabilitätsuntersuchungen mit besonderem Schwerpunkt auf Stabilität in Lösung und in Plasma einschließt, wie im Kapitel IV aufgezeigt. Weiterhin wurden erstmals Permeabilitäts- und Zytotoxizitätsstudien durchgeführt. Es stellte sich heraus, dass VAS3947 in Puffer und bei Lichtexposition instabil war. Zudem wurde die Substanz in Gegenwart von Maus-Mikrosomen und in menschlichem Plasma abgebaut. Die VAS-Substanzen enthalten eine Oxazol-Ringstruktur, die über einen Thioether mit dem Triazolopyrimidin-Gerüst verbunden ist. Diese Strukturelemente sind für die Wirksamkeit der Substanzklasse verantwortlich, sind jedoch auch hydrolyseempfindlich und anfällig für weitere Abbaureaktionen. Zudem schädigte VAS3947 die Membranintegrität in den Permeabilitätsversuchen und die Zytotoxizitätsuntersuchungen in HEK-293 und HEP-G2 Zellen ergaben IC50-Werte im gleichen Konzentrationsbereich wie in Aktivitätsuntersuchungen berichtet. Zusammenfassend wurde aufgezeigt, dass die VAS-Substanzen weder ein geeignetes Modell für die Untersuchung reaktiver Sauerstoffspezies sind, noch geeignet für die weitere präklinische Entwicklung. KW - Löslichkeit KW - Permeabilität KW - Bioverfügbarkeit KW - Chinolonderivate KW - Formulierungsentwicklung KW - NOX-Inhibitoren Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-162766 ER - TY - THES A1 - Steiger, Christoph T1 - Drug delivery of therapeutic gases – strategies for controlled and local delivery of carbon monoxide T1 - Zielgerichtete Freisetzung von therapeutischen Gasen - Strategien zur kontrollierten und lokalen Freisetzung von Kohlenstoffmonoxid N2 - The isoenzyme heme oxygenase 1 (HO-1) is a key element for maintaining cellular homeostasis. Upregulated in response to cellular stress, the HO-1 degrades heme into carbon monoxide (CO), biliverdin, and Fe2+. By means of a local cell-protective feedback loop the enzyme triggers numerous effects including anti-oxidative, anti-apoptotic, and anti-inflammatory events associated with complex signalling patterns which are largely orchestrated by CO. Various approaches to mimic this physiological HO-1 / CO system aiming for a treatment of medical conditions have been described [1]. These preclinical studies commonly applied CO systemically via (i) inhalation or (ii) using CO-Releasing Molecules (CORMs) [2]. The clinical use of these approaches, however, is challenged by a lack of practicability and substantial safety issues associated with the toxicity of high systemic doses of CO that are required for triggering therapeutic effects. Therefore, one rational of this thesis is to describe and evaluate strategies for the local delivery of CO aiming for safe and effective CO therapeutics of tomorrow. N2 - Das Isoenzym Hämoxygenase 1 (HO-1) ist ein zentraler Bestandteil in der Aufrechterhaltung der zellulären Homöostase. Es wird durch zellulären Stress induziert und baut daraufhin Häm zu Kohlenstoffmonoxid (CO), Biliverdin und Fe2+ ab. Im Sinne eines lokalen Rückkopplungsmechanismus stößt es damit eine Vielzahl physiologischer Mechanismen mit anti-oxidativen, anti-apoptotischen und anti-inflammatorischen Effekten an, welche zumeist durch CO reguliert und durch ein komplexes Netzwerk aus Signaltransduktionsprozessen vermittelt werden. Es wurden zahlreiche Versuche unternommen, diesen als HO-1 / CO System bezeichneten Mechanismus nachzuahmen, um dadurch eine Behandlung von verschiedenen Krankheitszuständen zu ermöglichen. In diesen präklinischen Studien wurde CO regelmäßig systemisch (i) per Inhalation oder (ii) in Form von CO freisetzenden Verbindungen (CO-Releasing Molecules - CORM) verabreicht . Die klinische Anwendung dieser Strategien ist jedoch durch Sicherheitsrisiken erheblich erschwert, insbesondere durch die Toxizität der notwendigen hohen systemischen Dosen von CO. Entsprechend beschäftigt sich diese Dissertation unter anderem mit der Beschreibung und Evaluation von Strategien zur lokalen Verabreichung von CO, mit dem Ziel sichere und effektive Konzepte zu dessen Anwendung zu entwickeln. KW - Targeted drug delivery KW - drug delivery KW - therapeutic gases KW - Kohlenmonoxid Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-141054 ER - TY - THES A1 - Hebron Mwalwisi, Yonah T1 - Assessment of Counterfeit and Substandard Antimalarial Medicines using High Performance Thin Layer Chromatography and High Performance Liquid Chromatography T1 - Untersuchung der Qualität gefälschter Antimalaria-Medikamente mittels Hochleistungs-Dünnschichtchromatographie und Hochleistungs-Flüssigchromatographie N2 - Although the prevalence of substandard and counterfeit pharmaceutical products is a global problem, it is more critical in resource-constrained countries. The national medicines regulatory authorities (MNRA) in these countries have limited resources to cater for regular quality surveillance programmes aimed at ensuring that medicines in circulation are of acceptable quality. Among the reasons explained to hinder the implementation of these strategies is that compendial monographs are too complicated and require expensive infrastructures in terms of environment, equipment and consumables. In this study it was therefore aimed at developing simple, precise, and robust HPLC and HPTLC methods utilizing inexpensive, readily available chemicals (methanol and simple buffers) that can determine the APIs, other API than declared one, and which are capable of impurity profiling. As an outcome of this study, three isocratic and robust HPLC and two HPTLC methods for sulfadoxine, sulfalene, pyrimethamine, primaquine, artesunate, as well as amodiaquine have been developed and validated. All HPLC methods are operated using an isocratic elution mode which means they can be implemented even with a single pump HPLC system and standard C18 columns. The densitometric sulfadoxine/sulfalene and pyrimethamine method utilizes standard TLC plates as well as inexpensive, readily available and safe chemicals (toluene, methanol, and ethyl acetate), while that for artesunate and amodiaquine requires HPTLC plates as well as triethylamine and acetonitrile due to challenges associated with the analysis of amodiaquine and poorly the detectable artesunate. These HPTLC methods can be implemented as alternative to those requiring HPLC equipment e.g. in countries that already have acquired densitometer equipment. It is understood that HPTLC methods are less sensitive, precise and accurate when compared to HPLC methods, but this hindrance can easily be addressed by sending representative samples to third party quality control laboratories where the analytical results are verified using compendial HPLC methods on a regular basis. It is therefore anticipated that the implementation of these methods will not only address the problem of limited resources required for medicines quality control but also increase the number of monitored targeted antimalarial products as well as the number of resource- constrained countries participating in quality monitoring campaigns. Moreover, the experiences and skills acquired within this work will be applied to other API groups, e. g. antibiotics, afterwards. N2 - Trotz der weltweiten Verbreitung gefälschter Arzneimittel und solcher, die nicht die deklarierte Menge an Wirkstoff enthalten, sind vor allem Entwicklungs- und Schwellenländer von dieser Problematik betroffen. Die Arzneimittelüberwachungs- bzw. Zulassungsbehörden dieser Länder verfügen nur über eingeschränkte Möglichkeiten, die Arzneimittelqualität regelmäßig zu überwachen und somit sicherzustellen, dass die im Markt befindlichen Medikamente eine gute Qualität aufweisen. Einer der Gründe hierfür ist unter anderem, dass die in Arzneibüchern beschriebenen Methoden oftmals sehr komplex sind und eine umfassende Laborausstattung, spezielle Geräte oder teure Chemikalien benötigen. In dieser Arbeit wurden einfache, genaue und robuste flüssigchromatographische Methoden entwickelt, die lediglich günstige, überall verfügbare Chemikalien (z. B. Methanol oder einfache Puffersalze) benötigen und mit denen der Gehalt des deklarierten Arzneistoffes, Arzneistoffverwechslungen sowie das Verunreinigungsprofil bestimmt werden kann. Es konnten drei isokratische, robuste flüssigchromatographische sowie zwei dünnschichtchromatographische Methoden zur Bestimmung von Sulfadoxin, Sulfalen, Pyrimethamin, Primaquin, Artesunat sowie Amodiaquin entwickelt und validiert werden. Alle flüssigchromatographischen Methoden arbeiten isokratisch, folglich können sie auch mit sehr einfachen HPLC-Geräten mit beispielsweise nur einem Pumpenkopf genutzt werden. Zudem werden nur einfache, kommerziell erhältliche C18-Säulen benötigt. Die densitometrischen Methoden für Sulfadoxin/Sulfalen sowie Pyrimethamin benötigen standardisierte Dünnschichtchromatographie-Platten sowie günstige, überall verfügbare und wenig toxische Chemikalien wie beispielsweise Toluol, Methanol oder Ethylacetat. Für die Methode zur Bestimmung von Artesunat und Amodiaquin werden Hochleistungsdünnschichtchromatographie-Platten und Triethylamin sowie Acetonitril benötigt. Dieser Umstand ist der Tatsache geschuldet, dass Amodiaquin und Artesunat sich anderweitig nur ungenügend trennen ließen. Die dünnschichtchromatographischen Protokolle können als Alternative zur HPLC eingesetzt werden, beispielsweise überall dort, wo bereits die entsprechenden Gerätschaften vorhanden sind. Natürlich weisen dünnschichtchromatographische Methoden im Vergleich zur Flüssigchromatographie eine geringere Sensitivität, Präzision und Richtigkeit auf, dies kann jedoch dadurch umgangen werden, die entsprechenden Methoden nur zum Screening zu verwenden und die zu analysierenden Proben anderweitig, z. B. in externen Laboratorien, detailliert zu untersuchen. Dort können beispielsweise Methoden aus gängigen Arzneibüchern verwendet werden. Durch die Implementierung der neu entwickelten Methoden kann zum einen das Problem schlecht verfügbarer Chemikalien umgangen werden und gleichzeitig die Anzahl an untersuchten Arzneimitteln erhöht werden. Dies ist ein wichtiger Beitrag zur Qualitätskontrolle in Ländern mit eingeschränkten Infrastrukturen. KW - Instrumentelle Analytik KW - Arzneimittel KW - Fälschung KW - Malaria KW - HPLC KW - Counterfeit Medicines KW - HPLC KW - Pharmaceutical Analysis KW - Impurity Profiling Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-145821 ER - TY - THES A1 - Krähnke, Martin T1 - Chondrogenic differentiation of bone marrow-derived stromal cells in pellet culture and silk scaffolds for cartilage engineering – Effects of different growth factors and hypoxic conditions T1 - Chondrogene Differenzierung von Stammzellen aus dem Knochenmark in Pelletkultur und Seidenimplantaten für die Knorpelregeneration - Effekte verschiedener Wachstumsfaktoren und hypoxischer Bedingungen N2 - Articular cartilage lesions that occur upon intensive sport, trauma or degenerative disease represent a severe therapeutic problem. At present, osteoarthritis is the most common joint disease worldwide, affecting around 10% of men and 18% of women over 60 years of age (302). The poor self-regeneration capacity of cartilage and the lack of efficient therapeutic treatment options to regenerate durable articular cartilage tissue, provide the rationale for the development of new treatment options based on cartilage tissue engineering approaches (281). The integrated use of cells, biomaterials and growth factors to guide tissue development has the potential to provide functional substitutes of lost or damaged tissues (2,3). For the regeneration of cartilage, the availability of mesenchymal stromal cells (MSCs) or their recruitment into the defect site is fundamental (281). Due to their high proliferation capacity, the possibility to differentiate into chondrocytes and their potential to attract other progenitor cells into the defect site, bone marrow-derived mesenchymal stromal cells (BMSCs) are still regarded as an attractive cell source for cartilage tissue engineering (80). However, in order to successfully engineer cartilage tissue, a better understanding of basic principles of developmental processes and microenvironmental cues that guide chondrogenesis is required. N2 - Verletzungen des Gelenkknorpels, die durch intensiven Sport, Trauma oder degenerative Krankheiten induziert wurden, stellen ein großes therapeutisches Problem dar. Heutzutage ist Arthrose die weltweit häufigste Gelenkerkrankung, die etwa 10% der männlichen und 18% der weiblichen Bevölkerung über 60 Jahre betrifft (302). Die geringe intrinsische Heilungskapazität von Knorpelgewebe und das Fehlen effizienter Behandlungsmethoden, um dauerhaften Gelenkknorpel zu erzeugen, bilden die Grundlage für die Entwicklung neuartiger Behandlungsmethoden auf Basis des Tissue Engineering (281). Hierbei verfügt speziell der integrierte Einsatz von Zellen, Biomaterialien und Wachstumsfaktoren über das Potential zerstörtes oder geschädigtes Gewebe zu ersetzen bzw. die Regeneration von neuem Gewebe zu fördern (2,3). Für die Regeneration von Knorpelgewebe ist vor allem die Verfügbarkeit von mesenchymalen Stammzellen (MSC) und deren Rekrutierung in die Defektzone von großer Bedeutung (281). Aufgrund ihrer hohen Proliferationsrate, der Fähigkeit in Chondrozyten zu differenzieren und des Potentials andere Vorläuferzellen in die Defektzone zu rekrutieren bilden MSCs auch heute noch einen attraktiven Ansatz im Knorpel-Tissue Engineering (80). Eine wichtige Voraussetzung für die erfolgreiche Entwicklung von Knorpelgewebe ist jedoch ein besseres Verständnis der grundlegenden Entwicklungsprozesse und der Einflussfaktoren der Mikroumgebung, die die Chondrogenese regulieren. KW - Hypoxie KW - Knorpelbildung KW - Tissue Engineering KW - Chondrogenesis KW - Hypoxia KW - Tissue Engineering Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-192999 ER - TY - THES A1 - Gutmann, Marcus T1 - Functionalization of cells, extracellular matrix components and proteins for therapeutic application T1 - Funktionalisierung von Zellen, extrazellulären Matrixbestandteilen und Proteinen für die therapeutische Anwendung N2 - Glycosylation is a biochemical process leading to the formation of glycoconjugates by linking glycans (carbohydrates) to proteins, lipids and various small molecules. The glycans are formed by one or more monosaccharides that are covalently attached, thus offering a broad variety depending on their composition, site of glycan linkage, length and ramification. This special nature provides an exceptional and fine tunable possibility in fields of information transfer, recognition, stability and pharmacokinetic. Due to their intra- and extracellular omnipresence, glycans fulfill an essential role in the regulation of different endogenous processes (e.g. hormone action, immune surveillance, inflammatory response) and act as a key element for maintenance of homeostasis. The strategy of metabolic glycoengineering enables the integration of structural similar but chemically modified monosaccharide building blocks into the natural given glycosylation pathways, thereby anchoring them in the carbohydrate architecture of de novo synthesized glycoconjugates. The available unnatural sugar molecules which are similar to endogenous sugar molecules show minimal perturbation in cell function and - based on their multitude functional groups - offer the potential of side directed coupling with a target substance/structure as well as the development of new biological properties. The chemical-enzymatic strategy of glycoengineering provides a valuable complement to genetic approaches. This thesis primarily focuses on potential fields of application for glycoengineering and its further use in clinic and research. The last section of this work outlines a genetic approach, using special Escherichia coli systems, to integrate chemically tunable amino acids into the biosynthetic pathway of proteins, enabling specific and site-directed coupling with target substances. With the genetic information of the methanogen archaea, Methanosarcina barkeri, the E. coli. system is able to insert a further amino acid, the pyrrolysine, at the ribosomal site during translation of the protein. The natural stop-codon UAG (amber codon) is used for this newly obtained proteinogenic amino acid. Chapter I describes two systems for the integration of chemically tunable monosaccharides and presents methods for characterizing these systems. Moreover, it gives a general overview of the structure as well as intended use of glycans and illustrates different glycosylation pathways. Furthermore, the strategy of metabolic glycoengineering is demonstrated. In this context, the structure of basic building blocks and the epimerization of monosaccharides during their metabolic fate are discussed. Chapter II translates the concept of metabolic glycoengineering to the extracellular network produced by fibroblasts. The incorporation of chemically modified sugar components in the matrix provides an innovative, elegant and biocompatible method for site-directed coupling of target substances. Resident cells, which are involved in the de novo synthesis of matrices, as well as isolated matrices were characterized and compared to unmodified resident cells and matrices. The natural capacity of the matrix can be extended by metabolic glycoengineering and enables the selective immobilization of a variety of therapeutic substances by combining enzymatic and bioorthogonal reaction strategies. This approach expands the natural ability of extracellular matrix (ECM), like the storage of specific growth factors and the recruitment of surface receptors along with synergistic effects of bound substances. By the selection of the cell type, the production of a wide range of different matrices is possible. Chapter III focuses on the target-oriented modification of cell surface membranes of living fibroblast and human embryonic kidney cells. Chemically modified monosaccharides are inserted by means of metabolic glycoengineering and are then presented on the cell surface. These monosaccharides can later be covalently coupled, by “strain promoted azide-alkyne cycloaddition“ (SPAAC) and/or “copper(I)-catalyzed azide-alkyne cycloaddition“ (CuAAC), to the target substance. Due to the toxicity of the copper catalysator in the CuAAC, cytotoxicity analyses were conducted to determine the in vivo tolerable range for the use of CuAAC on living cell systems. Finally, the efficacy of both bioorthogonal reactions was compared. Chapter IV outlines two versatile carrier – spacer – payload delivery systems based on an enzymatic cleavable linker, triggered by disease associated protease. In the selection of carrier systems (i) polyethylene glycol (PEG), a well-studied, Food and Drug Administration approved substance and very common tool to increase the pharmacokinetic properties of therapeutic agents, was chosen as a carrier for non-targeting systems and (ii) Revacept, a human glycoprotein VI antibody, was chosen as a carrier for targeting systems. The protease sensitive cleavable linker was genetically inserted into the N-terminal region of fibroblast growth factor 2 (FGF-2) without jeopardizing protein activity. By exchanging the protease sensitive sequence or the therapeutic payload, both systems represent a promising and adaptable approach for establishing therapeutic systems with bioresponsive release, tailored to pre-existing conditions. In summary, by site-specific functionalization of various delivery platforms, this thesis establishes an essential cornerstone for promising strategies advancing clinical application. The outlined platforms ensure high flexibility due to exchanging single or multiple elements of the system, individually tailoring them to the respective disease or target site. N2 - Glykosylierung beschreibt einen auf biochemischen Reaktionen basierenden Prozess, welcher durch die Verknüpfung von Glykanen (Kohlenhydraten) mit Proteinen, Lipiden oder einer Vielzahl kleiner organischer Moleküle zur Bildung von Glykokonjugaten führt. Die Entstehung der Kohlenhydratketten erfolgt hierbei durch die kovalente Verknüpfung eines oder mehrerer verschiedener Einfachzucker, welche auf Grund unterschiedlicher Zusammensetzung der Bausteine, Verknüpfungsregion, Länge und Verzweigung eine hohe Diversität aufweisen. Diese Besonderheit ermöglicht eine außergewöhnliche Feinabstimmung im Bereich der Informationsübertragung, Erkennung, Stabilität und Pharmakokinetik. Aufgrund ihrer intra- und extrazellulären Omnipräsenz spielen Glykane zudem eine essentielle Rolle in der Regulierung verschiedenster körpereigener Prozesse (z.B. hormonelle Wirkung, Immunmodulation, Entzündungsreaktionen) und sind folglich ein zentraler Bestandteil bei der Aufrechterhaltung der zellulären Homöostase. Durch die Strategie des „Glycoengineering“ ist man in der Lage, strukturähnliche, aber chemisch modifizierte Zuckerbausteine in die natürlichen Glykosilierungswege einzubinden und diese somit in der Architektur der Kohlenstoffketten von neu-synthetisierten Glykokonjugaten zu verankern. Die hierfür zur Verfügung stehenden, unnatürlichen Zuckermoleküle führen auf Grund ihrer Ähnlichkeit zu körpereigenen Zuckern zu kaum relevanten Störungen der zellulären Funktion, bieten aber durch zahlreiche funktionelle Gruppen die Möglichkeit der gezielten Verknüpfung mit einer Zielsubstanz/-struktur und der Bildung neuer biologischer Eigenschaften. „Glycoengineering“ als chemisch-enzymatische Strategie bietet dabei eine wertvolle Ergänzung zu gentechnischen Ansätzen. Entsprechend beschäftigt sich diese Dissertation primär mit der Beschreibung potentieller Anwendungsgebiete des „Glycoengineering“ und dessen möglichen Einsatz in Klinik und Forschung. Der letzte Abschnitt dieser Arbeit beschreibt einen gentechnischen Ansatz, bei dem mit Hilfe von speziellen Escherichia coli Systemen chemisch modifizierbare Aminosäuren in den Biosyntheseweg von Proteinen eingebunden werden, wodurch anschließend eine spezifische und gerichtete Verknüpfung mit Zielsubstanzen ermöglicht wird. Hierbei benutzt das E. coli-System die genetische Information des methanbildenden Archaeas, Methanosarcina barkeri, mit der es in der Lage ist, eine weitere Aminosäure, das Pyrrolysin, bei der Translation eines Proteins am Ribosom einzufügen. Als Codon für diese neu gewonnene proteinogene Aminosäure fungiert das natürliche Stopp-Codon („amber codon“) UAG. Kapitel I beschreibt zwei Systeme für den Einbau von chemisch modifizierten Zuckern und zeigt Methoden für die Charakterisierung dieser Systeme auf. Es gibt zudem eine allgemeine Übersicht über den Aufbau und die Verwendung von Glykanen und veranschaulicht verschiedene Glykosilierungswege. Des Weiteren wird auch die Strategie des „metabolic glycoengineering“ erläutert. Hierbei wird der Aufbau der dabei verwendeten Grundbausteine dargestellt und auf die Epimerisierung der Zucker während deren Metabolismus eingegangen. Kapitel II überträgt das Konzept des „metabolic glycoengineering“ auf das extrazelluläre Netzwerk von Fibroblasten. Hierbei bietet der Einbau eines chemisch modifizierten Zuckerbausteins in die Matrix eine neue, elegante und biokompatible Möglichkeit der gezielten Verknüpfung von Zielsubstanzen. Die an der Neusynthese der Matrix beteiligten Bindegewebszellen sowie die isolierte Matrix wurden dabei im Vergleich zu nicht modifizierten Bindegewebszellen und Matrices charakterisiert. Durch den Aspekt des “metabolic glycoengineering” wird die natürliche Fähigkeit der Matrix erweitert und ermöglicht durch die Kombination verschiedener enzymatischer und bioorthogonal-chemischer Strategien die selektive Immobilisation einer Vielzahl von therapeutischen Substanzen. Dieser Ansatz erweitert das natürliche Spektrum der Extrazellulärmatrix (ECM), wie Bindung von spezifischen Wachstumsfaktoren, Rekrutierung von Oberflächenrezeptoren und damit einhergehend synergistische Effekte der gebundenen Stoffe. Durch die Auswahl des Zelltyps wird zudem ein breites Spektrum an verschiedenen Matrices ermöglicht. Kapitel III befasst sich mit der Möglichkeit, die Zellmembran von lebenden Fibroblasten sowie menschliche embryonale Nierenzellen gezielt zu verändern. Durch „metabolic glycoengineering“ werden auch hier chemisch modifizierte Zuckerbausteine eingefügt, die dabei auf der Zelloberfläche präsentiert werden. Anschließend können diese Zucker mittels „ringspannungs-geförderter Azid-Alkin Cycloaddition“ (“strain promoted azide-alkyne cycloaddition“, SPAAC) und „Kupfer(I)-katalysierter Azid-Alkin Cycloaddition“ (“copper(I)-catalyzed azide-alkyne cycloaddition“, CuAAC) umgesetzt werden, was eine kovalente Verknüpfung mit einer Zielsubstanz ermöglicht. Aufgrund der Toxizität des Kupferkatalysators in der CuAAC wurde anhand von zytotoxischen Untersuchungen nach einem in vivo vertretbaren Bereich für diese Reaktion gesucht, um die CuAAC auch für lebende Systeme verwendbar zu machen. Zuletzt wurde die Effizienz dieser bioorthogonalen Reaktionen miteinander verglichen. Kapitel IV beschreibt zwei vielseitig einsetzbare „carrier – spacer – payload“ Therapiesysteme (Träger-Verbindungsstück-Therapeutikum-Systeme), basierend auf einem Verbindungsstück (Linker), dessen Spaltung enzymatisch durch krankheitsspezifisch prävalente Proteasen ausgelöst wird. Bei der Auswahl der Trägersysteme wurde für das nicht-zielgerichtete System Polyethylenglycol (PEG) als Träger eingesetzt, eine gut untersuchte, „Food and Drug Administration“ zugelassene Substanz, welche als sehr gängiges Mittel zur Verbesserung der pharmakologischen Eigenschaften verwendet wird. Für das zielgerichtete System diente Revacept als Träger, ein humaner Glykoprotein VI-Antikörper. Der Protease-sensitive Linker wurde genetisch in der N-terminalen Region des Fibroblasten-Wachstumsfaktor 2 verankert, ohne dabei die Bioaktivität zu gefährden. Durch den Austausch der Protease-sensitiven Erkennungssequenz oder des Therapeutikums stellen beide Systeme einen vielversprechenden und anpassungsfähigen Ansatz für therapeutische Systeme dar, welche auf ein bereits bestehendes Erkrankungsbild genau zugeschnitten werden können. Zusammengefasst setzt diese Arbeit durch eine spezifische Funktionalisierung von verschiedenen Therapiesysteme einen wichtigen Meilenstein für vielversprechende Strategien zur Verbesserung der klinischen Anwendbarkeit. Durch den Austausch einer oder mehrerer Komponenten des Systems gewährleisten die hier beschriebenen Therapiesysteme eine hohe Anpassungsfähigkeit, wodurch sie individuell auf die jeweilige Krankheit oder den jeweiligen Zielort angepasst werden können. KW - Glykosylierung KW - Extrazelluläre Matrix KW - Zelloberfläche KW - Antikörper KW - Fibroblastenwachstumsfaktor KW - Glycoengineering KW - Drug delivery platforms KW - Protease-sensitive release Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170602 ER - TY - THES A1 - Spieler, Valerie T1 - Bioinspired drug delivery of interleukin-4 T1 - Bioinspirierte Wirkstofffreisetzung von Interleukin-4 N2 - Chronic inflammatory diseases such as rheumatoid arthritis, type 2 diabetes and cardiovascular diseases, are associated with the homeostatic imbalance of one of several physiological systems combined with the lack of spontaneous remission, which causes the disease to persevere throughout patients’ lives. The inflammatory response relies mainly on tissue-resident, pro-inflammatory M1 type macrophages and, consequently, a chance for therapeutic intervention lies in driving macrophage polarization towards the anti-inflammatory M2 phenotype. Therefore, anti-inflammatory cytokines that promote M2 polarization, including interleukin-4 (IL4), have promising therapeutic potential. Unfortunately, their systemic use is hampered by a short serum half-life and dose-limiting toxicity. On the way towards cytokine therapies with superior safety and efficacy, this thesis is focused on designing bioresponsive delivery systems for the anti-inflammatory cytokine IL4. Chapter 1 describes how anti-inflammatory cytokines are tightly regulated in chronic, systemic inflammation as in rheumatoid arthritis but also in acute, local inflammation as in myocardial infarction. Both diseases show a characteristic progression during which anti-inflammatory cytokine delivery is of variable benefit. A conventional, passive drug delivery system is unlikely to release the cytokines such that the delivery matches the dynamic course of the (patho-)physiological progress. This chapter presents a blueprint for active drug delivery systems equipped with a 24/7 inflammation detector that continuously senses for matrix metalloproteinases (MMP) as surrogate markers of the disease progress and responds by releasing cytokines into the affected tissues at the right time and place. Because they are silent during phases of low disease activity, bioresponsive depots could be used to treat patients in asymptomatic states, as a preventive measure. The drug delivery system only gets activated during flares of inflammation, which are then immediately suppressed by the released cytokine drug and could prevent the steady damage of subclinical chronic inflammation, and therefore reduce hospitalization rates. In a first proof of concept study on controlled cytokine delivery (chapter 2), we developed IL4-decorated particles aiming at sustained and localized cytokine activity. Genetic code expansion was deployed to generate muteins with the IL4’s lysine 42 replaced by two different unnatural amino acids bearing a side chain suitable for click chemistry modification. The new IL4 muteins were thoroughly characterized to ensure proper folding and full bioactivity. Both muteins showed cell-stimulating ability and binding affinity to IL4 receptor alpha similar to those of wild type IL4. Copper-catalyzed (CuAAC) and strain-promoted (SPAAC) azide–alkyne cycloadditions were used to site-selectively anchor IL4 to agarose particles. These particles had sustained IL4 activity, as demonstrated by the induction of TF-1 cell proliferation and anti-inflammatory M2 polarization of M-CSF-generated human macrophages. This approach of site-directed IL4 anchoring on particles demonstrates that cytokine-functionalized particles can provide sustained and spatially controlled immune-modulating stimuli. The idea of a 24/7 sensing, MMP driven cytokine delivery system, as described in the introductory chapter, was applied in chapter 3. There, we simulated the natural process of cytokine storage in the extracellular matrix (ECM) by using an injectable solution of IL4 for depot formation by enzyme-catalyzed covalent attachment to ECM components such as fibronectin. The immobilized construct is meant to be cleaved from the ECM by matrix-metalloproteinases (MMPs) which are upregulated during flares of inflammation. These two functionalities are facilitated by a peptide containing two sequences: a protease-sensitive peptide linker (PSL) for MMP cleavage and a sequence for covalent attachment by activated human transglutaminase FXIIIa (TGase) included in the injection mix for co-administration. This peptide was site-selectively conjugated to the unnatural amino acid at IL4 position 42 allowing to preserve wild type bioactivity of IL4. In vitro experiments confirmed the anticipated MMP response towards the PSL and TGase-mediated construct attachment to fibronectin of the ECM. Furthermore, the IL4-peptide conjugates were able to reduce inflammation and protect non-load bearing cartilage along with the anterior cruciate ligament from degradation in an osteoarthritis model in rabbits. This represents the first step towards a minimally invasive treatment option using bioresponsive cytokine depots with potential clinical value for inflammatory conditions. One of the challenges with this approach was the production of the cytokine conjugate, with incorporation of the unnatural amino acid into IL4 being the main bottleneck. Therefore, in chapter 4, we designed a simplified version of this depot system by genetically fusing the bifunctional peptide via a flexible peptide spacer to murine IL4. While human IL4 loses its activity upon C-terminal elongation, murine IL4 is not affected by this modification. The produced murine IL4 fusion protein could be effectively bound to in vitro grown extracellular matrix in presence of TGase. Moreover, the protease-sensitive linker was selectively recognized and cleaved by MMPs, liberating intact and active IL4, although at a slower rate than expected. Murine IL4 offers the advantage to evaluate the bioresponsive cytokine depot in many available mouse models, which was so far not possible with human IL4 due to species selectivity. For murine IL4, the approach was further extended to systemic delivery in chapter 5. To increase the half-life and specifically target disease sites, we engineered a murine IL4 variant conjugated with a folate-bearing PEG chain for targeting of activated macrophages. The bioactive IL4 conjugate had a high serum stability and the PEGylation increased the half-life to 4 h in vivo. Surprisingly, the folate moiety did not improve targeting in an antigen-induced arthritis (AIA) mouse model. IL4-PEG performed better in targeting the inflamed joint, while IL4-PEG-folate showed stronger accumulation in the liver. Fortunately, the modular nature of the IL4 conjugate facilitates convenient adaption of PEG chain length and the targeting moiety to further improve the half-life and localization of the cytokine. In summary, this thesis describes a platform technology for the controlled release of cytokines in response to inflammation. By restricting the release of the therapeutic to the site of inflammation, the benefit-risk ratio of this potent class of biologics can be positively influenced. Future research will help to deepen our understanding of how to perfectly combine cytokine, protease-sensitive linker and immobilization tag or targeting moiety to tackle different diseases. N2 - Chronische Entzündungskrankheiten wie rheumatoide Arthritis, Typ-2-Diabetes oder Herz-Kreislauf-Erkrankungen werden durch das Ungleichgewicht eines von mehreren physiologischen Systemen in Verbindung mit fehlender spontaner Remission verursacht, wodurch die Krankheiten lebenslang bestehen bleiben. Die zugrunde liegenden Entzündungsreaktionen beruhen hauptsächlich auf im Gewebe vorhandenen Makrophagen und deren Polarisation in Richtung des entzündlichen M1-Phänotyps, was gleichzeitig die Möglichkeit einer therapeutischen Intervention bietet. Entzündungshemmende Zytokine, einschließlich Interleukin-4 (IL4), haben ein großes therapeutisches Potenzial, da sie Makrophagen in Richtung des entzündungshemmenden M2-Phänotyps zu polarisieren vermögen. Leider ist ihre systemische Anwendung durch eine kurze Serumhalbwertszeit und dosislimitierende Toxizität eingeschränkt. Auf dem Weg zu Zytokintherapeutika mit verbesserter Sicherheit und Wirksamkeit konzentriert sich diese Arbeit auf die Entwicklung von bioresponsiven Freisetzungssystemen für das entzündungshemmende Zytokin IL4. Kapitel 1 beschreibt, wie entzündungshemmende Zytokine bei chronischen systemischen Entzündungen wie rheumatoider Arthritis im Vergleich zu akuten lokalen Entzündungen wie dem Myokardinfarkt reguliert werden. Beide Erkrankungen zeigen einen charakteristischen Verlauf, währenddessen die Freisetzung von entzündungshemmenden Zytokinen von unterschiedlich großem Nutzen ist. Gewöhnliche, passive Arzneimittelfreisetzungssysteme sind nicht in der Lage, Zytokine in idealer Menge zur optimalen Unterdrückung des dynamischen, (patho-)physiologischen Verlaufs der Krankheit freizusetzen. In diesem Kapitel werden deshalb aktive Arzneimittelfreisetzungssysteme vorgestellt, die mit einer Sensorik für die Entzündung ausgestattet sind, mit der sie kontinuierlich die Konzentration von Matrix-Metalloproteinasen (MMP) als Indikatoren für den Krankheitsverlauf erfassen können. Somit kann das aktive Arzneimittelfreisetzungssystem krankes Gewebe zum richtigen Zeitpunkt und am richtigen Ort mit Zytokinen behandeln. Solche bioresponsiven Depots können zur vorbeugenden Behandlung von asymptomatischen Patienten eingesetzt werden, da sie während Phasen geringer Krankheitsaktivität inaktiv sind. Das Freisetzungssystem wird erst durch Entzündungsschübe aktiviert, die dann sofort durch die freigesetzten Zytokine unterdrückt werden. Dadurch könnte die dauerhafte Schädigung durch subklinische, chronische Entzündung verhindert und als Konsequenz die Hospitalisierungsrate gesenkt werden. In einer ersten Machbarkeitsstudie wurden in Kapitel 2 IL4-dekorierte Partikel mit dem Ziel entwickelt, eine langanhaltende und lokalisierte Zytokinaktivität zu gewährleisten. Dazu wurden IL4-Muteine erzeugt, bei denen das Lysin 42 mittels Erweiterung des genetischen Codes durch zwei verschiedene unnatürliche Aminosäuren ersetzt wurde, die jeweils eine für Klick-Chemie geeignete Seitenkette tragen. Die IL4-Muteine wurden ausführlich charakterisiert, um eine korrekte Faltung und volle Bioaktivität sicherzustellen. Beide Muteine zeigten zellstimulierende Fähigkeit und Bindungsaffinität an IL4-Rezeptor-alpha, die mit der von Wildtyp-IL4 vergleichbar ist. Anschließend wurde kupferkatalysierte (CuAAC) und kupferfreie (SPAAC) Azid-Alkin-Cycloaddition verwendet, um IL4 ortsspezifisch auf Agarosepartikeln zu verankern. Die Partikel waren in der Lage, die IL4-Aktivität über längere Zeit aufrecht zu erhalten, was durch TF-1-Zellproliferation und M2-Polarisation von M-CSF-generierten, humanen Makrophagen gezeigt werden konnte. Dieser Ansatz der ortsspezifischen Verankerung von IL4 auf Agarosepartikeln zeigt, dass zytokinfunktionalisierte Partikel anhaltende und räumlich kontrollierte, immunmodulierende Stimuli liefern können. Die Idee eines MMP-gesteuerten Zytokinfreisetzungssystems mit 24/7-Sensorik, das im Einleitungskapitel vorgestellt wurde, wurde in Kapitel 3 umgesetzt. Der natürliche Prozess der Zytokinspeicherung in der extrazellulären Matrix (EZM) wurde mithilfe einer injizierbaren IL4-Lösung zur enzymatischen Depotbildung durch kovalente Bindung an EZM-Komponenten, z. B. Fibronektin, simuliert. Nach der Bindung soll das Konstrukt durch Matrix-Metalloproteinasen (MMPs), die während Entzündungsschüben hochreguliert werden, aus der EZM freigesetzt werden können. Eine Peptidsequenz, die ein Protease-sensitives Verbindungsstück und eine Sequenz, mit der das Zytokin bei gleichzeitiger Injektion von aktivierter menschlicher Transglutaminase FXIIIa (TGase) kovalent auf der EZM immobilisiert wird enthält, wurde ortsspezifisch über eine unnatürliche Aminosäure an Position 42 von IL4 gekoppelt. Dadurch wurde die Bioaktivität von IL4 vollständig erhalten, während das Protease-sensitive Verbindungsstück auf MMPs reagierte und das Konstrukt durch TGase an das Fibronektin der EZM gebunden werden konnte. Die IL4-Peptid-Konjugate waren in einem Osteoarthritis-Modell bei Kaninchen in der Lage, die Entzündung des Kniegelenks zu verringern und den nicht-tragenden Knorpel sowie das vordere Kreuzband vor Degradation zu schützen. Dies ist der erste Schritt in Richtung einer minimalinvasiven Behandlung durch Verwendung von bioresponsiven Zytokindepots mit potenziellem klinischem Nutzen bei Entzündungserkrankungen. Eine der Herausforderungen bei diesem Vorgehen war die Herstellung der Zytokinkonjugate, wobei der Einbau der unnatürlichen Aminosäure in IL4 den größten Engpass darstellte. Deshalb wurde in Kapitel 4 eine vereinfachte Version dieses Depotsystems entworfen, indem das bifunktionelle Peptid über eine flexible Verbindungssequenz mit murinem IL4 genetisch fusioniert wurde. Während humanes IL4 bei C-terminaler Verlängerung an Aktivität verliert, ist murines IL4 durch die Modifikation nicht beeinflusst. Die murinen IL4-Fusionsproteine konnten in Gegenwart von TGase wirksam an in vitro generierte extrazelluläre Matrix gebunden werden. Darüber hinaus wurde das Protease-sensitive Verbindungsstück selektiv von MMPs erkannt und gespalten, wobei intaktes und aktives IL4 freigesetzt wurde, wenn auch mit einer langsameren Rate als erwartet. Murines IL4 bietet die Möglichkeit das bioresponsive Zytokindepot in den vielen verfügbaren Mausmodellen zu testen, was mit humanem IL4 aufgrund der Speziesselektivität nicht möglich ist. Für murines IL4 wurde die Entwicklung in Kapitel 5 auf die systemische Applikation ausgeweitet. Um die Serumhalbwertszeit zu erhöhen und eine Wirkstofflokalisation im entzündeten Gewebe zu erreichen, wurde eine murine IL4-Variante entwickelt, die mit einer Folat-tragenden PEG-Kette konjugiert wurde, um aktivierte M1 Makrophagen zu adressieren. Das bioaktive IL4-Konjugat wies eine hohe Serumstabilität auf und die PEGylierung erhöhte die Halbwertszeit in vivo auf 4 h. Allerdings konnte durch die Konjugation der Folatgruppe an IL4 die Wirkstofflokalisation in einem Mausmodell mit Antigen-induzierter Arthritis (AIA) nicht verbessert werden. IL4-PEG akkumulierte sich stärker im entzündeten Gelenk, während IL4-PEG-Folat eine stärkere Anreicherung in der Leber zeigte. Erfreulicherweise erleichtert der modulare Aufbau des IL4-Konjugats die bequeme Anpassung der PEG-Kettenlänge und der zielorientierten Einheit, um die Halbwertszeit und Lokalisierung des Zytokins weiter zu verbessern. Zusammenfassend beschreibt diese Arbeit eine Plattformtechnologie zur kontrollierten Freisetzung von Zytokinen als Reaktion auf Entzündungen. Durch die Beschränkung der Freisetzung des Therapeutikums auf den Ort der Entzündung kann das Nutzen-Risiko-Verhältnis dieser potenten Klasse von Biologika positiv beeinflusst werden. Zukünftige Forschungen werden dazu beitragen zu verstehen, wie Zytokin, Protease-sensitives Verbindungsstück und Immobilisierungsanhängsel oder etwaige zielorientierte Einheiten zur Bekämpfung verschiedener Krankheiten perfekt kombiniert werden können. KW - Targeted drug delivery KW - Kontrollierte Wirkstofffreisetzung KW - Interleukin 4 KW - Cytokine KW - Drug delivery platform KW - Protease-sensitive release KW - Site-specific protein conjugation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193590 ER - TY - THES A1 - Miesler, Tobias Hans-Herbert T1 - Development of diagnostic systems targeting the human tongue as a 24/7 available detector T1 - Entwicklung von diagnostischen Systemen, welche die menschliche Zunge als 24/7 verfügbaren Detektor nutzen N2 - To diagnose diseases correctly requires not only trained and skilled personnel, but also cost-intensive and complex equipment. Rapid tests can help with the initial evaluation, but result generation can also take up to several hours, depending on the test system. At this point, novel bioresponsive diagnostic systems are used, responding to the disease related shift of biological processes. They monitor changes in the biological environment and can react to them e.g. with the release of substances. This can be used in drug delivery formulations but can also help to diagnose diseases occurring in the oral cavity and inform patients of their state of health. The tongue is herein used as a 24/7 available detector. In section I of this work, the foundation for the development of these diagnostic systems was laid. A suitable flavoring agent was found, which is stable, can be coupled to the N-terminus of peptides and has a strongly conceivable taste. For the optimization of the protease-sensitive linker (PSL), an analytical system was established (PICS assay), which determines protease-specific cleavable amino acid sequences. In order to replace the PMMA particles previously required, an acetyl protecting group was introduced N-terminally as it protects peptides and proteins in the human body from degradation by human aminopeptidase. The new synthesized flavor was examined with a NIH cell line for cytotoxicity and with an electronic tongue setup for its bitterness. Section II deals with the structure of a system which detects severe inflammations in the oral cavity, e.g. PA. The established PICS assay was used to confirm the previously used PSL sequence in its application. Using solid phase peptide synthesis, 3 linkers were synthesized which respond to the elevated MMP concentrations present in inflammation. The resulting peptides were acetylated and coupled with HATU/DIPEA to the modified denatonium. Cutting experiments with MMPs over different concentration and time ranges confirmed the response of the diagnostic sensor to these enzymes. The obtained construct was examined for cell toxicity by WST assay. The masked bitterness of the sensors was confirmed by an electronic tongue setup. To address non-human proteases (and thereby infections), section III focuses on the establishment of detection system of a cysteine protease SpeB expressed by Streptococcus pyogenes. The in-house expression of SpeB using E. coli cells was established for this purpose. An analysis of the SpeB cleavage sites was performed using a PICS assay setup. Four constructs with different PSL were synthesized analogous to section II. Cleavage experiments with the expressed and purified SpeB showed a response of two constructs to the protease. In addition, a system was established to quantify the concentration of SpeB in human saliva using western blot technique with subsequent quantification. In section IV a compound was synthesized which can now be coupled to a flavor. The final coupled construct is able to detect present NA activity specifically from influenza A and B. The market for existing influenza diagnostics was explored to determine the need for such a system. A neuraminic acid was modified in positions 4 and 7 and protected in such a way that subsequent coupling via the hydroxy-group in position 2 was selectively possible. In summary, this results in a diagnostic platform that can be used anywhere, by anyone and at any time. This represents a new dimension in the rapid diagnosis of inflammations and bacterial or viral infections. N2 - Krankheiten korrekt zu diagnostizieren erfordert nicht nur geschultes und ausgebildetes Personal, sondern zudem auch kostenintensive und komplexe Geräte. Schnelltests helfen bei der ersten Auswertung, können aber je nach Testsystem dennoch bis zu einigen Stunden in Anspruch nehmen, bevor ein Ergebnis vorliegt. An dieser Stelle werden neuartige, , sogenannte bioresponsive diagnostische Systeme eingesetzt. Sie überwachen Ihre biologische Umgebung und können auf Veränderung dieser z.B. mit der Freisetzung von Substanzen reagieren. Durch das in dieser Arbeit entwickelte diagnostische System können Veränderungen im Mundraum erkannt und Patienten über ihren Gesundheitszustand in Kenntnis gesetzt werden. Hierbei wird die Zunge als 24/7 verfügbarer Detektor genutzt. Im Abschnitt I wurde das Fundament zur Entwicklung dieser diagnostischen Systeme gelegt. Ein geeigneter Geschmacksstoff wurde gefunden, welcher stabil, koppelbar an Peptide und geschmacklich gut wahrnehmbar ist um ein positives Testresultat anzuzeigen. Für die Optimierung des Protease-sensitiven Linkers (PSL) wurde ein System etabliert (PICS-Assay), welches in der Lage ist eine Protease-spezifische Aminosäure-Schneidsequenz zu bestimmen. Um den im vorherigen System benötigten PMMA-Partikel zu ersetzen, wurde eine Acetylschutzgruppe am N-terminus eingeführt, welche die gleiche schützende Funktion wie ein solcher Partikel gegen den Abbau von Peptiden und Proteinen durch die körpereigene Aminopeptidase besitzt. Das gesamte Konstrukt wurde mit einer NIH-Zelllinie auf toxikologische Aspekte hin untersucht und die Maskierung des Geschmacks im ungeschnittenen Zustand mittels elektronischer Zunge überprüft. Abschnitt II handelt vom Aufbau eines Systems, welches schwerwiegende Entzündungen im Mundraum, wie sie z.B. bei einer Parodontitis vorliegen detektiert. Der etablierte PICS-Assay wurde genutzt, die vorher verwendete PSL-Sequenz in ihrer Anwendung zu bestätigen. Mittels Festphasen-Peptidsynthese wurden drei Linker synthetisiert, welche auf die erhöhten MMP-Konzentrationen, welche bei Entzündungen vorliegen ansprechen. Die erhaltenen Peptide wurden acetyliert und mit HATU/DIPEA an das modifizierte Denatonium gekoppelt. Schneidversuche dieser Modelsysteme mit MMP‘s über verschiedene Konzentrations- und Zeitbereiche bestätigten das Ansprechen des diagnostischen Sensors auf diese Enzyme. Das erhaltene Konstrukt wurde mittels WST-Assay auf Zelltoxizität hin untersucht. Um auch non-humane Proteasen, welche auf Infektionen hinweisen, adressieren zu können konzentriert sich Abschnitt III auf die Etablierung eines Nachweis-Systems der Cystein-Protease SpeB, welches von Streptococcus pyogenes exprimiert wird. Hierzu wurde die hauseigene Exprimierung von SpeB mittels E. Coli Zellen etabliert. Vom gewonnenen SpeB wurde eine Analyse der Schnittstelle mittels PICS-Assay durchgeführt. Vier Konstrukte mit verschiedenen PSL wurden analog zu Abschnitt II synthetisiert. Schneidversuche mit dem exprimierten SpeB zeigten ein Ansprechen von zwei Konstrukten auf die Protease. Zudem wurde ein System etabliert um mittels Western Blot die Konzentration von SpeB im menschlichen Speichel zu quantifizieren. Im Abschnitt IV wurde eine Verbindung synthetisiert, welche an einen Geschmacksstoff gekoppelt werden kann. Das gesamte diagnostische System ist im Stande Influenza-Viren nachzuweisen. Der Markt zur bestehenden Influenza Diagnostik wurde exploriert um die Notwendigkeit eines solchen Systems zu ermitteln. Eine Neuraminsäure wurde in Position 4 und 7 modifiziert und so geschützt, das nachfolgendes Koppeln über die Hydroxygruppe in Position 2 selektiv möglich wurde. Zusammengefasst ergibt sich eine diagnostische Plattform, welche überall, von jedem und jederzeit angewandt werden. Dies stellt eine neue Dimension der Schnelldiagnostik von Entzündungen und bakteriellen oder viralen Infektionen dar. KW - Diagnostik KW - Schnelltest KW - Sensoren KW - Zunge KW - Kaugummi KW - Point-of-Care-testing KW - Tongue KW - Chewing Gum KW - Sensors KW - Zunge KW - Kaugummi Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214490 ER - TY - THES A1 - Wittmann, Katharina T1 - Adipose Tissue Engineering - Development of Volume-Stable 3-Dimensional Constructs and Approaches Towards Effective Vascularization T1 - Tissue Engineering von Fettgewebe - Generierung volumenstabiler 3-dimensionaler Fettgewebe-Konstrukte und Entwicklung effektiver Vaskularisierungsstrategien N2 - Adipose tissue defects and related pathologies still represent major challenges in reconstructive surgery. Based on to the paradigm ‘replace with alike’, adipose tissue is considered the ideal substitute material for damaged soft tissue [1-3]. Yet the transfer of autologous fat, particularly larger volumes, is confined by deficient and unpredictable long term results, as well as considerable operative morbidity at the donor and recipient site [4-6], calling for innovative treatment options to improve patient care. With the aim to achieve complete regeneration of soft tissue defects, adipose tissue engineering holds great promise to provide functional, biologically active adipose tissue equivalents. Here, especially long-term maintenance of volume and shape, as well as sufficient vascularization of engineered adipose tissue represent critical and unresolved challenges [7-9]. For adipose tissue engineering approaches to be successful, it is thus essential to generate constructs that retain their initial volume in vivo, as well as to ensure their rapid vascularization to support cell survival and differentiation for full tissue regeneration [9,10]. Therefore, it was the ultimate goal of this thesis to develop volume-stable 3D adipose tissue constructs and to identify applicable strategies for sufficient vascularization of engineered constructs. The feasibility of the investigated approaches was verified by translation from in vitro to in vivo as a critical step for the advancement of potential regenerative therapies. For the development of volume-stable constructs, the combination of two biomaterials with complementary properties was successfully implemented. In contrast to previous approaches in the field using mainly non-degradable solid structures for mechanical protection of developing adipose tissue [11-13], the combination of a cell-instructive hydrogel component with a biodegradable porous support structure of adequate texture was shown advantageous for the generation of volume-stable adipose tissue. Specifically, stable fibrin hydrogels previously developed in our group [14] served as cell carrier and supported the adipogenic development of adipose-derived stem cells (ASCs) as reflected by lipid accumulation and leptin secretion. Stable fibrin gels were thereby shown to be equally supportive of adipogenesis compared to commercial TissuCol hydrogels in vitro. Using ASCs as a safe source of autologous cells [15,16] added substantial practicability to the approach. To enhance the mechanical strength of the engineered constructs, porous biodegradable poly(ε caprolactone)-based polyurethane (PU) scaffolds were introduced as support structures and shown to exhibit adequately sized pores to host adipocytes as well as interconnectivity to allow coherent tissue formation and vascularization. Low wettability and impaired cell attachment indicated that PU scaffolds alone were insufficient in retaining cells within the pores, yet cytocompatibility and differentiation of ASCs were adequately demonstrated, rendering the PU scaffolds suitable as support structures for the generation of stable fibrin/PU composite constructs (Chapter 3). Volume-stable adipose tissue constructs were generated by seeding the pre-established stable fibrin/PU composites with ASCs. Investigation of size and weight in vitro revealed that composite constructs featured enhanced stability relative to stable fibrin gels alone. Comparing stable fibrin gels and TissuCol as hydrogel components, it was found that TissuCol gels were less resilient to degradation and contraction. Composite constructs were fully characterized, showing good cell viability of ASCs and strong adipogenic development as indicated by functional analysis via histological Oil Red O staining of lipid vacuoles, qRT-PCR analysis of prominent adipogenic markers (PPARγ, C/EBPα, GLUT4, aP2) and quantification of leptin secretion. In a pilot study in vivo, investigating the suitability of the constructs for transplantation, stable fibrin/PU composites provided with a vascular pedicle gave rise to areas of well-vascularized adipose tissue, contrasted by insufficient capillary formation and adipogenesis in constructs implanted without pedicle. The biomaterial combination of stable fibrin gels and porous biodegradable PU scaffolds was thereby shown highly suitable for the generation of volume-stable adipose tissue constructs in vivo, and in addition, the effectiveness of immediate vascularization upon implantation to support adipose tissue formation was demonstrated (Chapter 4). Further pursuing the objective to investigate adequate vascularization strategies for engineered adipose tissue, hypoxic preconditioning was conducted as a possible approach for in vitro prevascularization. In 2D culture experiments, analysis on the cellular level illustrated that the adipogenic potential of ASCs was reduced under hypoxic conditions when applied in the differentiation phase, irrespective of the oxygen tension encountered by the cells during expansion. Hypoxic treatment of ASCs in 3D constructs prepared from stable fibrin gels similarly resulted in reduced adipogenesis, whereas endothelial CD31 expression as well as enhanced leptin and vascular endothelial growth factor (VEGF) secretion indicated that hypoxic treatment indeed resulted in a pro-angiogenic response of ASCs. Especially the observed profound regulation of leptin production by hypoxia and the dual role of leptin as adipokine and angiogenic modulator were considered an interesting connection advocating further study. Having confirmed the hypothesis that hypoxia may generate a pro-angiogenic milieu inside ASC-seeded constructs, faster vessel ingrowth and improved vascularization as well as an enhanced tolerance of hypoxia-treated ASCs towards ischemic conditions upon implanatation may be expected, but remain to be verified in rodent models in vivo (Chapter 5). Having previously been utilized for bone and cartilage engineering [17-19], as well as for revascularization and wound healing applications [20-22], stromal-vascular fraction (SVF) cells were investigated as a novel cell source for adipose tissue engineering. Providing cells with adipogenic differentiation as well as vascularization potential, the SVF was applied with the specific aim to promote adipogenesis and vascularization in engineered constructs in vivo. With only basic in vitro investigations by Lin et al. addressing the SVF for adipose repair to date [23], the present work thoroughly investigated SVF cells for adipose tissue construct generation in vitro, and in particular, pioneered the application of these cells for adipose tissue engineering in vivo. Initial in vitro experiments compared SVF- and ASC-seeded stable fibrin constructs in different medium compositions employing preadipocyte (PGM-2) and endothelial cell culture medium (EGM-2). It was found that a 1:1 mixture of PGM-2 and EGM-2, as previously established for co-culture models of adipogenesis [24], efficiently maintained cells with adipogenic and endothelial potential in SVF-seeded constructs in short and long-term culture setups. Observations on the cellular level were supported by analysis of mRNA expression of characteristic adipogenic and endothelial markers. In preparation of the evaluation of SVF-seeded constructs under in vivo conditions, a whole mount staining (WMS) method, facilitating the 3D visualization of adipocytes and blood vessels, was successfully established and optimized using native adipose tissue as template (Chapter 6). In a subcutaneous nude mouse model, SVF cells were, for the first time in vivo, elucidated for their potential to support the functional assembly of vascularized adipose tissue. Investigating the effect of adipogenic precultivation of SVF-seeded stable fibrin constructs in vitro prior to implantation on the in vivo outcome, hormonal induction was shown beneficial in terms of adipocyte development, whereas a strong vascularization potential was observed when no adipogenic inducers were added. Via histological analysis, it was proven that the developed structures were of human origin and derived from the implanted cells. Applying SVF cells without precultivation in vitro but comparing two different fibrin carriers, namely stable fibrin and TissuCol gels, revealed that TissuCol profoundly supported adipose formation by SVF cells in vivo. This was contrasted by only minor SVF cell development and a strong reduction of cell numbers in stable fibrin gels implanted without precultivation. Histomorphometric analysis of adipocytes and capillary structures was conducted to verify the qualitative results, concluding that particularly SVF cells in TissuCol were highly suited for adipose regeneration in vivo. Employing the established WMS technique, the close interaction of mature adipocytes and blood vessels in TissuCol constructs was impressively shown and via species-specific human vimentin staining, the expected strong involvement of implanted SVF cells in the formation of coherent adipose tissue was confirmed (Chapter 7). With the development of biodegradable volume-stable adipose tissue constructs, the application of ASCs and SVF cells as two promising cell sources for functional adipose regeneration, as well as the thorough evaluation of strategies for construct vascularization in vitro and in vivo, this thesis provides valuable solutions to current challenges in adipose tissue engineering. The presented findings further open up new perspectives for innovative treatments to cure soft tissue defects and serve as a basis for directed approaches towards the generation of clinically applicable soft tissue substitutes. N2 - In der rekonstruktiven Chirurgie besteht ein ständig wachsender Bedarf an geeigneten Implantaten, um Weichteildefekte nach Tumorresektionen, Traumata, oder aufgrund von kongenitalen Missbildungen adäquat ersetzen zu können [1]. Hierbei stellt körpereigenes Fettgewebe als Weichteilersatz das ideale Substitutionsmaterial dar [2-4]. Derzeit angewandte Wiederherstellungsmethoden verwenden frei transplantierbare und gestielte Lappenplastiken aus autologem Fettgewebe oder greifen auf künstliche Kollagen- und Silikonimplantate zurück [5]. Diese Ansätze sind jedoch zum Teil mit gravierenden Nachteilen behaftet, wie Absorption und Nekrotisierung bei transplantiertem körpereigenem Fettgewebe, sowie Fremdkörperreaktionen und fibrotischen Verkapselungen bei Kollagen und Silikon. Insbesondere die Versorgung großvolumiger Defekte ist mit komplexen chirurgischen Eingriffen verbunden und geht häufig mit Komplikationen wie Infektionen, Narbenbildung und Volumenverlust, sowie Defiziten an der Hebe- und Empfängerstelle einher [1,5-8]. Es besteht daher ein großer Bedarf an innovativen Methoden und der Entwicklung neuer Materialien, die einen dauerhaften körpereigenen Weichteilersatz ermöglichen. Das interdisziplinäre Feld des Tissue Engineerings von Fettgewebe zielt auf die Entwicklung neuer Ansätze zur Regeneration von Weichteildefekten und der Bereitstellung von biologisch äquivalentem Gewebeersatz, vor allem für die Rekonstruktion großvolumiger Defekte. Verringerte Volumenstabilität und unzureichende Blutgefäßversorgung stellen jedoch auch bei durch Tissue Engineering hergestelltem Gewebe zentrale Limitationen dar [5,8,9]. Für die erfolgreiche Substitution von Weichteildefekten mit Methoden des Tissue Engineerings ist es daher essenziell, Gewebekonstrukte mit ausreichender Volumenstabilität bereitzustellen, um auch nach Implantation in vivo langfristig zu bestehen, sowie eine adäquate Blutgefäßversorgung zu gewährleisten, um Zellüberleben und Differenzierung für eine vollständige Geweberegeneration zu garantieren [5,10]. Folglich war es Ziel dieser Arbeit, volumenstabile Fettgewebekonstrukte zu entwickeln und neue Strategien zur Vaskularisierung der generierten Konstrukte zu evaluieren. Als wichtiger Schritt in Bezug auf eine potenzielle klinische Anwendbarkeit wurden außerdem vielversprechende In-vitro-Ansätze auf den In-vivo-Kontext in etablierten Mausmodellen übertragen. Für die Entwicklung volumenstabiler Fettgewebekonstrukte wurde die Kombination zweier Biomaterialien mit komplementären Eigenschaften verfolgt. So wurden für die Konstruktherstellung Fibrinhydrogele als Zellträger mit hochporösen bioabbaubaren Scaffolds als mechanische Schutzstrukturen kombiniert. Im Gegensatz zu bisherigen Ansätzen zur Verbesserung der Volumenstabilität, in denen hauptsächlich nicht abbaubare, rigide Gerüst- oder Hohlkörperstrukturen zum mechanischen Schutz des entstehenden Gewebes appliziert wurden [11-13], wurden hier ausschließlich bioabbaubare und Gewebe kompatible Materialien verwendet. Dabei konnte auf bereits zuvor entwickelte stabile Fibringele [14] zurückgegriffen werden, die in dieser Arbeit erstmals für das Fettgewebe Engineering als Zellträger für mesenchymale Stammzellen aus dem Fettgewebe (adipose-derived stem cells; ASCs) verwendet wurden. Mittels sich ergänzender Analysemethoden auf zellulärer (Oil Red O-Färbung) und molekularer Ebene (Leptin Sekretion; ELISA) konnte erfolgreich die adipogene Differenzierung der in den Fibringelen inkorporierten ASCs nachgewiesen werden. Im Vergleich zu kommerziell erhältlichem Fibrin (TissuCol, Baxter) zeigten ASCs in den stabilen Fibringelen eine mit TissuCol vergleichbare, gute adipogene Differenzierbarkeit. Durch die Verwendung von ASCs als sichere und autologe Zellquelle [15,16] für die Konstruktherstellung wurde zudem die potenzielle klinische Anwendbarkeit der generierten Zell-Biomaterial-Konstrukte erhöht. Zur Verbesserung der Volumenstabilität wurden bioabbaubare Poly(ε caprolacton)-basierte Polyurethan-Scaffolds als zusätzliche Gerüststruktur evaluiert. Aufgrund ihrer hohen Porosität und Interkonnektivität stellten sich die Scaffolds als besonders geeignet für die Differenzierung von Adipozyten sowie für die Generierung von kohärentem Fettgewebe heraus. Bei direkter Besiedelung mit ASCs wiesen die PU-Scaffolds zwar eine geringe Zelladhäsion und inhomogene Zellverteilung auf, die adipogene Differenzierung der Zellen war jedoch nicht beeinträchtigt. Daraufhin wurde die Generierung von Fibrin/PU Kompositkonstrukten durch Kombination der PU-Scaffolds mit den zuvor untersuchten stabilen Fibringelen angestrebt (Kapitel 3). Durch Zusammenführung der stabilen Fibringele als Zellträger für ASCs mit den PU Scaffolds als zusätzlicher Gerüststruktur konnten in folgenden Arbeiten erfolgreich homogene und mechanisch stabile Fettgewebekonstrukte hergestellt werden. Die detaillierte Evaluation von Größe und Gewicht zeigte, dass in den Kompositkonstrukten durch die zusätzliche poröse PU-Scaffoldstruktur eine erhöhte Stabilität im Vergleich zu den stabilen Fibringelen als alleinigem Zellträger erreicht werden konnte. Der Vergleich der stabilen Fibringele mit TissuCol als Hydrogelkomponente zeigte, dass TissuCol-Gele unter In vitro Kulturbedingungen stärker kontrahierten und schneller abgebaut wurden. Die in den Kompositkonstrukten inkorporierten ASCs zeigten gute Viabilität sowie deutliche adipogene Differenzierung auf histologischer (Oil Red O-Färbung) als auch auf molekularer Ebene (qRT-PCR; ELISA). In einer In-vivo-Pilotstudie wurden die Kompositkonstrukte auf ihre Transplantierbarkeit hin überprüft und durch mikrochirurgische Insertion eines Durchflussgefäßes bei der Implantation unmittelbar vaskularisiert. In stabilen Fibrin/PU Konstrukten mit integriertem Gefäßstiel wurde so die Entwicklung von vaskularisiertem Fettgewebe im Vergleich zu ungestielten Konstrukten entschieden verbessert. Mittels der erfolgreichen In-vivo-Implantation der Kompositkonstrukte konnte die Anwendbarkeit der Biomaterialkombination aus stabilem Fibrin und porösen PU Scaffolds für die Generierung volumenstabiler Fettgewebekonstrukte demonstriert und gleichzeitig der positive Effekt einer direkten Vaskularisierung durch Integration eines Gefäßstiels gezeigt werden (Kapitel 4). Im Rahmen der weiteren Evaluation potenzieller Vaskularisierungsstrategien wurden im Anschluss Ansätze zur Prävaskularisierung in vitro untersucht. Hierbei stellte die hypoxische Vorkultur von mittels Tissue Engineering generierten Fettgewebekonstrukten einen möglichen Ansatz zur Schaffung eines pro-angiogenen, vaskularisierungsfördernden Milieus innerhalb der Konstrukte dar. Ebenso von Interesse waren in diesem Zusammenhang die Auswirkungen von Hypoxie auf die adipogene Differenzierung von ASCs. Erste Versuche im 2D-Kulturformat mit ASCs zeigten, dass das adipogene Potenzial der Zellen unter Hypoxie in der Differenzierungsphase stark vermindert war, wobei der während der Expansionsphase der Zellen bestehende Sauerstoffpartialdruck keinen Einfluss auf die Fettentwicklung hatte. Auch in 3D-Konstrukten basierend auf stabilen Fibringelen konnte eine verringerte adipogene Differenzierung von ASCs unter hypoxischer Kultur nachgewiesen werden, dabei wurden im Gegenzug endotheliale Marker (CD31) und pro angiogene Wachstumsfaktoren, wie z.B. vaskulärer endothelialer Wachstumsfaktor (VEGF), aber auch das Adipokin Leptin, stark hochreguliert. Insbesondere die deutliche Veränderung der Leptinsekretion unter hypoxischen Kulturbedingungen und die duale Rolle von Leptin als adipogener und pro-angiogener Faktor ergeben interessante Perspektiven für weiterführende Untersuchungen. Basierend auf den gezeigten Ergebnissen konnte insgesamt bestätigt werden, dass die hypoxische Vorkultur in vitro zur Entstehung eines pro angiogenen und potenziell vaskularisierungsfördernden Milieus beitragen kann. Es gilt nun in Folgestudien das Potenzial der hypoxischen Vorkultur zur Verbesserung der Vaskularisierung in vivo, sowie eine erhöhte Toleranz der implantierten Zellen gegenüber hypoxischen Bedingungen nach der Implantation in etablierten In-vivo-Mausmodellen zu verifizieren (Kapitel 5). Ein weiterer Ansatz zur Generierung von vaskularisiertem Fettgewebe in vitro und in vivo wurde durch den Einsatz der stromalen-vaskulären Fraktion (SVF) als neue Zellquelle für das Fettgewebe-Engineering verfolgt. Bisher wurde die SVF hauptsächlich für das Tissue Engineering von Knochen- und Knorpelgewebe [17-19] oder für Vaskularisierungs- und Wundheilungsansätze [20-22] untersucht. In der SVF enthalten sind sowohl Fettvorläuferzellen als auch Endothelzellen, Perizyten, Fibroblasten und Immunzellen [8]. Durch Verwendung dieses heterogenen Zellgemisches sollte die simultane Entwicklung von Fettzellen und vaskulären Strukturen erreicht werden, und damit eine schnellere und effizientere Fettgewebeentwicklung in vivo. Da sich bisher nur eine In-vitro-Studie explizit dem Tissue Engineering von Fettgewebe mit SVF-Zellen widmet [23], wurden in dieser Arbeit SVF-besiedelte Fettgewebekonstrukte basierend auf Fibringelen als Zellträger zunächst umfassend in vitro charakterisiert und erstmals die Fettgewebeentwicklung der Zellen im Mausmodell in vivo untersucht. In vorbereitenden In-vitro-Arbeiten wurden SVF-besiedelte stabile Fibringele mit den bisher verwendeten ASC-basierten Konstrukten verglichen. Dabei wurde zunächst die adipogene und endotheliale Differenzierbarkeit der SVF in unterschiedlichen Zellkulturmedien untersucht. Eine 1:1-Mischung aus Präadipozytenmedium (PGM-2) und Endothelzellmedium (EGM-2), die zuvor schon für Kokulturexperimente von ASCs und Endothelzellen verwendet worden war [24], stellte sich als besonders geeignet für die Kurz- und Langzeitkultur der SVF in stabilen Fibringelen heraus. Umfassende histologische Untersuchungen zeigten, dass mit Hilfe dieser Medienkomposition insbesondere das adipogene und endotheliale Differenzierungspotenzial der verschiedenen Zelltypen in der SVF innerhalb der generierten 3D-Konstrukte erhalten werden kann. Die auf zellulärer Ebene gewonnenen Erkenntnisse konnten mittels qRT-PCR-Analyse von adipogenen und endothelialen Markern (PPARγ, aP2, CD31) auf mRNA-Ebene bestätigt werden. Um in Zukunft die In-vivo-Untersuchung der generierten Fettgewebekonstrukte zu erleichtern, sowie eine strukturelle Analyse des Gewebeverbands und insbesondere die Interaktion von Adipozyten und Blutgefäßen zu ermöglichen, wurde zusätzlich eine 3D-Färbetechnik (Whole Mount Staining), zunächst unter Verwendung von nativem humanem Fettgewebe, etabliert (Kapitel 6). In einer anschließenden umfassenden Studie in immundefizienten Nacktmäusen (NMRI Foxn1nu/Foxn1nu) wurden SVF-Zellen zum ersten Mal in vivo für das Engineering von vaskularisiertem Fettgewebe untersucht. Hierbei wurden sowohl der Effekt der In vitro Vorkultur der SVF-basierten Konstrukte als auch der Einfluss des Trägermaterials auf die Gewebeentwicklung in vivo evaluiert. Die adipogene Vorkultur der SVF-besiedelten Konstrukte in vitro über einen Zeitraum von 7 Tagen vor Implantation wirkte sich positiv auf die Fettdifferenzierung in vivo aus, wohingegen die Vorkultur unter nicht-induzierten Bedingungen ohne adipogene Induktion verstärkt zur Bildung von vaskulären Strukturen führte. Durch Spezies-spezifische Färbung gegen humanes Vimentin konnte gezeigt werden, dass die beobachteten Strukturen humanen Ursprungs waren und daher von den implantierten SVF-Zellen stammten. Der Einfluss des Trägermaterials auf die Gewebebildung in vivo wurde durch Besiedelung stabiler Fibringele und TissuCol-Gele mit SVF-Zellen verglichen. Die Konstrukte wurden ohne In-vitro-Vorkultur direkt nach der Herstellung implantiert. Hier zeigte sich in stabilen Fibringelen nach 4 Wochen in vivo keine nennenswerte Gewebeentwicklung, wobei auch der Anteil an humanen Zellen innerhalb der Konstrukte zum Zeitpunkt der Explantation stark verringert war. Im Gegensatz dazu konnte in TissuCol-Gelen die Entwicklung von kohärentem und maturem Fettgewebe nachgewiesen werden von dem große Teile humanen Ursprungs waren. Die histologischen Ergebnisse wurden mittels histomorphometrischer Quantifizierung von Adipozyten und Blutgefäßstrukturen verifiziert, wodurch das herausragende Potenzial der SVF für das Fettgewebe-Engineering in vivo nochmals verdeutlicht wurde. Unter Verwendung der zuvor etablierten 3D-Färbetechnik (Whole Mount Staining) konnten anschließend Adipozyten und Blutgefäße innerhalb des entstandenen kohärenten Gewebeverbands in TissuCol-Gelen visualisiert werden. Mit Hilfe einer humanspezifischen Färbung in 3D konnte zusätzlich die weitreichende Beteiligung der implantierten SVF Zellen bei der Gewebeentwicklung nachgewiesen werden (Kapitel 7). Die in der Dissertation entwickelten bioabbaubaren volumenstabilen Fettgewebekonstrukte, die Untersuchung von ASCs und SVF-Zellen als vielversprechende regenerative Zellquellen für die Generierung funktioneller Konstrukte, sowie die Evaluation unterschiedlicher Vaskularisierungsstrategien in vitro und in vivo leisten einen wichtigen Beitrag zu neuen und innovativen Ansätzen im Bereich des Tissue Engineerings von Fettgewebe. Die Ergebnisse stellen eine Grundlage für die zielgerichtete Entwicklung regenerativer Implantate dar und eröffnen neue Perspektiven für die Generierung klinisch anwendbarer Fettgewebekonstrukte als Weichteilersatz. KW - Tissue Engineering KW - Fettgewebe KW - Tissue Engineering KW - Adipose Tissue KW - Vascularization KW - Fibrin Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-107196 ER - TY - THES A1 - Wiest, Johannes T1 - Synthese und Charakterisierung neuer Ionischer Flüssigkeiten zur Verbesserung der Auflösungsrate und Löslichkeit eines schwer wasserlöslichen Wirkstoffes T1 - Synthesis and characterization of novel ionic liquids to improve the dissolution rate and solubility of a poorly water-soluble active ingredient N2 - Ionische Flüssigkeiten (engl. Ionic Liquids = IL) sind organische Salze mit einem Schmelzpunkt von unter 100 °C und bieten einen interessanten Ansatz um die orale Bioverfügbarkeit von schlecht wasserlöslichen Arzneistoffen zu verbessern. Aufgrund seiner schlechten Wasserlöslichkeit wurde aus dem Wirkstoff BGG492 der Novartis AG eine Ionische Flüssigkeit (IL) mit dem sterisch anspruchsvollen Gegenion Tetrabutylphosphonium hergestellt. Die IL ist ein amorpher, glasartiger Feststoff mit einem Schmelzpunkt von 57 °C. Die freie Säure (FS), das Kaliumsalz (BGG-K+) und die IL (siehe Abb. 69) wurden in festem Zustand mittels polarisationsmikroskopischen Aufnahmen, Röntgen-Pulverdiffraktometrie, Röntgenkristallstrukturanalysen, Infrarot-Spektroskopie und Festkörper-NMR-Spektroskopie untersucht. Der ionische Charakter der IL in festem Zustand konnte mittels Bandenverschiebung der deprotonierten Sulfonamidgruppe im IR-Spektrum bestätigt werden. In der Röntgenkristallstrukturanalyse konnte gezeigt werden, dass sich die Moleküle der FS in Schichten anordneten, in denen jedes Molekül mit vier Nachbarmolekülen über Wasserstoffbrücken verbunden war. Das BGG-K+ kristallisierte als Monohydrat. In dieser Kristallstruktur bildeten die Kaliumkationen in der bc-Ebene mit den BGG-Anionen ober- und unterhalb Schichten. Im Gegensatz zu der FS waren keine intermolekularen Wasserstoffbrücken zu beobachten. Die 15N-Festkörper-NMR-Spektren des BGG-K+ und der IL zeigten die gleiche chemische Verschiebung für den unsubstituierten Stickstoffes N-1‘ der Pyrazolgruppe und belegten somit ebenfalls die ionische Struktur der IL im festen Zustand. Die amorphe Struktur der IL wurde mittels Röntgen-Pulverdiffraktometrie und Polarisationsmikroskop bestätigt und eine flüssigkristalline Phase konnte ausgeschlossen werden. Die IL zeigte im Vergleich zu der FS eine 700-fach schnellere Auflösungsrate J und eine signifikante Verlängerung der Dauer der Übersättigung in wässriger Lösung. Der sprunghafte Anstieg der Kon-zentration in Lösung („spring“) und die Dauer der Übersättigung („parachute“) wurden mittels photometrischen und potentiometrischen Titrationen untersucht. Mit Hilfe der NMR-Spektroskopie konnte der Mechanismus der Übersättigung aufgeklärt werden. Das sterisch anspruchsvolle Gegenion Tetrabutylphosphonium verhinderte die Protonierung der deprotonierten Sulfonamidgruppe von BGG. In Lösung kam es zur Bildung von Aggregaten („Cluster“), in die sich das Gegenion teilweise einlagerte. Nach der Protonierung und der Bildung von Kristallisationskeimen präzipitierte die ungeladenen FS und der metastabile Zustand der Übersättigung („parachute“) brach zusammen. Um den Einfluss der Struktur des Gegenions auf die Auflösungsrate und die Dauer der Übersättigung zu untersuchen, wurden ca. 40 Phosphonium- und Ammonium-Kationen synthetisiert. Die Schmelzpunkte der Phosphonium- und Ammonium-Salze wurden mittels dynamischer Differenzkalorimetrie (DSC) ermittelt. Für das Phosphonium-Salz P3332OH-Bromid konnte eine enantiotrope Umwandlung der Modifikationen mittels temperaturabhängiger XRPD-Messungen bestätigt werden. Die Zelltoxizitäts-Untersuchungen der Phosphonium- und Ammonium-Salze an humanen Leberzellen (HepG2), Nierenzellen (HEK 293T) und murinen Makro-phagenzellen (J774.1) zeigten, dass mit höherer Lipophilie die Zelltoxizität zunahm. Polare Kationen zeigten keine Zytotoxizität (IC50 > 1000 µM). Die Zelltoxizität der Ammonium-Salze war im direkten Vergleich mit den Phosphonium-Salzen etwas geringer. Die synthetisierten Phosphonium- und Ammonium-Salze, die als Chloride-, Bromide- und Iodide vorlagen, wurden durch Anionenaustausch in Hydroxide umgewandelt. Die Ionischen Flüssigkeiten wurden in einer Säure-Base-Reaktion mit der freien Säure des BGG-Moleküls und den Hydroxiden hergestellt. Der ionische Charakter konnte mittels Bandenverschiebung der deprotonierten Sulfonamidgruppe im IR-Spektrum bestätigt werden. Die Substanzen waren amorph (XRPD) und die Glasübergangstemperaturen (DSC) bewegten sich für die Mono-Kationen im Bereich zwischen 40 °C – 97 °C, für Dikationen 81 °C - 124 °C und für Trikationen 124 °C - 148 °C. Damit erfüllten einige Substanzen die Definition einer Ionischen Flüssigkeit nicht (Smp. < 100 °C) und wurden daher als Niedrig-Gitter-Enthalpie-Salze (low lattice enthalpy salt = LLES) bezeichnet. Die ILs und LLES zeigten signifikante Unterschiede in der Auflösungsrate J, der Übersättigungszeit und der Wasserdampfsorption. In dieser Arbeit konnte gezeigt werden, dass allein durch die Auswahl des Gegenions wichtige Parameter für die orale Bioverfügbarkeit gesteuert werden können. Durch diesen Ansatz war es möglich, aus dem sehr schlecht wasserlöslichen Arzneistoff BGG492 Ionische Flüssigkeiten bzw. LLES herzustellen, die sich drastisch schneller auflösten und teilweise über mehrere Stunden übersättigte Lösungen bildeten. Insgesamt zeigte sich, dass durch eine Zunahme der Polarität des Gegenions eine größere Auflösungsrate J und eine geringere Zelltoxizität erzielt werden konnten. Jedoch verringerte sich dadurch die Dauer der Übersättigung in Lösung und erhöhte die Hygroskopizität der ILs und LLES. N2 - Ionic Liquids (IL) are organic salts with a melting point below 100 °C and are a promising approach for improving oral bioavailability of poorly water soluble drugs. The poor water soluble drug BGG492 of the Novartis AG was prepared as Ionic Liquid (IL) using the sterically demanding counterion tetrabutylphosphonium. The IL is an amorphous, glass-like solid with a melting point of 57 °C. The free acid (FS), potassium salt of BGG (BGG-K+) and IL were characterized in solid state by means of polarization light microscopy (PLM), X-ray powder diffraction (XRPD), single crystal x-ray diffraction, infrared spectroscopy (IR) and solid state NMR spectroscopy. The ionic state of the IL in solid state could be confirmed by band shifts of the deprotonated sulfonamide group in the IR spectrum. The free acid crystallized in an orthorhombic space (Pbca) group and molecules were arranged in layers indicated by means of singly x-ray diffraction. Within each layer, one molecule was connected to four neighboring molecules via hydrogen bonds. The potassium salt crystallized as monohydrate. In this crystal structure, potassium ions formed layers in the crystallographic bc-plane with the anions placed atop and below the potassium ions. In contrast to the crystal structure of the free acid no hydrogen bonds between the molecules were detected. The 15N solid state NMR spectra of BGG-K+ and IL showed almost the same chemical shift of the unsubstituted nitrogen N-1’ of the pyrazole group and confirmed therefore the ionic state in solid state too. The amorphous structure of IL was confirmed by XRPD and polarization light microscopy; therefore a mesophase could be excluded. The comparison of the IL to free acid revealed a 700-fold faster dissolution rate and a significant extension of supersaturation time (Abb. 72). The rapid increase of concentration (“spring”) and the supersaturation time (“parachute”) were measured by photometrically and potentiometric titration. The super-saturating mechanism was elucidated by NMR spectroscopy. The sterically demanding counterion tetrabutylphosphonium hindered the protonation of the deprotonated sulfonamide group of BGG. In solution a formation of aggregates was observed (“Cluster”), in which the counterion was partially included. After protonation, the free acid crystallized and the metastable condition of supersaturation collapsed. In order to study the structural impact of the counterions on dissolution rate and supersaturation time, approximately 40 phosphonium and ammonium based counterions were synthesized. The melting points were obtained by differential scanning calorimetry (DSC). For the phosphonium bromide salt (P3332OH) an enantiotropic conversion was confirmed by temperature dependent XRPD measurements. The cytotoxicity studies of these phosphonium- and ammonium salts indicated at human liver cells (HepG2) and kidney cells (HEK), and at murine macrophage cells (J774.1) a higher cytotoxicity with increasing lipophilicity of the counterions. Polar counterions of the di- and trication-, hydroxyl- and amino series showed no cytotoxicity (IC50 > 1000 µM). The IC50 values of ammonium based counterions were slightly higher than their corresponding phosphonium counterions. The synthesized phosphonium and ammonium chloride, bromide or iodide salts were transformed into hydroxides via anion exchange in solution. The Ionic Liquids were prepared in an acid-base reaction with the free acid of BGG and the hydroxides. The substances were amorphous (XRPD) and the glass transition temperatures (DSC) were for monocations 40 °C – 97 °C, dications 81 °C – 124 °C and trications 124 °C – 148 °C. Therefore some substances do not fulfill the definition of Ionic Liquids (mp < 100 °C) and were named as low lattice enthalpy salts (LLES). The ILs and LLES showed significant differences in dissolution rate, supersaturation time and water sorption. This work showed that the choice of counterion can tune important parameter for oral bioavailability. Using the Ionic Liquid approach it was possible to create substances with strongly improved dissolution rates and long supersaturation times from the poor water soluble drug BGG492. The results revealed the more polar the counterion of the Ionic Liquid or LLES, the higher the dissolution rate and lower the cytotoxicity, but the shorter the supersaturation time and the higher the hygroscopicity. KW - Bioverfügbarkeit KW - Wirkstoff KW - Wasserlöslichkeit KW - Ionische Flüssigkeiten KW - Ionic Liquids KW - orale Bioverfügbarkeit KW - oral bioavailability KW - schwer wasserlöslich KW - poorly water soluble KW - active pharmaceutical ingredient Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121733 ER - TY - THES A1 - Schultz, Isabel T1 - Therapeutic systems for Insulin-like growth factor-1 T1 - Therapeutische Systeme für Insulin-like growth factor-1 N2 - SUMMARY Insulin-like growth factor I (IGF-I) is a polypeptide with a molecular weight of 7.649 kDa and an anabolic potential. Thereby, IGF-I has a promising therapeutic value e.g. in muscle wasting diseases such as sarcopenia. IGF-I is mainly secreted by the liver in response to growth hormone (GH) stimulation and is rather ubiquitously found within all tissues. The effects of IGF-I are mediated by its respective IGF-I transmembrane tyrosine kinase receptor triggering the stimulation of protein synthesis, glucose uptake and the regulation of cell growth. The actions of IGF-I are modulated by six IGF binding proteins binding and transporting IGF-I in a binary or ternary complex to tissues and receptors and modulating the binding of IGF-I to its receptor. The nature of the formed complexes impacts IGF-I`s half-life, modulating the half-life between 10 minutes (free IGF-I) to 12 - 15 hours when presented in a ternary complex with IGF binding protein 3 and an acid labile subunit (ALS). Therefore, sustained drug delivery systems of free IGF-I are superficially seen as interesting for the development of controlled release profiles, as the rate of absorption is apparently and easily set slower by simple formulation as compared to the rapid rate of elimination. Thereby, one would conclude, the formulation scientist can rapidly develop systems for which the pharmacokinetics of IGF-I are dominated by the formulation release kinetics. However, the in vivo situation is more complex and as mentioned (vide supra), the half-life may easily be prolonged up to hours providing proper IGF-I complexation takes place upon systemic uptake. These and other aspects are reviewed in Chapter I, within which we introduce IGF-I as a promising therapeutic agent detailing its structure and involved receptors along with the resulting signaling pathways. We summarize the control of IGF-I pharmacokinetics in nature within the context of its complex system of 6 binding proteins to control half-life and tissue distribution. Furthermore, we describe IGF-I variants with modulated properties in vivo and originated from alternative splicing. These insights were translated into sophisticated IGF-I delivery systems for therapeutic use. Aside from safety aspects, the challenges and requirements of an effective IGF-I therapy are discussed. Localized and systemic IGF-I delivery strategies, different routes of administration as well as liquid and solid IGF-I formulations are reviewed. Effective targeting of IGF-I by protein decoration is outlined and consequently this chapter provides an interesting guidance for successful IGF-I-delivery. In Chapter II, we firstly outline the stability of IGF-I in liquid formulations with the intention to deliver the biologic through the lung and the impact of buffer type, sodium chloride concentration and pH value on IGF-I stability is presented. IGF-I integrity was preserved in histidine buffer over 4 months at room temperature, but methionine 59 oxidation (Met(o)) along with reducible dimer and trimer formation was observed in an acidic environment (pH 4.5) and using acetate buffer. Strong aggregation resulted in a complete loss of IGF-I bioactivity, whereas the potency was partly maintained in samples showing a slight aggregation and complete IGF-I oxidation. Atomization by air-jet or vibrating-mesh nebulizers yielded in limited Met(o) formation and no aggregation. The results of IGF-I nebulization experiments regarding aerosol output rate, mass median aerodynamic diameter and fine particle fraction were comparable with 0.9% sodium chloride reference, approving the applicability of liquid IGF-I formulations for pulmonary delivery. In Chapter III we escalated the development to solid delivery systems designed for alveolar landing upon inhalation and by deploying trehalose and the newly introduced for pulmonary application silk-fibroin as carriers. Microparticles were produced using nano spray drying following analyses including IGF-I integrity, IGF-I release profiles and aerodynamic properties. In vitro transport kinetics of IGF-I across pulmonary Calu-3 epithelia were suggesting similar permeability as compared to IGF-I’s cognate protein, insulin that has already been successfully administered pulmonary in clinical settings. These in vivo results were translated to an ex vivo human lung lobe model. This work showed the feasibility of pulmonary IGF-I delivery and the advantageous diversification of excipients for pulmonary formulations using silk-fibroin. Chapter IV focuses on an innovative strategy for safe and controllable IGF-I delivery. In that chapter we escalated the development to novel IGF-I analogues. The intention was to provide a versatile biologic into which galenical properties can be engineered through chemical synthesis, e.g. by site directed coupling of polymers to IGF-I. For this purpose we genetically engineered two IGF-I variants containing an unnatural amino acid at two positions, respectively, thereby integrating alkyne functions into the primary sequence of the protein. These allowed linking IGF-I with other molecules in a site specific manner, i.e. via a copper catalyzed azide-alkyne Huisgen cycloaddition (click reaction). In this chapter we mainly introduce the two IGF-I variants, detail the delivery concept and describe the optimization of the expression conditions of the IGF-I variants. In conclusion, we span from simple liquid formulations for aerolization through solid systems for tailored for maximal alveolar landing to novel engineered IGF-I analogues. Thereby, three strategies for advanced IGF-I delivery were addressed and opportunities and limitations of each were outlined. Evidence was provided that sufficiently stable and easy to manufacture formulations can be developed as typically required for first in man studies. Interestingly, solid systems – typically introduced in later stages of pharmaceutical development – were quite promising. By use of silk-fibroin as a new IGF-I carrier for pulmonary administration, a new application was established for this excipient. The demonstrated success using the ex vivo human lung lobe model provided substantial confidence that pulmonary IGF-I delivery is possible in man. Finally, this work describes the expression of two IGF-I variants containing two unnatural amino acids to implement an innovative strategy for IGF-I delivery. This genetic engineering approach was providing the fundament for novel IGF-I analogues. Ideally, the biologic is structurally modified by covalently linked moieties for the control of pharmacokinetics or for targeted delivery, e.g. into sarcopenic muscles. One future scenario is dicussed in the ‘conclusion and outlook’ section for which IGF-I is tagged to a protease sensitive linker peptide and this linker peptide in return is coupled to a polyethylenglykole (PEG) polymer (required to prolong the half-life). Some proteases may serve as proxy for sarcopenia such that protease upregulation in compromised muscle tissues drives cleavage of IGF-I from the PEG. Thereby, IGF-I is released at the seat of the disease while systemic side effects are minimized. N2 - ZUSAMMEMFASSUNG Insulin-like growth factor I (IGF-I) ist ein 7.6 kDa großes Polypeptid, das eine anabole Wirkung besitzt und dadurch ein vielversprechendes Therapeutikum in Muskelerkrankungen wie z.B. Sarkopenie darstellt. IGF-I wird hauptsächlich von der Leber gebildet und infolge der Stimulation des Wachstumshormons Somatropin sezerniert. In fast jedem Gewebe des Körpers kommt IGF-I vor. Die Wirkungen von IGF-I werden über eigene Rezeptoren, die an die Zellmembran gebunden sind, die Rezeptor-Tyrosinkinasen, ausgeführt. Zu den Wirkungen gehören unter anderem die Stimulation der Proteinsynthese, die Aufnahme von Glucose in die Zellen und die Regulierung des Zellwachstums. Die Effekte von IGF-I werden von 6 IGF- Bindungsproteinen (IGFBP 1-6) gesteuert, indem IGF-I in einem binären oder ternären Komplex zu den Geweben transportiert oder auch die Bindung von IGF-I an den Rezeptor verhindert werden kann. Die sich bildenden Komplexe haben auch einen Einfluss auf die Halbwertszeit (HWZ) von IGF-I, da für ungebundenes IGF-I eine HWZ von ca. 10 Minuten festgestellt werden konnte, aber IGF-I, gebunden in einem ternären Komplex mit dem Bindungsprotein 3 und der säurelabilen Untereinheit (ALS) eine erhöhte HWZ von 12 – 15 Stunden aufweist. Deswegen sind „sustained drug delivery“ Systeme von ungebundenem IGF-I auf den ersten Blick interessant für die Entwicklung von kontrollierten Freisetungsprofilen, da die Absorptionsgeschwindigkeit offensichtlich und problemlos durch triviale Formulierung verlangsamt werden kann im Vergleich zu der schnellen Eliminationsgeschwindigkeit. Deshalb könnte man daraus schließen, dass ein Formulierungsexperte recht schnell Systeme entwickeln kann, in denen die Freisetzungskinetik der Formulierung über die pharmakokinetischen Eigenschaften von IGF-I dominiert. Jedoch ist die in vivo Situation wesentlich komplexer und wie oben bereits erwähnt, könnte die Halbwertszeit problemlos bis zu mehreren Stunden verlängert werden, sofern geeignete Komplexbildung von IGF-I nach systemischer Aufnahme erfolgt. Diese und weitere Aspekte werden in Kapitel I beschrieben. Außerdem stellen wir IGF-I als wertvolles Therapeutikum vor, beschreiben dessen Struktur, die beteiligten Rezeptoren und die daraus resultierenden Signalwege. Wir fassen die Kontrolle der Pharmakokinetik von IGF-I in der Natur zusammen, im Rahmen von einem komplexen System aus 6 Bindungsproteinen, die die Halbwertszeit und die Gewebeverteilung steuern. Außerdem beschreiben wir IGF-I Varianten, die veränderte Eigenschaften in vivo aufweisen und durch alternatives Spleißen entstanden sind. Diese Erkenntnisse werden in hochentwickelte „IGF-I delivery“ Systeme für den therapeutischen Gebrauch umgesetzt. Neben Sicherheitsaspekten werden die Herausforderungen und Anforderungen einer effektiven IGF-I Therapie diskutiert. Darüber hinaus wird über lokale und systemische „IGF-I delivery“ Strategien, verschiedene Verabreichungswege sowie flüssige und feste IGF-I Formulierungen berichtet. Ebenso wird die wirkungsvolle IGF-I Freisetzung am Zielort durch Ausschmückung des Proteins beschrieben und dementsprechend liefert dieses Kapitel eine interessante Orientierungshilfe für eine erfolgreiche IGF-I Therapie. Im Kapitel II untersuchen wir die Stabilität von IGF-I in flüssigen Formulierungen zur pulmonalen Anwendung bezüglich Puffersystem, Natriumchlorid Konzentration und pH Wert. Die IGF-I Integrität wurde im Histidin Puffer über 4 Monate bei Raumtemperatur aufrechterhalten. Allerdings wurde bei Verwendung eines Acetat Puffers pH 4.5, Oxidation am Methionin 59 (Met(o)) sowie die Entstehung von reduzierbaren Dimeren und Trimeren beobachtet. Starke Aggregation führte zum vollständigen Verlust der IGF-I Bioaktivität, während die Wirkung in Proben aufrechterhalten werden konnte, in denen eine geringe Aggregation, aber deutliche Oxidation festgestellt wurde. Nach der Verneblung der flüssigen IGF-I Formulierung im Histidin-Puffer pH 6.5 mit einem Druckluftvernebler und einem Schwingmembranvernebler wurde jeweils eine leichte Bildung von Met(o), aber keine Aggregatbildung ermittelt. Die Ergebnisse der IGF-I Verneblungsexperimente waren vergleichbar mit den Referenzwerten einer isotonischen Kochsalzlösung bezüglich der Abgabeleistung, dem massenbezogenen medianen aerodynamischen Durchmesser und dem Feinpartikel Anteil. Hierdurch wurde gezeigt, dass sich flüssige IGF-I Formulierungen zur pulmonalen Anwendung eignen. Im Kapitel III berichten wir von einer Weiterentwicklung zu festen IGF-I Formulierungen für die pulmonale Route unter Verwendung von Trehalose und Seidenfibroin als neues Trägermaterial für die pulmonale Applikation. Mikropartikel wurden durch Nanosprühtrocknung hergestellt und anschließend auf IGF-I Integrität, IGF-I Freisetzung und dem aerodynamischen Durchmesser untersucht. Die Kinetik des in vitro Transportes von IGF-I durch Calu-3 Lungenepithelzellen war vergleichbar zur Durchgängigkeit von Insulin, das bereits erfolgreich pulmonal verabreicht wurde. Dieser Erfolg wurden auch ex vivo in einem menschlichen Lungenlappen Model bestätigt. In der Arbeit wird somit gezeigt, dass IGF-I zur pulmonalen Anwendung geeignet ist und die Verwendung von Seidenfibroin eine nützliche Erweiterung zu den bisher eingesetzten Trägermaterialien darstellt. Das Kapitel IV konzentriert sich auf eine innovative Strategie, um IGF-I sicher und kontrollierbar zu verabreichen. In diesem Kapitel erweitern wir die Entwicklung zu neuartigen IGF-I Varianten. Wir streben damit an ein vielseitiges Biologikum zu entwickeln, dessen Eigenschaften durch chemische Reaktionen verändert werden können wie zum Beispiel die spezifische Verknüpfung mit Polymeren. Zu diesem Zweck erzeugten wir gentechnisch zwei IGF-I Varianten, die jeweils an zwei Positionen eine unnatürliche Aminosäure aufweisen und führten dadurch Alkine Gruppen in die Primärstruktur der Proteine ein. Diese Vorgehensweise ermöglicht es nun IGF-I mit anderen Molekülen positionsspezifisch zu verbinden wie zum Beispiel durch die kupferkatalysierte Azid-Alkin-Cycloaddition (Click – Reaktion). In diesem Kapitel stellen wir hauptsächlich die zwei IGF-I Varianten vor, beschreiben ausführlich das Konzept der IGF-I Zustellung und erklären die Vorgehensweise zur Optimierung der Expressionsbedingungen der IGF-I Varianten. Abschließend lässt sich sagen, dass sich diese Arbeit über einfach flüssige Formulierungen zur Verneblung, feste Formulierung mit guten aerodynamischen Eigenschaften zur Erreichung der Alveolen und neuartig entwickelte IGF-I Varianten erstreckt. Hierzu werden drei Strategien zur modernen IGF-I Gabe thematisiert und sowohl die Möglichkeiten als auch die Grenzen der jeweiligen Therapie erörtert. Wir haben den Nachweis erbracht, dass ausreichend stabile und leicht herzustellende Formulierungen entwickelt werden können, die üblicherweise für „First-In-Man“ Studien benötigt werden. Interessanterweise stellten sich die festen Formulierungen, die eigentlich in den späteren Phasen der pharmazeutischen Entwicklung eingeführt werden, als sehr vielversprechend heraus. Durch den Einsatz von Seidenfibroin als neuen Träger zur pulmonalen Anwendung haben wir einen neuen Verwendungszweck für Seidenfibroin etabliert. Der erfolgreiche Versuch ex vivo am menschlichen Lungenlappen Model liefert die feste Überzeugung, dass es möglich ist, IGF-I im Menschen pulmonal anzuwenden. Letztendlich, beschreibt die Arbeit die Expression von zwei IGF-I Varianten, die zwei unnatürliche Aminosäuren aufweisen, um eine neuartige Strategie zur IGF-I Verabreichung umzusetzen. Dieser gentechnische Ansatz liefert die Grundlage für neue IGF-I Varianten. Idealerweise, wird das Biopharmazeutikum strukturell durch kovalent gebundene Reste verändert, um die pharmakokinetischen Eigenschaften zu steuern oder um zielgenaue Wirkstoffabgabe zu erreichen zum Beispiel in den sarkopenischen Muskeln. Ein Zukunftsszenarium wird im Abschnitt „Conclusion and Outlook“ diskutiert, in dem IGF-I mit einem Protease empfindlichen Linker versehen wird, der wiederum mit einem Polyethylenglykol (PEG) Polymer verknüpft ist. Der PEG Rest wird benötigt, um die Hablbwertszeit von IGF-I zu erhöhen. Einige Proteasen könnten als Stellvertreter für Sarkopenie dienen, so dass die Hochregulierung der Proteasen in gefährdeten Muskelgeweben zur Spaltung von IGF-I und dem PEG Rest führt. Dadurch wird IGF-I am Ursprung der Erkrankungen freigesetzt, während die systemischen Nebenwirkungen weitgehend vermindert sind. KW - Insulin-like Growth Factor I KW - Pulmonary delivery KW - Spray drying KW - Silk-Fibroin KW - Protein Expression KW - Pulmonale Applikation KW - Sprühtrocknung KW - Seiden-Fibroin Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119114 ER - TY - THES A1 - Widmer, Toni T1 - Lowering lattice forces in drug substance crystals to improve dissolution and solubility T1 - Verringerung der Gitterkräfte in kristallinen Arzneistoffen zur Erhöhung der Auflösungsgeschwindigkeit und Löslichkeit N2 - Lattice forces are based on the attraction between the single moieties of molecules. The strength of lattice forces has an impact on the solid state and related physical properties such as melting point, boiling point, vapor pressure solvation and solubility. For solvation to occur, energy is required to break the lattice forces attracting ions and molecules among themselves. The energy for breaking up the attraction between the molecules is gained from the energy released when ions or molecules of the lattice associate with molecules of the solvent. Solubility is therefore, directly linked to the energy which is required to break the lattice forces and the energy which is liberated by solvation of the molecules or ions. Based on this relation, the lattice forces in two acidic compounds and a neutral compound were subsequently lowered by different approaches with the intention to increase the solubility, supersaturation, and dissolution rate. The conversion to an ionic liquid and the embedding of the compound in a pH-sensitive matrix in an amorphous state were investigated with an acidic compound and its pro-drug. The tetrabutylphosphonium (TBPH) salt showed the most promising properties among the tested counter ions. It alters the properties of the compound from a highly crystalline physicochemical state to an amorphous readily soluble material showing supersaturation in a wider pH range and higher solubility than the sodium and potassium salts. A solid dispersion approach was developed in parallel. Solid dispersions with two different pH-sensitive polymers and different drug load were prepared by lyophilization to determine the miscibility of the compound and the polymer by differential scanning calorimetry (DSC). A miscibility of 50% of the amorphous acid with the pH-sensitive Eudragit L100-55 matrix and a miscibility of 40% with hydroxypropyl methylcellulose acetate succinate (HPMC-AS) was found. Both approaches, the TBPH salt and the solid dispersion based on the pH-sensitive Eudragit L100-55 were tested in vivo. The TBPH salt was dosed in a buffered solution to prevent precipitation in the acidic stomach pH. This resulted in BAV higher than the crystalline suspension but lower than the solid dispersion. There were no acute toxicology effects seen. Thus, TBPH was considered safe for further studies. The TBPH salts were very hygroscopic, sticky and prone to precipitation as free compound when exposed to low pH when simulating the passage through the stomach. Thus, the principle of the ionic liquid was combined with the principle of an amorphous solid dispersion. This mitigated the risk of precipitation of the TBPH salt during the passage of the stomach. Also delinquency upon open storage was improved by embedding the TBPH salt in a pH-sensitive polymer. Dissolution tests mimicking the pH gradient in the gastro intestinal tract confirmed the protective properties of the pH-sensitive polymer matrices against recrystallization at low stomach pH in vitro. Furthermore, supersaturation at pH ranges relevant in the intestines of preclinical species or humans was observed. The TBPH solid dispersion showed superior supersaturation behavior in vitro compared to the free acid in pH-sensitive matrix. However, equally increased bioavailability (BAV) was observed when the amorphous solid dispersion contained the free acid form or the TBPH salt. Absorption seemed to be so fast that the short in vitro supersaturation observed for the free from in pH-sensitive matrix was already sufficient for complete absorption within 15 - 30 minutes. This is in accordance with the short tmax of around 15 - 30 minutes after oral application of the low lattice force principles. The pharmacokinetic (PK) profile became the main focus of further optimization as the BAV was maximized already. Early maximal plasma concentration (tmax) went along with high maximal plasma concentration (Cmax) for the low lattice force principles. Central nervous system related side effects as consequence of the PK profile with such a high Cmax were likely to happen and therefore, the formulation principles were modified to maintain the doubled BAV and reduce the observed Cmax. Additionally, the compound showed a short half-life requiring a two times daily dose, which is suboptimal for a chronic treatment. The amorphous acid in pH-matrix showed a modified PK profile when dosed in a hydrogel but not in an oleo gel. Surprisingly, administration of the TBPH salt in pH-matrix suspended in oil showed a massive delay of the tmax to 8 hours and a reduction of Cmax by factor 2 - 3 with unchanged good BAV when administered as a suspension in oil without increased viscosity. TBPH salt solution with a high viscosity resulted in the same PK profile as when administered without increased viscosity. The animal model was changed from rat to dog. The dose was limited to 15 mg/dog since they reacted much more sensitively to the drug. BAV at this dose level was 100% for the crystalline suspension already, thus the focus of this study was not increasing BAV but to achieve prolonged and/or delayed exposure using different formulation principles elaborated in rats before. An immediate release formulation of 3 mg was combined with a delayed/modified release principle containing 12 mg of the compound. An additional study arm was conducted with a remote controlled device programmed to deliver a first dose of 3 mg instantaneously after passing the stomach and a second dose of 12 mg when entering the caecum. The tmax remained short for all formulation principles and it seemed that delayed and modified release lead to BAV reduction. The modified PK profiles could not be translated to an oral dog model which endorsed the hypothesis of an absorption window; however, the in vitro results could be translated to a dog model for colonic absorption. A nanosuspension of the crystalline compound, the TBPH salt in pH-matrix and the TBPH salt of the pro-drug of the compound were administered rectally to determine colonic absorption. The nanosuspension showed exposure around the limit of quantification whereas the TBPH in pH-matrix showed 4% BAV and the pro-drug as TBPH salt in pH-matrix resulted in 12% BAV although the pro-drug is factor 3 less soluble. This was in line with the increased permeation of the pro-drug which was observed in the Caco2 experiments. The bioavailability was increased by using the low lattice force principles and validated the hypothesis for the acidic drug and its pro-drug in the colonic dog model. Chemical and physicochemical stability of the investigated solid dispersions was confirmed for at least 18 months at room temperature. Amorphous solid dispersions were investigated to lower lattice forces of a neutral molecule. Solid dispersions are well known from literature; however, they are not frequently used as principles for dosage forms due to limitations in physical stability and complex manufacturing processes. A viable formulation principle was developed for a neutral compound assuming that the stability of a solid dispersion with a drug load below the maximal miscibility will be better than one which exceeds the maximal miscibility. The dispersed and amorphous state of the neutral compound resulted in a higher energy level and chemical potential compared to a crystalline form implying that they are thermodynamically instable and sensitive to recrystallization. This was confirmed by the fast recrystallization of an amorphous solid dispersion made from HPMC with 50% drug load which recrystallized within a few days. Solid dispersions with different drug loads in different polymers and in polymer mixtures were prepared by lyophilization. The miscibility of the compound and the polymer was determined by DSC as the miscibility is a surrogate for maximal stable drugload of the solid dispersion. HPMC was found to be miscible with 20% compound confirming the instability of the 50% HPMC solid dispersion observed earlier. Based on dosing needs, a miscibility/drug load of at least 30% was mandatory because of the dosing requirements to dose less than 1500 mg of final formulation. This was considered as maximal swallowable volume for later clinical development. Thus, all systems with a miscibility higher or equal to 30% drug in polymer were evaluated in an in vitro dissolution test and ranked in comparison with amorphous pure compound, crystalline compound and a 20% drug load solid dispersion made from HPMC. The HPMC based solid dispersion which gave good exposure in previous in vivo experiments did not support the high drugload that was needed. Therefore, similar in vitro behavior of this solid dispersion should result in similar in vivo performance. The polyvinylpyrrolidone (PVP) based solid dispersions scored with high drug load and medium initial kinetic solubility. The Soluplus based solid dispersion offer lower drug load and slightly lower initial kinetic solubility, but showed an extended supersaturation. The 4 best performing systems were evaluated in rats. They resulted in a short Tmax of 15 minutes and BAV higher than 85% indicating fast and complete absorption. The reference HPMC based solid dispersion with a drug load of 20% showed 65% BAV. This showed that higher drug loads were feasible and did not limit absorption in this animal model. Since the estimated human dose required a higher formulation density than obtained from lyophilization or spray drying, melt extrusion of the solid dispersion was considered to be the most adequate technology. The process temperature needed to be below 200 °C as this value represents the degradation temperature of the polymers. It was investigated by differential scanning calorimetry whether the compound can be mixed with the molten polymer. None of the polymers could dissolve the crystalline compound below the degradation point of the polymer. The temperature had to be increased to 260 °C until the compound was molten together to a monophasic system with polymer. This resulted in degradation of the polymers. Therefore, different plasticizers and small organic molecules with similar functional groups as the compound were investigated on their ability to reduce the melting point of the mixture of polymer and compound. Positive results were obtained with several small molecules. Based on a literature review, nicotinamide had the least concerning pharmaceutical activities and was chosen for further development. Solid dispersions with the same composition as the ones tested in rat were prepared with 9% nicotinamide as softener. Extrusion without nicotinamide was not possible at 135 °C or at 170 °C whereas the addition of 9% nicotinamide led to a homogenous extrudate when processed at 135 °C. The solid state of the extrudates was not molecularly dispersed but the compound was in a crystalline state. They could not reach the in vitro performance observed for the lyophilized solid dispersions with Soluplus or PVP derivatives. Nevertheless, the performances in the supersaturation assay were comparable to the HPMC based lyophilized solid dispersion. The Soluplus and PVP based crystalline extrudates were evaluated in a dog PK showing that the crystalline solid dispersion does not enable BAV higher than 90% within 24 hours after application. In parallel, the hygroscopicity of the meltextrudates was investigated by DVS and the best performing system based on Kollidon VA64 was further optimized regarding the solid state after its extrusion. The minimal process temperature to obtain a fully amorphous solid dispersion was determined by hot stage X-ray powder diffraction analysis (XRPD) and confirmed by lab scale extrusion. Addition of 9% nicotinamide lowered the process temperature from 220 °C (without nicotinamide) to 200 °C with nicotinamide. The minimal temperature for obtaining crystal free material was independent of the nicotinamide amount as soon as it exceeded 9%. Lowering the process temperature with nicotinamide reduced the impurity levels from 3.5% at 220 °C to 1.1% at 200 °C. The fully amorphous extrudates performed now better in the in vitro supersaturation assay than the lyophilized amorphous HPMC solid dispersion and the crystalline extrudates which were extruded at 135 °C. The process was up-scaled to a pilot scale extruder with alternative screw designs increasing mechanical shear forces and mixing which enabled lower process temperatures. This resulted in a maximal process temperature of 195 °C when nicotinamide was present and 205 °C without nicotinamide. However, shorter process time and reduced process temperatures (compared to the lab scale equipment) resulted in impurity levels smaller than 0.5% for both compositions and temperatures and made the nicotinamide obsolete. The amorphous extrudates from the pilot scale extruder performed better in vitro than the crystalline extrudates from the lab scale extruder and the lyophilized HPMC solid dispersion. A comparable PK profile of the HPMC solid dispersion and the amorphous melt extruded formulation principle was anticipated from these in vitro results. This was confirmed by the pharmacokinetic profile in dogs after oral administration of the final extruded solid dispersion formulation which was equivalent with the pharmacokinetic profile of the HPMC based solid dispersion formulation. The assumption that using a drug load below the miscibility prevents the solid dispersion from recrystallization was verified at least for a limited time by a stability test at elevated temperatures for 3 months showing no change in solid state. This indicates the opportunities of the low lattice forces approach, but also showed the importance of developing principles first assuring stable solid state, performance in vitro and in vivo, tailor them in a second step based on performance and combine them with technology such as melt extrusion as third step. If these steps are done in the context of clinical needs and quality it can rationalize the development of a solid dispersion and minimalize the formulation related risks regarding biopharmacy and stability. N2 - Gitterkräfte basieren auf der Interaktion zwischen einzelnen funktionellen Gruppen und Regionen von Molekülen oder Ionen. Die Summe der Interaktionen beeinflusst physikalische Eigenschaften wie Schmelzpunkt, Siedepunkt, Dampfdruck, Solvatisierung und Löslichkeit. Für die Solvatisierung eines Moleküls aus einem Feststoff muss zum einen Energie aufgewendet werden, damit das Molekül seine Interaktionen mit den es umgebenden Molekülen überwinden kann. Zum anderen wird Energie frei, wenn das herausgelöste Molekül mit dem Solvens interagiert. Die Differenz zwischen der benötigten Energie, um die Interaktionen im festen Zustand zu überwinden, und der Energie, die frei wird, wenn das gelöste Molekül oder Ion mit dem Solvens interagiert, bestimmt die Löslichkeit. Auf dieser Gesetzmässigkeit aufbauend wurden die Gitterkräfte von zwei sauren Arzneistoffen und einem neutralen Arzneistoff sukzessive reduziert, um ihre Löslichkeit entsprechend zu erhöhen. Die sauren Verbindungen, das Stamm-Molekül und dessen Prodrug, wurden mit verschiedenen Gegenionen in ionische Flüssigkeiten umgewandelt. Verschiedene Gegenionen aus der Literatur wurden in die Untersuchungen miteinbezogen. Das Tetrabutylphosphonium-Gegenion (TBPH) hatte besonders vielversprechende Eigenschaften. Es modifizierte den Feststoffzustand von hochkristallin zu amorph. Dies resultierte in guten Löslichkeiten in ungepufferten wässrigen Systemen, vergleichbar mit den bereits bekannten Natriumsalze. Zusätzlich zeigten sie eine massiv verbesserte Löslichkeit bei biorelevantem pH. Die ionischen Flüssigkeiten blieben in Lösung in pH-Bereichen, in denen die klassischen Salze aufgrund ihres Eigen-pHs bereits präzipitierten. Bei einem tiefen pH, wie er im Magen vorkommt, fiel jedoch unmittlerbar die freie Form aus. Daher wurde parallel zum TBPH-Salz eine Solid Dispersion entwickelt auf Basis von pH-sensitiven Polymeren. Diese sollten zum einen den amorphen Zustand stabilisieren, zum anderen verhindern, dass der amorphe Arzneistoff bereits im Magen freigesetzt wird, da er als Säure bei tiefem pH schlecht löslich ist und ausfallen kann. Es wurden Trägermaterialen evaluiert, welche erst bei einem pH grösser als 5.5 löslich sind. Kriterium war die Mischbarkeit der Matrixpolymere mit dem Arzneistoff. Dazu wurden Solid Dispersions, bestehend aus der Verbindung und den Polymermatrices, in verschiedenen Verhältnissen lyophilisiert und anschliessend mit dynamischer Differenzkalorimetrie (DSC) auf ihre Mischbarkeit hin untersucht. Eudragit L100-55 wurde als pH-sensitives Matrixpolymer ausgewählt, da es bis zu 50% mit der Verbindung mischbar war. Hydroxypropyl-methylcellulose-Acetat-Succinat (HPMC-AS) jedoch nur zu 40%. In einer Tierstudie wurden das TBPH-Salz und die Solid Dispersion gegen eine Suspension des kristallinen Arzneistoffes getestet. Aufgrund der stark pH-abhängigen Löslichkeit des TBPH-Salzes wurde es als gepufferte Lösung appliziert, die Solid Dispersion als Suspension. Die beste Pharmakokinetik (PK) wurde für die Solid Dispersion gemessen, gefolgt von der TBPH-Salz-Lösung. Da das TBPH-Salz auch Schwächen im Bereich der Hygroskopizität und der Verarbeitung (wie Zerfliessen und Kleben) zeigte, wurde die ionische Flüssigkeit und die freie, amorphe Form des Arzneistoffes in eine pH-sensitive Matrix inkorporiert. Dissolutionsversuche, welche den pH-Verlauf nach oraler Applikation wiederspiegelten, zeigten, dass die anfänglich beobachtete Präzipitation bei den ionischen Flüssigkeiten bei tiefem pH ausbleibt, wenn sie in die pH-Matrix inkorporiert sind. Zusätzlich konnte eine Übersättigung in Kombination mit der pH-sensitiven Matrix beobachtet werden, nachdem der pH-Wert auf Niveau des Dünndarms anstieg. Der Effekt der Supersaturierung war jedoch mit der ionischen Flüssigkeit signifikant länger. Ebenso verbesserte sich mit der Solid Dispersion die Handhabung der ionischen Flüssigkeiten als Feststoff. Die modifizierten Löslichkeitseigenschaften in vitro führten auch zu einer verdoppelten Bioverfügbarkeit (BAV) in Ratten. Im PK-Profil war kein Unterschied auszumachen, ob der Arzneistoff amorph in pH-Matrix appliziert wurde oder als ionische Flüssigkeit in der pH-Matrix. Die Supersaturierung der freien amorphen Form in pH-Matrix, obwohl wesentlich kürzer als mit dem TBPH-Salz, reichte bereits für eine komplette Absorption in 15-30 Minuten. Dies widerspiegelte auch der tmax-Wert von 30 Minuten. Da Nebenwirkungen oft einhergehen mit hohen maximalen Plasmakonzentrationen (Cmax) und der Arzneistoff relativ schnell aus der Blutzirkulation eliminiert wird, wurde nun versucht, das PK-Profil entsprechend zu modifizieren, um eine längere Exposition und einen tiefere Cmax-Wert bei gleicher Fläche unter der Kurve (AUC) zu erreichen. Die freie amorphe Form des sauren Arzneistoffes zeigte eine leicht verlängerte Zeitspanne, bis Cmax erreicht wurde (tmax), und einen tieferen Cmax-Wert, wenn die Viskosität der dosierten Suspension mit Hydroxypropylmethylcellulose (HPMC) erhöht wurde. Überraschenderweise zeigte das in Maisöl dosierte TBPH-Salz ein um 7 Stunden verzögertes tmax und einen reduzierten Cmax-Wert. Da die Ratte nur bedingt Rückschlüsse und Extrapolation für ein humanes PK-Profil zulässt, wurde der Beagle-Hund als finales und repräsentatives Tiermodel gewählt. Die Hunde reagierten viel sensitiver auf die Verbindung. Deshalb war die maximale Dosis auf 15 mg pro Hund limitiert. Bei dieser Dosis beträgt die BAV für die kristalline freie Form des Arzneistoffes bereits 100%. Das Interesse lag primär auf der Modifizierung des PK-Profils hin zu tieferen Cmax-Werten und späterem tmax bei gleichbleibender AUC. Die Formulierungsansätze aus der Rattenstudie wurden zu einer Dosis von 3 mg kombiniert, welche unmittelbar freigesetzt wird, und einer zweiten Dosis von 12 mg, welche verzögert oder langsamer aufgenommen werden sollte. Zusätzlich wurde eine ferngesteuerte Kapsel benutzt, welche 3 mg sofort nach der Passage des Magens und 12 mg bei Ankunft im Caecum freisetzen sollte. Das tmax blieb für alle Kombinationen kurz und die verzögert oder langsamer freisetzenden Prinzipien resultierten in einer tieferen Exposition. Dies führte zur Formulierung der Hypothese, dass dieser Arzneistoff ein Absorptionsfenster haben könnte. Daher würde die Aufnahme, zumindest im Wesentlichen, auf den Dünndarm beschränkt. Die Entwicklung verzögert freisetzender Arzneiformen, die Anteile der Wirkstoffbeladung distal zum intestinalen Teil des Darmes freisetzen, wäre dann nicht zweckmäßig. Dieser Wirkstoffanteil würde in geringerem Maße, gegebenenfalls auch gar nicht, aufgenommen werden. Da technische Probleme bei der verzögerten Freisetzung nicht ausgeschlossen werden konnten, wurden die Formulierungen nun rektal in den Bereich des Caecums appliziert. Der Arzneistoff wurde als Nanosuspension, als TBPH in pH-Matrix und als TBPH des Prodrugs rektal appliziert. Die Exposition bei der Nanosuspension bewegte sich nahe dem Detektionslimit und ein wenig höher beim TBPH in pH-Matrix. Die Bioverfügbarkeit des Prodrugs als TBPH in pH-Matrix verglichen mit dem TBPH der Grundverbindung in der pH-Matrix war viermal höher. Dies passt gut zur besseren Permeation des Prodrugs in Caco2-Zellen, obwohl das Prodrug um Faktor 3 schlechter löslich ist. Amorphe Solid Dispersions wurden auf ihre Fähigkeit untersucht, die Gitterkräfte im Kristall eines neutralen Moleküls zu senken. Solid Dispersions sind seit ungefähr 50 Jahren in der Literatur bekannt, werden jedoch erst seit kürzerer Zeit erfolgreich von der Pharmaindustrie vermarktet. Die amorphe Form mit dem latenten Risiko der Rekristallisation bedeutet ein grosses Risiko in Bezug auf die Haltbarkeit eines Arzneimittels. In der vorliegenden Arbeit wurde diesem Risiko Rechnung getragen, indem die Mischbarkeit der Substanz mit den Polymeren gründlich untersucht wurde. Systeme, welche mischbar sind, haben ein wesentlich kleineres Risiko, bei der Lagerung zu rekristallisieren. Der amorphe Zustand geht einher mit einer höheren Energie im System, welche das System anfällig macht, durch Kristallisation in den tieferen Energiezustand überzugehen. Dies wurde bei einer HPMC-basierten Solid Dispersion mit 50% Beladung beobachtet. Die Bestimmung der Mischbarkeit deutete auf eine maximale Mischbarkeit von nur 20% hin. Dies korrelierte mit der Rekristallisation dieser Solid Dispersion innerhalb von zwei Wochen, wohingegen diejenige mit nur 20% Beladung wesentlich stabiler war. Basierend auf der zu erwartenden Dosis von 200  400 mg im Menschen, wie sie mit Hilfe der PK-Software vorhergesagt wurde, wurde eine Beladung von mindestens 30% spezifiziert. Alle Kombinationen, die bei der Analyse von den lyophilisierten Systemen mit DSC eine Mischbarkeit von 30% und mehr zeigten, wurden daher in einem Dissolutionstest untersucht. Die Resultate wurden in Relation zum reinen amorphen Arzneistoff, der kristallinen Form und der Solid Dispersion mit HPMC und 20% Beladung bewertet. Diese Solid Dispersion zeigte in Ratten bereits sehr gute Ergebnisse. Daher galt sie als positive Referenz. Systeme, die in vitro gleich gut oder besser abschnitten, sollten ebenfalls in vivo gut abschneiden. Polyvinylpyrrolidon (PVP)-basierte Systeme punkteten mit guter Mischbarkeit und hoher kinetischer Löslichkeit. Soluplus-basierte Systeme zeichneten sich hingegen eher durch lange Supersaturation bei etwas tieferen kinetischen Löslichkeiten und etwas tieferen Mischbarkeiten aus. In der Ratte zeigten alle getesteten Solid Dispersions eine bessere BAV als diejenige mit HPMC. Das tmax war mit 15 Minuten früh und die Absorption vollständig. Dies zeigte, dass höhere Beladungen durchaus möglich sind, ohne dass dies einen negativen Einfluss auf die PK hat. Mit der antizipierten Dosis für den Menschen fielen alle Herstellungsverfahren weg, bei denen das finale Produkt eine kleine Dichte hat. Als adäquat wurde somit die Hot Melt-Extrusion als Herstellungsmethode gewählt. Dieser Prozess hat seine Limitierung jedoch in der maximal möglichen Prozesstemperatur, welche je nach Gerät und Polymer bei ungefähr 200 °C liegt. DSC-Untersuchungen zeigten, dass aber 260 °C nötig sind, um die Substanz und das Polymer zu einer amorphen Phase zusammenzuschmelzen. Dies resultierte in einer Verkohlung der Polymere und war somit nicht umsetzbar. Verschiedene klassische plastifizierende Substanzen und kleinere organische Moleküle mit homologen funktionellen Gruppen wurden auf ihre schmelzpunktreduzierende Wirkung hin untersucht. Vielversprechende Resultate wurden mit mehreren kleinen organischen Molekülen beobachtet. Die klassischen plastifizierenden Substanzen waren allesamt nicht mischbar mit dem Arzneistoff. Nicotinamid wurde aufgrund seines Status als Nahrungsergänzungsmittel für die weitere Entwicklung ausgewählt. Die Solid Dispersions aus der Rattenstudie wurden mit den identischen Beladungen gemischt, jedoch waren die Pulvermischungen bei Temperaturen unter 170 °C nicht extrudierbar. Bei Zugabe von 9% Nicotinamid war die Mischung leicht über dem Schmelzpunkt von Nicotinamid bei 135 °C extrudierbar. Die Extrudate waren für alle verwendeten Polymere kristallin, die Resultate im Auflösungstest im Bereich der HPMC-Solid Dispersion mit 20% Beladung konnten aber mit den Ergebnissen der Kollidon- und Soluplus-basierten Systeme aus der Rattenstudie (alle amorph) nicht mithalten. Die folgende Hundestudie, welche mit einer Formulierung basierend auf Kollidon VA64, einer auf Kollidon K12/K30 und einer auf Basis Kollidon VA64/Soluplus Formulierung durchgeführt wurde, zeigte eine Verbesserung der PK im Hund. Gleichzeitig war aber auch ersichtlich, dass die amorphe HPMC-Solid Dispersion mit 20% Beladung noch wesentlich besser abschnitt. Daher wurde der Extrusionsprozess optimiert, um ein komplett amorphes Extrudat zu erhalten. Parallel wurden die Solid Dispersions per DVS auf ihre Hygroskopizität hin getestet. Kollidon VA64 zeigte die geringste Wasseraufnahme. Zusätzlich ist das Polymer laut Hersteller temperaturstabil bis ungefähr 230 °C. Die Prozesstemperatur wurde mittels Hot Stage-Pulverdiffraktometrie (XRPD) bestimmt, indem eine physikalische Mischung erhitzt wurde und dabei jeweils XRP-Diffraktogramme erstellt wurden, bis bei 230 °C keine kristallinen Signale mehr beobachtbar waren. Diese Temperatur lieferte auch auf dem im Labormassstab arbeitenden Extruder komplett amorphes Material. Die minimale Extrusionstemperatur betrug 220 °C ohne Nicotinamid und 200 °C mit 9% Nicotinamid. Höhere Nicotinamidanteile reduzierten die minimale Extrusionstemperatur nicht weiter, kleinere Anteile erhöhten sie jedoch. Die um 20 °C reduzierte Prozesstemperatur senkte den Anteil von Abbauprodukten von 3.5% ohne Nicotinamid auf 1.1% mit Nicotinamid. Der Wechsel auf einen grösseren Extruder mit variablem Schraubendesign und verschiedenen Temperaturzonen ermöglichte grössere Scherkräfte, was tiefere Prozesstemperaturen ohne kristalline Anteile im Extrudat erlaubte. 195 °C waren mit 9% Nicotinamid nötig, 205 °C ohne. Beide Extrudate zeigten unter 0.5% Abbauprodukte. Dies machte den Gebrauch von Nicotinamid obsolet. Die Extrudate vom grösseren Extruder zeigten Dissolutionsergebnisse, welche identisch mit den lyophilisierten aus den Rattenstudien waren. Diese waren somit besser als die kristallinen Extrudate oder die HPMC-basierte 20% beladene Solid Dispersion. Das gute Abschneiden im in vitro-Test bestätigte sich in einer Hundestudie. Die Exposition der Kollidon basierten Extrudate war mit der PK des HPMC-Systems vergleichbar. Die Stabilität der beiden extrudierten Varianten wurde in einem Stabilitätstest unter Stressbedingungen verifiziert. Keines der Systeme zeigte physikalische Instabilitäten, und die Annahme, dass Beladungen von Systemen unterhalb ihrer maximalen Mischbarkeit physikalisch stabil sind, wurde für den gewählten Zeitraum von 3 Monaten auch unter Stressbedingungen bestätigt. Dies zeigt, dass eine rationale Entwicklung einer Solid Dispersion in einem finalen Produkt resultiert, welches die biopharmazeutischen Ansprüche ebenso erfüllt wie jene bezüglich der physikalischen Stabilität. KW - Arzneimittel KW - Ionic Liquids KW - solid dispersion KW - lowering lattice forces KW - poorly water soluble drugs KW - oral bioavailability KW - Löslichkeit KW - Bioverfügbarkeit Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126232 ER - TY - THES A1 - Puhl, Sebastian T1 - Methods for protein crystal delivery: Exploring new techniques for encapsulation and controlled release T1 - Methoden der Proteinkristallverabreichung: Erforschung neuer Techniken der Verkapselung und kontrollierter Freisetzung N2 - More and more newly registered drugs are proteins. Although many of them suffer from instabilities in aqueous media, the most common way of protein drug administration still is the injection of a solution. Numerous protein drugs require frequent administration, but suitable controlled release systems for proteins are rare. Chapter 1 presents current advances in the field of controlled delivery of particulate protein formulations. While the main focus lies on batch crystallized proteins, amorphous particulate proteins are also discussed in this work. The reason is that, on the one hand precipitated protein particles hold some of the advantages of crystalline proteins and on the other hand the physical state of the protein may simply be unknown for many drug delivery systems or semi-crystalline particles have been used. Crystallization and precipitations methods as well as controlled delivery methods with and without encapsulation in a polymeric delivery system are summarized and critically discussed. In chapter 2 a novel way of protein crystal encapsulation by electrospinning is introduced. Electrospinning of proteins has been shown to be challenging via the use of organic solvents, frequently resulting in protein unfolding or aggregation. Encapsulation of protein crystals represents an attractive but largely unexplored alternative to established protein encapsulation techniques because of increased thermodynamic stability and improved solvent resistance of the crystalline state. We herein explore the electrospinning of protein crystal suspensions and establish basic design principles for this novel type of protein delivery system. Poly-ε-caprolactone (PCL) is an excellent polymer for electrospinning and matrix-controlled drug delivery combining optimal processability and good biocompatibility. PCL was deployed as a matrix, and lysozyme was used as a crystallizing model protein. By rational combination of lysozyme crystals with a diameter of 0.7 or 2.1 μm and a PCL fiber diameter between 1.6 and 10 μm, release within the first 24 h could be varied between approximately 10 and 100%. Lysozyme loading of PCL microfibers between 0.5 and 5% was achieved without affecting processability. While relative release was unaffected by loading percentage, the amount of lysozyme released could be tailored. PCL was blended with poly(ethylene glycol) and poly(lactic-co-glycolic acid) to further modify the release rate. Under optimized conditions, an almost constant lysozyme release over 11 weeks was achieved. Chapter 3 takes on the findings made in chapter 2 and further modifies the properties of the nonwovens as protein crystal delivery system. Nonwoven scaffolds consisting of poly-ε-caprolactone (PCL), poly(lactic-co-glycolic acid) (PLGA) and polidocanol (PD), and loaded with lysozyme crystals were prepared by electrospinning. The composition of the matrix was varied and the effect of PD content in binary mixtures, and of PD and PLGA content in ternary mixtures regarding processability, fiber morphology, water sorption, swelling and drug release was studied. Binary PCL/PD blend nonwovens showed a PD-dependent increase in swelling of up to 30% and of lysozyme burst release of up to 45% associated with changes of the fiber morphology. Furthermore, addition of free PD to the release medium resulted in a significant increase of lysozyme burst release from pure PCL nonwovens from approximately 2% to 35%. Using ternary PCL/PD/PLGA blends, matrix degradation could be significantly improved over PCL/PD blends, resulting in a biphasic release of lysozyme with constant release over 9 weeks, followed by constant release with a reduced rate over additional 4 weeks. Based on these results, protein release from PCL scaffolds is improved by blending with PD due to improved lysozyme desorption from the polymer surface and PD-dependent matrix swelling. Chapter 4 gives deeper insight on lysozyme batch crystallization and shows the influences of the temperature on the precipitation excipients. Yet up to now protein crystallization in a pharmaceutical useful scale displays a challenge with crystal size and purity being important but difficult to control parameters. Some of these influences are being discussed here and a detailed description of crystallization methods and the achieved crystals are demonstrated. Therapeutic use of such protein crystals may require further modification of the protein release rate through encapsulation. Silk fibroin (SF) harvested from the cocoons of Bombyx mori is a well-established protein suitable for encapsulation of small molecules as well as proteins for controlled drug delivery. This novel polymer was deployed for as carrier for the model drug crystals. Lysozyme again was used as a crystallizable protein and the effect of process- as well as formulation parameters of batch crystallization on crystal size were investigated using statistical design of experiments. Lysozyme crystal size depended on temperature and sodium chloride and poly(ethylenglycol) concentration of precipitant solution. Under optimized conditions, lysozyme crystals in a size range of approximately 0.3 to 10 µm were obtained. Furthermore, a solid-in-oil-in-water process for encapsulation of lysozyme crystals into SF was developed. Using this process, coating of protein crystals with another protein was achieved for the first time. Encapsulation resulted in a significant reduction of dissolution rate of lysozyme crystals, leading to prolonged release over up to 24 hours. N2 - Immer mehr neu zugelassene Arzneimittel sind Proteine. Obwohl viele von ihnen in wässrigen Milieus sehr instabil sind, werden die meisten Proteine immer noch als Parenteralia formuliert. Kontrollierte Freisetzungssysteme sind selten, und das obwohl zahlreiche Proteine regelmäßig verabreicht werden müssen. Kapitel 1 befasst sich mit den aktuellen Fortschritten im Bereich der kontrollierten Darreichungsformen für Proteinpartikel. Das Hauptaugenmerk liegt klar auf den „batch“ kristallisierten Proteinen, aber auch allgemeine ‚amorphe‘ Proteinpartikel werden diskutiert. Das liegt daran, dass zum einen präzipitierte Proteinpartikel ebenfalls einige Vorteile der Proteinkristalle haben und zum anderen wurde in einigen Fällen der physikalische Zustand der Proteine nicht bestimmt oder es wurden zumindest semi-kristalline Proteinpartikel verwendet. In diesem Kapitel werden Kristallisations- und Präzipitationsmethoden sowie kontrollierte Freisetzungssysteme mit und ohne vorherige Einbettung in ein Polymersystem zusammengefasst und kritisch diskutiert. Kapitel 2 stellt eine neue Methode der Proteinkristalleinbettung durch Electrospinning vor. Electrospinning von Proteinen hat sich aufgrund des häufigen Einsatzes von organischen Lösemitteln als schwierig heraus gestellt und führt häufig zum Entfalten oder Denaturieren des Proteins. Aufgrund höherer thermodynamischer Stabilität und verbesserter Kompatibilität mit organischen Lösemitteln haben sich Proteinkristalle hier als attraktive wenngleich bisher ziemlich unbeachtete Alternative heraus gestellt. In diesem Kapitel wird das das Electrospinning von Proteinkristallsuspensionen erforscht und grundlegende Bedingungen für diese neuartige Art der Proteinverkapselung etabliert. Poly-ε-caprolacton (PCL) eignet sich hervorragend für das Electrospinning und zeichnet sich durch matrixkontrollierte Freisetzung, einfache Handhabbarkeit sowie gute Biokompatibilität aus. PCL wurde als Matrix und Lysozym als Modelprotein eingesetzt. Mittels Kombination zweier Lysozymkristalldurchmesser, 0,7 oder 2,1 µm, und der Variation des PCL-Fadendurchmessers zwischen 1,6 und 10 µm konnte die Initialfreisetzung innerhalb der ersten 24 Stunden zwischen ca. 10 und 100 % modifiziert werden. Die Beladung der PCL Mikrofäden mit Lysozym zwischen 0,5 und 5 % konnte ohne Beeinträchtigung des Herstellungsprozesses erreicht werden. Hierdurch konnte die gesamt freigesetzte Menge an Lysozym variiert werden, während die relative freigesetzte Menge konstant blieb. Um weitere Modifikationen an der Freisetzungsrate vorzunehmen, wurden Poly(ethylen glycol) und Poly(lactic-co-glycolic acid) (PLGA) dem PCL beigemischt. Dadurch konnte unter optimierten Bedingungen eine Freisetzungsdauer von über 11 Wochen erreicht werden. Kapitel 3 greift die Entdeckungen des zweiten Kapitels auf und nimmt weitere Modifikationen an den Fasermatten vor. Die mit Proteinkristallen beladenen Fasermatten wurden wieder durch Electrospinning hergestellt und bestehen aus PCL, PLGA und Polidocanol (PD). Die Zusammensetzung der Matrix wurde variiert und die Auswirkungen des PD-Gehalts in binären Mischung, sowie des PD- und PLGA-Gehalts in ternären Mischsystemen auf die Verarbeitbarkeit, Fadenmorphologie, Wassersorption, Quellung und Wirkstofffreisetzung untersucht. Binäre Fasermatten aus einer Mischung aus PCL/PD zeigten PD-abhängige Zunahme der Quellung von bis zu 30 % und eine Zunahme der Initialfreisetzung von bis 45 %. Dieser Anstiege werden einer Veränderung der Fasermorphologie zugeschrieben. Das Hinzufügen von freiem PD zum Freisetzungsmedium von reinen PCL Fasermatten führte zu einer Zunahme der Initialfreisetzung von ca. 2 % auf etwa 35 %. Durch den Einsatz von ternären Mischsystem, bestehend aus PCL/PD/PLGA, kam es zu einem signifikant erhöhten Matrixabbau gegenüber den PCL/PD Mischungen. Das führte wiederrum zu einem zweiphasigen Freisetzungsverhalten, das durch eine konstante Freisetzungsrate innerhalb von 9 Wochen, sowie eine anschließende langsamere, ebenfalls konstante Freisetzung über weitere 4 Wochen gekennzeichnet war. Aufgrund dieser Ergebnisse kann gesagt werden, dass die Proteinfreisetzung aus PCL Matrices durch das Hinzufügen von PD aufgrund von verbesserter Lysozymdesorption vom Polymer sowie PD-abhängiger Matrixquellung verbessert werden konnte. Kapitel 4 bringt tiefere Erkenntnisse bezüglich der Lysozym Batchkristallisation und zeigt den Einfluss der Temperatur auf die verwendeten Fällungsreagenzien. Bis heute stellt die Kristallisation von Proteinen in einem pharmazeutisch sinnvollen Maßstab eine Herausforderung dar, wobei die Kristallgröße und die Reinheit wichtige und dennoch schwer kontrollierbare Parameter sind. Einige dieser Einflüsse werden hier näher beleuchtet und Kristallisationsmethoden sowie die erhaltenen Kristalle näher beschrieben. Lysozym wurde erneut als kristallisierbares Protein eingesetzt und die Einflüsse der Prozess- sowie Formulierungsparameter der Batch-Kristallisation mit Hilfe von statistischen Experimentendesigns (Design of Experiment, DoE) untersucht. Die Kristallgröße wurde durch die Temperatur sowie die Natriumchlorid- und Poly(ethylenglycol)konzentration der Fällungslösung bestimmt. Unter kontrollierten Bedingungen konnten Kristallgrößen in einem Bereich zwischen ca. 0.3 bis 10 µm erreicht werden. Darüber hinaus wurde ein „solid-in-oil-in-water“ (Feststoff-in-Öl-in-Wasser) Verfahren entwickelt mit dem Lysozymkristalle in Seidenfibroin eingebettet werden konnten. Mit Hilfe dieses Verfahrens wurden erstmals Proteinkristalle mit einem anderen Protein überzogen. Diese Einbettung brachte eine signifikante Auflösungsverzögerung mit einer verlängerten Freisetzung über 24 Stunden. KW - Kontrollierte Wirkstofffreisetzung KW - Verkapselung KW - Proteine KW - Electrospinning KW - Silk Fibroin KW - Kristall KW - Protein crystal KW - Encapsulation KW - Controlled release Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126371 ER - TY - THES A1 - Balk, Anja T1 - Ionic liquids of active pharmaceutical ingredients: A novel platform addressing solubility challenges of poorly water soluble drugs T1 - Ionische Flüssigkeiten von Arzneistoffen: Ein neues Konzept für Löslichkeitsprobleme von schwer wasserlöslichen Wirkstoffen N2 - Starting in the late 1990s ionic liquids (ILs) gained momentum both in academia as well as industry. ILs are defined as organic salts with a melting point below 100 °C. Active pharmaceutical ingredients (APIs) may be transferred into ILs by creating salts with a bulky counterion with a soft electron density. ILs have demonstrated the potential to tune important pharmaceutical features such as the solubility and the dissolution rate, particularly addressing the challenge of poor water soluble drugs (PWSD). Due to the tunability of ILs, modification of physico-chemical properties of APIs may be envisioned without any modifications of the chemical structure. In the first chapter the potential as well as the limitation of ILs are discussed. The chapter commences with an overview of preparation and characterization of API-ILs. Moreover, examples for pharmaceutical parameters are presented which may be affected by IL formation, including the dissolution rate, kinetic solubility or hygroscopicity as well as biopharmaceutical performance and toxicology. The impact of IL formation on those pharmaceutically relevant features is highlighted, resulting in a blueprint for a novel formulation concept to overcome PWSD challenges without the need for structural changes of the API. Within the second chapter the IL concept is detailed for one specific API - counterion combination. A poorly water soluble acidic API against migraine attacks was transformed into an IL in an effort to minimize the time to maximum plasma concentration (tmax) and optimize the overall bioavailability. These studies were conducted in parallel to a prodrug of the API for comparison of the IL strategy versus a strategy involving modification of the API’s structure. A significantly longer duration of API supersaturation and a 700 fold faster dissolution rate of the IL in comparison to the free acid were obtained and the underlying mechanism was elucidated. The transepithelial absorption was determined using Caco-2 cell layers. For the IL about 3 times more substance was transported in comparison to the prodrug when substances were applied as suspensions, despite the higher permeability of the prodrug, as increased solubility of the IL exceeded this effect. Cytotoxicity of the counterion was assessed in hepatic, renal and macrophage cell lines, respectively, and IC50 values were in the upper µM / lower mM range. The outcome of the study suggested the IL approach instrumental for tuning biopharmaceutical properties, without structural changes of the API as required for preparation of prodrugs. Thus the toolbox for formulation strategies of poorly water soluble drugs could be extended by an efficient concept. The third chapter focuses on the effect of different counterions on the physico-chemical properties of an API-IL, in particular to overcome the challenge of poor water solubility. Therefore, the same poorly water soluble acidic API against migraine attacks mentioned above was combined with 36 counterions resulting in ILs and low lattice enthalpy salts (LLES). Depending on the counterions, different dissolution rates, durations of supersaturation and hygroscopicities were obtained and release profiles could be tailored from immediate to sustained release. Besides, in vitro the cytotoxicity of the counterions was assessed in three cell lines. Using molecular descriptors such as the number of hydrophobic atoms, the graph theoretical diameter and the number of positive charges of the counterion, the dissolution rate, supersaturation and hygroscopicity as well as the cytotoxicity of counterions could be adequately modeled, rendering it possible to predict properties of new LLESs. Within the forth chapter different poorly water soluble APIs were combined with the counterion tetrabutylphosphonium (TBP) studying the impact on the pharmaceutical and physical properties of the APIs. TBP-ILs and low lattice enthalpy salts were prepared of the acidic APIs Diclofenac, Ibuprofen, Ketoprofen, Naproxen, Sulfadiazine, Sulfamethoxazole and Tolbutamide. NMR and IR spectroscopy, DSC, XRPD, DVS and dissolution rate measurements, release profiles and saturation concentration measurements were used to characterize the free acids and TBP salts as compared to the corresponding sodium salts. The TBP salts as compared to the free acids displayed lower melting points and glass transition temperatures and up to 1000 times higher dissolution rates. The increase in the dissolution rate directly correlated with the salts’ hygroscopicity, an aspect which is critically discussed in terms of pharmaceutical translation challenges. In summary TBP ILs of solid salts were proved instrumental to approach the challenge of poor water solubility. The outcome profiled tailor-made counterions as a powerful formulation strategy to address poor water solubility, hence bioavailability and ultimately therapeutic potential of challenging APIs. In summary, a plethora of ILs and LLESs were prepared by combination of different acidic APIs and counterions. The IL and LLESs concept was compared to conventional salt and prodrug strategies. By choice of the counterion, biopharmaceutical relevant parameters were deliberately modified and release profiles were tuned ranging from immediate to prolonged release. The impact of distinct structural counterion features controlling the dissolution, supersaturation, hygroscopicity and counterion cytotoxicity were identified, correlations were presented and predictive models were built. ILs and LLESs could be proven to be a powerful concept for the formulation of poorly water soluble acidic APIs. N2 - Seit etwa 1990 haben Ionische Flüssigkeiten (IL) großes Interesse sowohl in der universitären als auch in der industriellen Forschung geweckt. ILs werden als organische Salze definiert, die einen Schmelzpunkt von unter 100 °C aufweisen. Arzneistoffe können in ILs umgewandelt werden, indem man Salze herstellt, mit einem voluminösen Gegenion mit delokalisierter Elektronendichte. ILs ermöglichen es wichtige pharmazeutische Eigenschaften wie Löslichkeit und Auflösungsgeschwindigkeit bewusst zu verändern, und im Besonderen stellen sie eine Möglichkeit dar, die Herausforderung, die schwer wasserlösliche Arzneistoffe mit sich bringen, zu bewältigen. Aufgrund der Variabilität von ILs, wird die Anpassung von physikochemischen Eigenschaften von Wirkstoffen denkbar, ohne die chemische Struktur des Stoffes zu modifizieren. Im ersten Kapitel werden die Potentiale aber auch die Grenzen von ILs dargestellt. Zu Beginn des Kapitels wird eine Übersicht über die Herstellung und Charakterisierung von ILs gegeben. Des Weiteren werden pharmazeutisch relevante Parameter gezeigt, die durch die IL Herstellung beeinflusst werden können, wie beispielsweise die Auflösungsgeschwindigkeit, die kinetische Löslichkeit oder die Hygroskopizität. Daneben können biopharmazeutische Größen und die Toxizität modifiziert werden. Der Einfluss der IL Bildung auf diese pharmazeutisch relevanten Parameter wird zusammengefasst und ein Formulierungskonzept aufgezeigt, um die schlechte Wasserlöslichkeit von Arzneistoffen zu überwinden ohne den Wirkstoff strukturell zu verändern. Im zweiten Kapitel wird das IL Konzept für eine spezifische Wirkstoff-Gegenion Kombination gezeigt. Ein schwer wasserlöslicher Arzneistoff gegen Migräne wird in ein IL umgewandelt, um eine schnellere und bessere Bioverfügbarkeit im Vergleich zu einem Prodrug zu erreichen. Eine signifikant verlängerte Übersättigung des Wirkstoffes und eine 700-fach schnellere Auflösung des ILs im Vergleich zur freien Säure wurden gemessen und der zugrunde liegende Mechanismus aufgeklärt. Die transepitheliale Aufnahme wurde anhand von Caco-2 Zellen untersucht. Vom IL wurde 3mal mehr Substanz transportiert als von dem Prodrug, wenn Suspensionen der Substanzen appliziert wurden und dies trotz der höheren Permeabilität des Prodrugs, da die verbesserte Löslichkeit des ILs hier überwog. Die Zytotoxizität des Gegenions wurde in einer Leber- und einer Nierenzellinie und in Makrophagen getestet und die IC50 Werte lagen im oberen µM- und unteren mM-Bereich. Die Ergebnisse der Untersuchungen legen dar, dass das IL Konzept hilfreich sein kann, um biopharmazeutische Eigenschaften zu variieren, ohne strukturelle Veränderung des Arzneistoffes, wie es für ein Prodrug nötig ist. Entsprechend konnten die Strategien, um schwer wasserlösliche Arzneistoffe zu formulieren, um ein neues und effizientes Konzept ergänzt werden. Der Fokus des dritten Kapitels liegt auf dem Einfluss von verschiedenen Gegenionen auf die physikochemischen Eigenschaften von Arzneistoff-ILs, insbesondere um Probleme aufgrund von schlechter Wasserlöslichkeit zu lösen. Dazu wurde der bereits im zweiten Kapitel genannte, saure und schwer wasserlösliche Arzneistoff gegen Migräne mit 36 Gegenionen kombiniert, wodurch ILs und Salze mit einer geringen Gitterenthalpie (LLES) erhalten wurden. In Abhängigkeit vom Gegenion wurden verschiedene Auflösungsgeschwindigkeiten, Übersättigungsdauern und Hygroskopizitäten erhalten. Durch Verändern des Gegenions konnte sowohl eine sofortige als auch verzögerte Freisetzung des Arzneistoffs erreicht werden. Daneben wurde in vitro die Zytotoxizität in drei Zelllinien bestimmt. Mittels zwei-dimensionaler Deskriptoren, wie der Anzahl der hydrophoben Atomen, dem graphentheoretischen Durchmesser und der Anzahl an positiven Ladungen des Gegenions, konnten die Auflösungsgeschwindigkeit, die Übersättigung und die Hygroskopizität sowie die Zytotoxizität des Gegenions berechnet werden, wodurch es gleichzeitig möglich wird, diese Eigenschaften für neue LLES vorherzusagen. Im vierten Kapitel werden verschiedene schwer wasserlösliche Arzneistoffe mit dem Gegenion Tetrabutylphosphonium (TBP) kombiniert und der Einfluss auf die pharmazeutischen und physikochemischen Eigenschaften des Wirkstoffes untersucht. TBP-ILs und Salze mit niedrigem Schmelzpunkt wurden von den sauren Arzneistoffen Diclofenac, Ibuprofen, Ketoprofen, Naproxen, Sulfadiazin, Sulfamethoxazol und Tolbutamid hergestellt. NMR- und IR-Spektroskopie, DSC, XRPD, DVS und Auflösungsgeschwindigkeitsmessungen wurden verwendet, um die freien Säuren und die TBP-Salze im Vergleich zu den entsprechenden Natrium-Salzen zu untersuchen. Die TBP-Salze zeigten im Vergleich zu den freien Säuren niedrigere Schmelzpunkte und Glasübergangstemperaturen und eine bis zu 1000-fach schnellere Auflösungsgeschwindigkeit. Ein Nachteil der Salze, die eine schneller Auflösungsrate zeigten, war die damit einhergehende erhöhte Hygroskopizität. Zusammenfassend lässt sich sagen, dass die Herstellung von flüssigen und festen TBP-Salzen hilfreich sein kann, um die Wasserlöslichkeit von Arzneistoffen zu verbessern. Die Untersuchungen lassen den Schluss zu, dass durch maßgeschneiderte Gegenionen neue Formulierungsstrategien für schlecht wasserlösliche Arzneistoffe zugänglich werden, wodurch die Bioverfügbarkeit und der therapeutische Nutzen optimiert werden kann. Insgesamt wurde eine Vielzahl von ILs und LLESs durch die Kombination von verschiedenen sauren Arzneistoffen und Gegenionen hergestellt. Das IL- und LLES-Konzept wurde mit der klassischen Salz– und Prodrug-Strategie verglichen. Durch die Wahl des Gegenions konnten biopharmazeutisch Parameter bewusst verändert werden und die Freisetzungsprofile von sofortiger bis hin zu verzögerter Freisetzung gewählt werden. Die strukturellen Merkmale der Gegenionen, die entscheidend für die Auflösungsgeschwindigkeit, die Übersättigung, die Hygroskopizität und die Gegenionen-Zytotoxizität waren, konnten gezeigt werden und Berechnungen dazu wurden präsentiert. Abschließend lässt sich sagen, dass die Herstellung von ILs und LLESs ein wirkungsvolles Konzept ist, um schwer wasserlösliche, saure Arzneistoffe zu formulieren. KW - Arzneimittel KW - Wirkstofffreisetzung KW - Löslichkeit KW - Salz KW - Ionic Liquids KW - Poorly water soluble drugs KW - Active pharmaceutical ingredients KW - Supersaturation Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121925 ER - TY - THES A1 - Saedtler, Marco T1 - Pharmaceutical formulation strategies for novel antibiotic substances utilizing salt formation and two- and three-dimensional printing techniques T1 - Pharmazeutische Formulierungsstrategien für neuartige, antibiotische Substanzen unter Verwendung von Salzbildung sowie zwei- und dreidimensionalen Drucktechniken N2 - Salt formation is a routinely used strategy for poorly water-soluble drugs and traditionally performed with small inorganic counterions. High energy crystal lattices as well as effects on the local pH within the aqueous boundary layer during dissolution drive the increased dissolution rate and apparent solubility. Ionic liquids however, by definition low melting ionic salts with often large organic counterions, combine an increased dissolution rate with solubilization of the drug by the counterion itself. Long lasting supersaturation profiles of increased kinetic solubility were reported for several drugs formulated as ionic liquids increasing their overall bioavailability. Furthermore, aggregation and micellization between highly lipophilic compounds and amphiphilic bile acids was described before, demonstrating the capabilities of the human body itself to utilize solubilization of poorly water-soluble compounds. Development of novel counterions not only tailoring the desired physicochemical properties e.g. dissolution rate of the parent drug but adding – in a best-case scenario synergistic – pharmacological activity has been driven forward in the last years. However, salt formation can only be applied for ionizable i.e. acidic or basic compounds. While co-crystals can be used as a nonionized alternative, their formation is not always successful leading to an urgent need for other formulation strategies. In these lines, development of 2D and 3D printing techniques has been ongoing for the last decades and their pharmaceutical application has been demonstrated. The versatile nature and commercial availability allow a decentralized production further elaborating this technique for a highly flexible and patient-oriented supply with medication. This thesis focuses on the theoretical background and potential application of salt formation in the pharmaceutical development of a drug candidate. The first section presents the current knowledge and state of the art in preparation of low melting ionic liquids i.e. salts and is translated to the in vitro investigation of molecular interaction between the poorly water-soluble drug imatinib and components of the human intestinal fluid in the second section. Development of novel antibiotic counterions and assessment of their potential use in pharmaceutical formulations with fluoroquinolones is described in the last two sections. Chapter I describes the application of low melting ionic liquids in pharmaceutical formulation and details their development in the last two decades from versatile organic solvents in chemical synthesis towards amorphous strategies for drug delivery. The chapter gives a general overview on molecular structure and physicochemical properties of several drug containing ionic liquids and details the mechanisms which attribute to a typically fast dissolution, increased aqueous solubility as well as enhanced permeation which was reported in several publications. Chapter II translates the increased aqueous solubility of drugs by an organic counterion to the human gastrointestinal tract with taurocholate and lecithin as main drivers for the solubilization of highly lipophilic and poorly water-soluble drugs. Investigation of the interaction of imatinib – a poorly water-soluble weak base – with fasted- and fed state simulated intestinal fluids revealed a complex interplay between the components of the intestinal fluid and the drug. Mixed vesicles and micelles were observed in concentration dependent aggregation assays and revealed differences in their size, molecular arrangement as well as composition, depending on the tested drug concentration. Overall, the study outlines the effective interaction of weakly basic drugs with taurocholate and lecithin to minimize recrystallization during intestine passage finally leading to favorable supersaturation profiles. Chapter III focuses on the development of novel antibiotic counterions which potentially move the evolution of ionic liquids from a pharmaceutical salt with tailored physicochemical properties to a synergistic combination of two active pharmaceutical ingredients. The natural occurring anacardic acid derived from the cashew nut shell inspired a series of antibacterial active acidic compounds with increasing alkyl chain length. Their physicochemical properties, antibacterial activity, bacterial biofilm inhibition and cytotoxicity were detailed and in vivo activity in a Galleria mellonella model was assessed. This group of anacardic acid derivatives is synthetically accessible, easily modifiable and yielded two compounds with favorable activity and physicochemical profile for further drug development. Chapter IV outlines the potential application of anacardic acid derivatives in pharmaceutical formulations by salt formation with fluoroquinolone antibiotics as well as novel techniques such as 2D/3D printing for preparation of drug imprinted products. Despite anacardic acid derivatives demonstrated promising physicochemical properties, salt formation with fluoroquinolone antibiotics was not feasible. However, 2D/3D printed samples with anacardic acid derivative alone or in combination with ciprofloxacin demonstrated physical compatibility between drug and matrix as well as antibacterial activity against three S. aureus strains in an agar diffusion assay. Conclusively, drug printing can be applied for the herein tested compounds, but further process development is necessary. In summary, preparation of low melting ionic liquids, salts or co-crystals is an appropriate strategy to increase the aqueous solubility of poorly water-soluble drugs and tailor physicochemical properties. The counterion itself solubilizes the drug and furthermore potentially interferes with the complex micellar environment in the human intestine. However, salt formation as routinely used formulation strategy is not feasible in every case and development of alternative techniques is crucial to hurdle challenges related to unfavorable physicochemical properties. The outlined techniques for 2D/3D drug printing provide versatile production of drug products while extending the design space for novel drug development. N2 - Die Salzbildung mit pharmazeutischen Wirkstoffen – als routinemäßig durchgeführte Strategie für schlecht wasserlösliche Substanzen – wird traditionell mit kleinen, anorganischen Gegenionen durchgeführt. Eine tragende Rolle spielen hierbei ein hochenergetisches Kristallgitter sowie die Beeinflussung des pH-Wertes in der ruhenden Grenzschicht während des Auflösungsprozesses. Diese treiben eine beschleunigte Auflösungsrate sowie eine Erhöhung der scheinbaren Löslichkeit an. Ionische Flüssigkeiten stellen per Definition niederschmelzende ionische Salze mit oftmals großen, organischen Gegenionen dar. Sie kombinieren, aufgrund ihrer hohen Gitterenergie, eine beschleunigte Auflösungsratemit der Solubilisierung des Wirkstoffs durch das Gegenion. Langanhaltende Übersättigungen mit erhöhter kinetischer Löslichkeit und eine damit einhergehende, verbesserte Bioverfügbarkeit, wurden bereits bei verschiedenen Wirkstoffen beobachtet, die als ionische Flüssigkeiten formuliert wurden. Auch der menschliche Körper nutzt diesen Effekt und solubilisiert schlecht wasserlösliche Substanzen durch Aggregation und Mizellisierung lipophiler Substanzen mit amphiphilen Gallensäuren. Die Entwicklung neuartiger – meist kationischer – Gegenionen wurde in den letzten Jahren vorangetrieben. Vor allem Gegenionen, die nicht nur die gewünschten physikochemischen Eigenschaften (z.B. Auflösungsrate) hervorbringen, sondern einen eigenen – im besten Fall synergistischen – pharmakologischen Effekt aufweisen. Jedoch kommt eine Salzbildung nur für ionisierbare Substanzen respektive Säuren und Basen in Frage. Während Co-Kristalle als Alternative für nicht-ionisierbare Substanzen dienen können, ist deren Herstellung nicht immer erfolgreich und neue Formulierungsstrategien werden notwendig. Deshalb wurde unter anderem die Entwicklung von 2D- und 3D-Druckverfahren in den letzten Jahrzehnten vorangetrieben und deren Relevanz für pharmazeutische Fragestellungen aufgezeigt. Die vielseitige Natur und kommerzielle Verfügbarkeit des 2D/3D-Drucks erlaubt eine dezentrale Produktion und ermöglicht eine flexible und patientenorienterte Medikamentenversorgung. Diese Dissertation beschäftigt sich vorrangig mit den theoretischen Hintergründen und den praktischen Anwendungsmöglichkeiten der Salzbildung in der pharmazeutischen Entwicklung eines potenziellen Wirkstoffes. Das erste Kapitel präsentiert den gegenwärtigen Stand der Technik zur Verwendung von niederschmelzenden ionischen Flüssigkeiten. Diese Erkenntnisse werden im Anschluss auf eine Untersuchung der Interaktionen des schlecht wasserlöslichen Wirkstoffs Imatinib und den Bestandteilen der menschlichen Verdauungssäfte übertragen. Die Entwicklung neuartiger, antibiotisch wirksamer Gegenionen und deren potenzielle Verwendung in pharmazeutischen Formulierungen mit Fluorchinolonen ist Gegenstand der letzten zwei Kapitel. Kapitel I beschreibt niederschmelzende ionische Flüssigkeiten in pharmazeutischen Formulierungen und führt deren Entwicklung in den letzten drei Jahrzehnten aus: Vom vielfältig anwendbaren, organischen Lösemittel für die chemische Synthese hin zur amorphen Darreichungsform. Das Kapitel gibt einen Überblick über die molekularen Strukturen und physikochemischen Eigenschaften verschiedener wirkstoffbeinhaltender, ionischer Flüssigkeiten. Hierbei werden die zugrundeliegenden Mechanismen dargelegt, was im Besonderen die rasche Auflösung, eine erhöhte Löslichkeit in wässrigen Medien sowie eine Beeinflussung der Permeation meint. Kapitel II überträgt die Beobachtung einer erhöhten Löslichkeit in Gegenwart eines organischen Gegenions auf den menschlichen Verdauungstrakt, in dem Taurocholat und Lecithin hauptverantworlich für die Solubilisierung von liphilen und schlecht wasserlöslichen Substanzen sind. Untersuchungen der Interaktion von Imatinib, einer schlecht wasserlöslichen, schwachen Base, mit simulierten, intestinalen Flüssigkeiten zeigten ein komplexes System aus Bestandteilen der intestinalen Flüssigkeit und dem Wirkstoff. Gemische aus Vesikel und Mizellen, die mithilfeeines Aggregationsassays untersucht wurden, zeigten, in Abhängigkeit von momentanen Wirkstoffkonzentrationen, Unterschiede in ihrer Größe sowie der molekularen Anordnung und Zusammensetzung. Zusammenfassend beschreibt dieses Kapitel die effektive Interaktion von schwachen Basen mit Taurocholat und Lecithin sowie eine Möglichkeit zur Minimierung von Rekristallisation und damit der Aufrechterhaltung von übersättigten Zuständen während der Wirkstoff den Verdauungstrakt passiert. Kapitel III befasst sich mit der Entwicklung neuartiger antibiotischer Gegenionen. Diese treiben möglicherweise die Weiterentwicklung von ionischen Flüssigkeiten mit optimierten physikochemischen Eigenschaften zu synergistischen Kombinationen aus zwei pharmakologisch aktiven Substanzen voran. Die natürlich vorkommende Anacardsäure, welche sich aus der Schale der Cashewnuss gewinnen lässt, hat eine Reihe von antibakteriellen, sauren Substanzen inspiriert, die sich allein in der Länge ihrer Alkylkette unterschieden. Physikochemische Eigenschaften, antibakterielle Aktivität, Inhibition des bakteriellen Biofilms sowie Zytotoxizität wurden untersucht und anschließend in vivo mittels Galleria mellonella-Modell beleuchtet. Diese Gruppe aus Anacardsäurederivaten ist synthetisch zugänglich, einfach chemisch modifizierbar und brachte zwei Substanzen mit vorteilhafter Aktivität und physikochemischen Eigenschaften zur weiteren Entwicklung hervor. Kapitel IV beschreibt die potenzielle Anwendung der Anacardsäurederivate in pharmazeutischen Formulierungen. Durch Salzbildung mit Fluorchinolon-Antibiotika sowie Nutzung neuerer Techniken, wie dem 2D/3D-Druck, wurden wirkstoffbedruckte Darreichungsformen hergestellt. Obwohl die Anacardsäurederivate vielversprechende physikochemische Eigenschaften zeigten, eigneten sie sich nicht für eine Salzbildung mit Fluorchinolonen. Trotzdem war es möglich Anacardsäurederivate allein oder in Kombination mit Ciprofloxacin auf Oberflächen zu drucken, wobei keine physische Inkompatibilität zwischen Wirkstoff und Matrix erkennbar war jedoch eine antibakterielle Wirkung gegen drei S. aureus Stämme gezeigt werden konnte. Abschließend stellte sich der Druck von Wirkstoffen, mit den untersuchten Techniken, als machbar heraus, wobei eine Weiterentwicklung des Prozesses sicherlich notwendig ist. Zusammenfassend stellt die Herstellung von niederschmelzenden, ionischen Flüssigkeiten, Salzen oder Co-Kristallen eine geeignete Strategie dar, die Löslichkeit schlecht wasserlöslicher Substanzen zu verbessern und deren physikochemische Eigenschaften zu optimieren. Das Gegenion kann dabei dazu beitragen den Wirkstoff zu solubilisieren, wobei es sehr wahrscheinlich ist, dass er auch mit dem komplexen mizellaren System des menschlichen Verdauungstrakts interagiert. Trotzdem ist eine routinemäßige Salzbildung nicht in allen Fällen zielführend und alternative Technologien müssen entwickelt werden, um die Herrausforderungen mit unvorteilhaften physikochemischen Eigenschaften zu meistern. Die beschriebenen 2D/3D-Druckverfahren bieten hierbei eine Produktion variabler und vielfältiger Darreichungsformen und erweitern den Gestaltungsraum für neuartige Wirkstoffentwicklungen. KW - Löslichkeit KW - Solubilisation KW - Antibiotikum KW - Formulierung KW - Anacardic acid derivatives KW - Formulation development KW - Anacardsäurederivate KW - Formulierungsentwicklung Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-219784 ER - TY - THES A1 - Güntzel, Paul Mathias T1 - Bioinspired Ion Pairs Transforming Poorly Water-soluble Compounds into Protic Ionic Liquids and Deep Eutectic Solvents T1 - Bioinspirierte Ionenpaare Wandeln Schlecht-wasserlösliche Verbindungen in Protische Ionische Flüssigkeiten und Tiefe Eutektische Lösungsmittel N2 - Microbial, mammalian and plant cells produce and contain secondary metabolites, which typically are soluble in water to prevent cell damage by crystallization. The formation of ion pairs, e.g. with carboxylic acids or mineral acids, is a natural blueprint to keep basic metabolites in solution. It was aimed at showing whether the mostly large carboxylates form soluble protic ionic liquids (PILs) with basic natural products resulting in enhanced aqueous solubility. Furthermore, their supramolecular pattern in aqueous solution was studied. Thereby, naturally occurring carboxylic acids were identified being appropriate counterions for natural basic compounds and facilitate the formation of PILs with their beneficial characteristics, like improved dissolution rate and enhanced apparent solubility. N2 - Mikrobielle, Säugetier- und Pflanzenzellen produzieren und enthalten Sekundärmetaboliten, welche in Wasser gelöst vorliegen, um Zellschäden (z.B. durch Kristallisation) zu vermeiden. Die Bildung von Ionenpaaren, beispielsweise mit Carbonsäuren oder Mineralsäuren, ist eine natürliche Strategie, um basische Metaboliten in Lösung zu halten. Es sollte gezeigt werden, dass die vergleichsweise großen Carboxylate lösliche protische ionische Flüssigkeiten (PILs) mit basischen Naturstoffen bilden, was zu einer verbesserten Wasserlöslichkeit führt. Weiterhin wurde das supramolekulare Verhalten der PILs in wässriger Lösung untersucht. Dabei wurden natürlich vorkommende Carbonsäuren als geeignete Gegenionen für natürliche basische Verbindungen identifiziert. Die resultierenden PILs zeigten eine verbesserte Auflösungsrate und verbesserte scheinbare Löslichkeit. KW - Ionic Liquids KW - Carboxylates KW - Deep Eutectics KW - Ion Pairs KW - Protic Ionic Liquids Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-219806 ER - TY - THES A1 - Kutscher, Marika T1 - Novel Approaches to Antimicrobial Therapy of Pneumonia using Antibiotics and Therapeutic Antibodies T1 - Neue Ansätze zur antimikrobiellen Behandlung von Pneumonien mittels Antibiotika und therapeutischen Antikörpern N2 - Nosocomial pneumonia is mostly caused by methicillin-resistant Staphylococcus aureus (MRSA). However, the standard antibiotic therapy is affected by increasing emergence of bacterial resistance. Therefore, novel therapeutic options are in high demand. New antimicrobial agents alone cannot handle the problem of increasing bacterial resistance but innovative drug delivery strategies and fast identification of infection causing pathogens are required to diminish bacterial resistance development. A very promising approach to improve the therapy of pneumonia is presented by local drug delivery to the lung. This application method enables high local drug concentrations in the lung leading to shorter application of antibiotics and hence reduces the risk of resistance development. Furthermore, the systemic concentration is lowered reducing the emergence of adverse effects. Therefore, in this thesis several approaches to improve the therapy of MRSA pneumonia are studied. One approach to achieve an efficient local delivery of antibiotics are nano-sized drug delivery systems which enable the nebulization of poorly-soluble antibiotics and can lead to even higher local drug concentrations due to their small size since nanoparticles improve mucus penetration and decrease phagocytosis by alveolar macrophages. Here, an analytical setup was developed that facilitates the identification of optimal preparation conditions for drug polyelectrolyte nanoplexes. Another promising approach to support antimicrobial therapy of pneumonia is presented by antibody-based immunotherapy. Since the stability of the antibody and hence its therapeutic activity are endangered during production, transport, storage, and application, a stabilizing formulation was developed for hUK-66, an antibody targeting surface antigens of S. aureus. Furthermore, nebulization of this formulated monoclonal antibody was studied to enable local application. Finally, the immunotherapeutic efficacy of the nebulized hUK-66 formulation was investigated in an animal in vivo study. Furthermore, rapid identification of the infection triggering pathogen is very important. The selective detection of S. aureus was achieved using optical planar Bragg grating sensors functionalized with hUK-66. In addition, the reusability of this system was studied applying a surface functionalization based on the cross-linker SPDP which enables a reversible fixation of the antibody. N2 - Die Behandlung von Infektionen, die durch Methicillin-resistente Staphylococcus aureus (MRSA)-Bakterien hervorgerufen wurden, stellt weltweit noch immer eine schwierige Herausforderung dar. Besonders durch MRSA ausgelöste nosokomiale Pneumonien stehen in direktem Zusammenhang mit erhöhter Morbidität und Mortalität sowie einer Verlängerung des Krankenhausaufenthaltes und der Beatmungsdauer. In Kapitel I dieser Dissertation werden die aktuellen Behandlungsempfehlungen für MRSA-Pneumonien und deren Nachteile diskutiert. Dabei wird in diesem Review aufgezeigt, dass aufgrund der drohenden Gefahr von schweren Nebenwirkungen und des Problems der steigenden Antibiotikakonzentrationen, die zur Bekämpfung von multiresistenten Krankheitserregern nötig sind, die alleinige systemische Anwendung von Antibiotika für eine Therapie der MRSA-Pneumonie mitunter nicht mehr ausreicht. Angesichts des vermehrten Auftretens von Resistenzen gegen die gängigen Antibiotika ist der Bedarf an neuen antimikrobiellen Mitteln sowie innovativen Strategien zur Wirkstoffapplikation hoch. Da die Entwicklung neuer Antibiotika in den letzten Jahrzehnten deutlich nachlässt, stellen Antikörper-basierte immuntherapeutische Ansätze eine vielversprechende Alternative dar. Darüber hinaus soll eine lokale Wirkstoffverabreichung in die Lunge die Pneumonie-Behandlung infolge erhöhter Wirkstoffkonzentration am Ort der Infektion und gleichzeitiger geringer systemischer Wirkstoffbelastung begünstigen, was das Risiko einer Resistenzentwicklung verringern kann. Verneblung ist hierbei ein direkter und einfacher Weg, Wirkstoffe bei intubierten Patienten an ihren Wirkort zu bringen und ist für die pulmonale Verabreichung von Antibiotika sowie Antikörpern gut erforscht. Zwar wurden weitere Fortschritte in der Weiterentwicklung der Gerätetechnologie und Wirkstoff-verabreichung für die Verneblung von Antibiotika und Antikörpern gemacht, diese wurden aber bisher kaum in der Behandlung von MRSA-Pneumonien umgesetzt. Deshalb konzentriert sich das erste Kapitel auf eine Übersicht über die Fortschritte in der lokalen Wirkstoffapplikation, welche potentiell auf die Behandlung von MRSA-Pneumonie mittels Antikörpern und Antibiotika übertragbar wären. Kapitel II beschäftigt sich mit „Drug Delivery“-Systemen für Antibiotika in Nanometergröße, welche eine Umgehung des Löslichkeitsproblems von schwer wasserlöslichen Wirkstoffen ermöglichen. Außerdem kann eine durch Nanopartikel verbesserte Mucuspenetration die Wirkstoffkonzentrationen am Wirkort erhöhen, was als Möglichkeit angesehen wird, das Auftreten von Antibiotikaresistenz zu vermindern. Nanopartikel-Komplexe (Nanoplexe), welche durch Selbst-Zusammenlagerung eines Wirkstoffs und eines entgegengesetzt geladenen Polyelektrolyts hergestellt werden, erlauben eine noch höhere Wirkstoffbeladung als herkömmliche Nanopartikel. In diesem Kapitel wurde unter Verwendung von Ciprofloxacin (CIP) und Dextransulfat (DS) als Modellkomponenten ein analytisches Setup evaluiert, das geeignet sein soll, optimale Herstellungsbedingungen für die Bildung von Nanoplexen zu identifizieren. Hierbei wurde die Eignung von Isothermaler Titrationskalorimetrie (ITC) zusammen mit anderen analytischen Methoden als Selektions-Hilfsmittel für eine rationale Formulierungsoptimierung bewertet, indem der Einfluss von unterschiedlichen Salzen und verschiedenen ionischen Stärken auf die CIP/DS-Nanoplexbildung untersucht wurde. Die Anwesenheit von Salz führte hierbei zu kleineren und zahlreicheren Partikeln mit größerer Einheitlichkeit, hatte aber keinen Einfluss auf die Freisetzung von CIP aus den Nanoplexen. Bedeutsam ist auch, dass die Bindungsaffinität mit Partikelform und Morphologie korrelierte, was möglicherweise eine Optimierung entscheidender Qualitätseigenschaften basierend auf ITC-Daten ermöglicht. Insgesamt erwies sich ITC zusammen mit den ergänzenden Methoden als nützliches Instrument für die Evaluierung von Bedingungen für Mischungsverhältnis, Art des Salzes und ionische Stärke für die Bildung von Nanoplexen. In Kapitel III wird der Rahmen der Behandlungsmöglichkeiten für MRSA-Infektionen auf Antikörper-basierte Immuntherapien erweitert. Einen vielversprechenden Ansatz, die Abtötung der Bakterien zu fördern, stellt der zielgerichtete Angriff auf Komponenten der Bakterienoberfläche mit immunogenen Eigenschaften durch den humanisierten monoklonalen Antikörper hUK-66 dar. Allerdings werden therapeutische Proteine während ihrer Herstellung und bis zum Ende ihrer Aufbrauchsfrist mit einer Vielzahl von externen Einflüssen konfrontiert, die ihre Konformation und somit Stabilität beeinträchtigen können. Um eine wirksame Wirkstoffverabreichung zu ermöglichen und ungewollte Reaktionen des Immunsystems aufgrund Aggregation des Proteinmoleküls zu vermeiden, erstrebt dieses Kapitel die Identifizierung einer Formulierung für hUK-66, welche dessen physikalische und chemische Proteinstabilität bewahrt. Mit Hilfe von Ergebnissen der Charakterisierung des Antikörpers wurde ein optimaler pH-Wert für die Formulierung in einer Stabilitätsstudie mit kurzer Laufzeit evaluiert. In direktem Anschluss wurden verschiedene Kombinationen von Hilfsstoffen und Darreichungsformen hinsichtlich ihrer Fähigkeit, die Antikörperstabilität zu bewahren, analysiert, indem unterschiedliche flüssige und gefriergetrocknete Formulierungen in einer Langzeitstabilitätsstudie bei verschiedenen Lagerungstemperaturen untersucht wurden. Eine Lyophilisierung von hUK-66 in Histidinpuffer, pH 6, zusammen mit den Stabilisatoren Saccharose und Polysorbat 20 konnte die Stabilität dieses Antikörpers während des gesamten Formulierungsprozesses und einer Langzeit-Einlagerung bei 2-8°C nachweislich bewahren. Um therapeutische Proteine über die Lunge zu applizieren, ist es nötig, ein inhalierbares Aerosol zu erzeugen. Da sich jedoch während des Verneblungsprozesses die Luft-Flüssigkeitsgrenzfläche erheblich vergrößert, werden die Biomoleküle einem Grenzflächen-stress ausgesetzt. Deshalb werden in Kapitel IV die zuvor entwickelten hUK 66-Formulierungen hinsichtlich ihrer Eignung untersucht, den Antikörper während der Verneblung durch einen Düsenvernebler zu stabilisieren. Da zum Vernebeln eine sehr große Probenmenge benötigt wird, wurde zuerst ein In-vitro-Ersatzverfahren entwickelt, welches den Verneblungsstress simuliert, um den Wirkstoffverbrauch zu reduzieren. Die hUK-66-Formulierung mit Saccharose und Polysorbat 20 bewies, dass sie die Stabilität dieses Proteins sowohl im Vorversuch als auch bei der eigentlichen Verneblung bewahren konnte. Es konnte weiterhin gezeigt werden, dass eine Verneblung keinen nachteiligen Effekt auf die chemische Stabilität des Antikörpers ausgeübt hat. Zuletzt konnte die immuntherapeutische Wirksamkeit der vernebelten hUK-66-Formulierung bewiesen werden, da die Überlebensrate von Mäusen, die intranasal mit S. aureus infiziert worden waren, durch Inhalation der Antikörper-formulierung verlängert werden konnte. Für diese In-vivo-Studie wurde ein spezieller Aufbau erfolgreich entwickelt, der die Applikation des Aerosols an wache und normal atmende Mäuse ermöglicht. Ein zusätzlicher Vorteil dieses Aufbaus war, dass die Mäuse dem Aerosol nur mit der Nase ausgesetzt waren, was die Nachteile einer Ganzkörperverneblung, wie Absorption über die Haut und Bedarf an großen Mengen an Aerosol, verringerte. Insgesamt gefährdeten die vielfache Verneblung und Rezirkulation der Proteinlösung innerhalb des Reservoirs die Konformation des formulierten Antikörpers unwesentlich. Somit konnte in dieser Arbeit die Stabilität von hUK-66 in einer optimierten Formulierung während einer Verneblung bewiesen sowie sein immuntherapeutisches Potential für eine effektive Behandlung von S. aureus Infektionen bei pulmonaler Verabreichung gezeigt werden. Ein weiterer wichtiger Punkt für eine effektive und schnelle Behandlung von Pneumonien ist die umgehende Detektion und Identifikation derjenigen Krankheitserreger, welche die Infektion auslösen. Eine anschließende geeignete Wahl der Medikation ist entscheidend, um eine systemische Verbreitung und Fortdauer der Infektion genauso wie das Auftreten von Antibiotikaresistenzen zu vermeiden. Deshalb sind effiziente Detektionsmethoden für Pathogene im Bereich der klinischen Diagnostik sehr gefragt. In Kapitel V wurden Biosensoren als vielversprechende Alternative zur Verbesserung der Pathogendetektion untersucht, da sie eine sensitive, spezifische und schnelle Analyse diverser Proben erlauben. Durch Immobilisierung von hUK-66-Antikörpern auf der Oberfläche eines optischen planaren Bragg-Gitter-Sensors konnte eine selektive Detektion von S. aureus erreicht werden. Um weiterhin die Wiederverwendbarkeit der Sensoren zu verbessern sowie Installationszeit, Kosten und Vorbereitungsaufwand zu reduzieren, wurde eine Sensoroberflächen-funktionalisierung dahingehend evaluiert, ob sie eine wiederholte Verwendung des Sensors für die Antikörper-basierte Detektion von lebenden Bakterien ermöglicht. Die Anbindung von hUK-66, einem Fänger-Antikörper spezifisch für S. aureus, auf der Sensoroberfläche mit Hilfe eines spaltbaren Linkers sowie die anschließende spezifische Bindung von S. aureus konnten in Echtzeit nachverfolgt werden, was die Anwendbarkeit von optischen Sensoren für eine spezifische und schnelle Detektion von großen biologischen Strukturen hervorhebt. Die Wiederverwendbarkeit der mit Bakterien gesättigten Sensoren konnte erfolgreich durch eine Abspaltung des Antikörpers zusammen mit den angebundenen Bakterien mittels Reduktion der Disulfidbindungen und anschließender Refunktionalisierung mit aktiviertem Antikörper gezeigt werden und führte zu einer vergleichbaren Sensitivität gegenüber S. aureus. KW - Lungenentzündung KW - Monoklonaler Antikörper KW - MRSA KW - protein nebulization Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-138475 SN - 978-3-8439-2784-0 PB - Verlag Dr. Hut CY - München ET - 1. Aufl. ER - TY - THES A1 - Rossi, Angela Francesca T1 - Development of functionalized electrospun fibers as biomimetic artificial basement membranes T1 - Entwicklung funktionalisierter elektrogesponnener Fasern als biomimetische künstliche Basalmembranen N2 - The basement membrane separates the epithelium from the stroma of any given barrier tissue and is essential in regulating cellular behavior, as mechanical barrier and as structural support. It further plays an important role for new tissue formation, homeostasis, and pathological processes, such as diabetes or cancer. Breakdown of the basement membrane is believed to be essential for tumor invasion and metastasization. Since the basement membrane is crucial for many body functions, the development of artificial basement membranes is indispensable for the ultimate formation of engineered functional tissue, however, challenging due to their complex structure. Electrospinning enables the production of fibers in the nano- or microscale range with morphological similarities to the randomly orientated collagen and elastic fibers in the basement membrane. However, electrospun fibers often lack the functional similarity to guide cells and maintain tissue-specific functions. Hence, their possible applications as matrix structure for tissue engineering are limited. Herein, the potential of polyester meshes, modified with six armed star-shaped pre-polymers and cell-adhesion-mediating peptides, was evaluated to act as functional isotropic and bipolar artificial basement membranes. Thereby, the meshes were shown to be biocompatible and stable including under dynamic conditions, and the degradation profile to correlate with the rate of new tissue formation. The different peptide sequences did not influence the morphology and integrity of the fibers. The modified membranes exhibited protein-repellent properties over 12 months, indicating the long-term stability of the cross-linked star-polymer surfaces. Cell culture experiments with primary fibroblasts and a human keratinocyte cell line (HaCaT) revealed that cell adhesion and growth strongly depends on the peptide sequences and their combinations employed. HaCaT cells grew to confluence on membranes modified with a combination of laminin/collagen type IV derived binding sequences and with a combination of fibronectin/laminin/collagen type IV derived peptide sequences. Fibroblasts strongly adhered to the fibronectin derived binding sequence and to membranes containing a combination of fibronectin/laminin/collagen type IV derived peptide sequences. The adhesion and growth of fibroblasts and HaCaT cells were significantly reduced on membranes modified with laminin, as well as collagen IV derived peptide sequences. HaCaT cells and fibroblasts barely adhered onto meshes without peptide sequences. Co-culture experiments at the air-liquid interface with fibroblasts and HaCaT cells confirmed the possibility of creating biocompatible, biofunctional and biomimetic isotropic and bipolar basement membranes, based on the functionalized fibers. HaCaT cells grew in several layers, differentiating towards the surface and expressing cytokeratin 10 in the suprabasal and cytokeratin 14 in the basal layers. Migration of fibroblasts into the electrospun membrane was shown by vimentin staining. Moreover, specific staining against laminin type V, collagen type I, III, IV and fibronectin illustrated that cells started to remodel the electrospun membrane and produced new extracellular matrix proteins following the adhesion to the synthetic surface structures. The culturing of primary human skin keratinocytes proved to be difficult on electrospun fibers. Cells attached to the membrane, but failed to form a multilayered, well-stratified, and keratinized epidermal layer. Changing the fiber composition and fixation methods did not promote tissue development. Further investigations of the membrane demonstrated the tremendous influence of the pore size of the membrane on epithelial formation. Furthermore, primary keratinocytes reacted more sensitive to pH changes in the medium than HaCaT cells did. Since primary keratinocytes did not adequately develop on the functionalized meshes, polycarbonate membranes were used instead of electrospun meshes to establish oral mucosa models. The tissue-engineered models represented important features of native human oral mucosa. They consisted of a multilayered epithelium with stratum basale, stratum spinosum, stratum granulosum, and stratum corneum. The models formed a physical barrier and the expression of characteristic cell markers was comparable with that in native human oral mucosa. The results from the ET-50 assay and the irritation study reflected the reproducibility of the tissue equivalents. Altogether, electrospinning enables the production of fibers with structural similarity to the basement membrane. Incorporating extracellular matrix components to mimic the functional composition offers a safe and promising way to modify the fibers so that they can be used for different tissue engineering applications. The resultant biomimetic membranes that can be functionalized with binding sequences derived from widely varying proteins can be used as a toolbox to study the influence of isotropic and bipolar basement membranes on tissue formation and matrix remodeling systematically, with regards to the biochemical composition and the influence and importance of mono- and co-culture. The oral mucosa models may be useful for toxicity and permeation studies, to monitor the irritation potential of oral health care products and biomaterials or as a disease model. N2 - Die Basalmembran trennt das Epithel vom Stroma eines jeden Wandgewebes und ist entscheidend bei der Regulierung des Zellverhaltens, als mechanische Barriere, und als strukturelle Unterstützung. Darüber hinaus spielt sie eine wichtige Rolle sowohl bei der Neubildung von Gewebe und der Homöostase, als auch bei pathologischen Prozessen, wie Diabetes mellitus oder Krebs. Es wird angenommen, dass die Überquerung der Basalmembran eine entscheidende Rolle bei der Tumorinvasion und Metastasierung spielt. Wegen der großen Bedeutung der Membran für eine Vielzahl an Körperfunktionen, ist die Entwicklung von strukturierten und funktionalen künstlichen Basalmembranen für den Aufbau von im Labor entwickeltem funktionalem Gewebe unerlässlich; nichtsdestotrotz stellt die Herstellung aufgrund der komplexen Struktur eine Herausforderung dar. Das elektrostatische Verspinnen ermöglicht es, Fasern im Nano oder Mikrometer Maßstab mit morphologischen Ähnlichkeiten zu den zufällig orientierten Kollagen und elastischen Fasern in der Basalmembran herzustellen. Allerdings fehlt den elektrogesponnenen Fasern häufig die funktionale Ähnlichkeit um die Zellbewegung innerhalb des Gewebes zu regulieren und gewebespezifische Funktionen aufrecht zu erhalten. Daher sind ihre Anwendungsmöglichkeiten als Membranen für das Tissue Engineering begrenzt. In dieser Arbeit wurde das Potential eines Polyestergerüsts beurteilt, das mit einem sechsarmigen sternförmigen Additiv und Zelladhäsion vermittelnden Peptiden modifiziert worden war, als isotrope und bipolare künstliche Basalmembran. Zunächst wurden die Materialeigenschaften der Faservliese untersucht. Dabei konnte gezeigt werden, dass die Vliese biokompatibel, und auch unter dynamischen Bedingungen stabil sind. Zudem korrelierte der Abbau der Vliese mit dem Aufbau von neuem Gewebe. Die Modifizierung der Faseroberfläche mit Peptidsequenzen beeinflusste nicht die Morphologie und die Integrität der Fasern. Die funktionalisierten Gerüste zeigten proteinabweisende Eigenschaften über 12 Monate, was die langfristige Stabilität der quervernetzten Stern Polymer Oberflächen bestätigte. Zellkulturversuche mit primären Fibroblasten und einer humanen Keratinozyten Zelllinie (HaCaT) ergaben, dass die Zelladhäsion und das Wachstum stark von den Peptidsequenzen und deren Kombinationen abhängig sind. HaCaT Zellen wuchsen zur Konfluenz auf Vliesen, die mit einer Kombination aus Laminin/Kollagen Typ IV stammenden Peptidsequenzen und mit einer Kombination aus Fibronektin/Laminin/Kollagen Typ IV stammenden Peptidsequenzen funktionalisiert worden waren. Fibroblasten dagegen adhärierten und proliferierten stark auf Vliesen, die mit Fibronektin, und einer Kombination aus Fibronektin/Laminin/Kollagen Typ IV stammenden Bindungssequenzen modifiziert worden waren. Die Adhäsion und das Wachstum von Fibroblasten und HaCaT Zellen waren dagegen auf mit Laminin sowie mit Kollagen Typ IV funktionalisierten Membranen deutlich geringer. Fibroblasten und HaCaT Zellen adhärierten kaum auf Vliesen ohne Peptidsequenzen. Ko Kultur Versuche an der Luft Flüssigkeits Grenzfläche mit Fibroblasten und HaCaT Zellen bestätigten, dass es möglich ist, basierend auf funktionalisierten Fasern, biokompatible, biofunktionale und biomimetische isotrope und anisotrope Basalmembranen aufzubauen. HaCaT Zellen wuchsen mehrschichtig, differenzierten und polarisierten, dies wurde belegt durch den Nachweis von Zytokeratin 14 in den basalen und Zytokeratin 10 in den oberen Schichten des Epithels. Die Vimentin Färbung zeigte, dass die Fibroblasten in das Vlies einwandern. Durch spezifische Färbung von Laminin V, Kollagen I, III, IV und Fibronektin konnte gezeigt werden, dass die Zellen beginnen das Vlies umzubauen und extrazelluläre Matrix Proteine zu produzieren. Die Kultivierung von primären Keratinozyten, sowohl aus der humanen Haut als auch aus der humanen Mundschleimhaut, erwies sich als komplex auf elektrogesponnenen Fasern. Die Zellen adhärierten auf der Membran, bildeten aber weder mit noch ohne Fibroblasten ein mehrschichtiges, verhorntes Epithel aus. Die Anpassung der Faserzusammensetzung und der Fixierungsmethoden begünstigte die Entwicklung des Epithels nicht. Weiterführende experimentelle Studien belegten, dass der Porendurchmesser des Vlieses eine wichtige Rolle für die Entwicklung des Epithels spielt und dass primäre Keratinozyten stärker auf pH Veränderungen reagieren als HaCaT Zellen. Da die funktionalisierten Fasern sich nicht als geeignete Struktur für primäre Keratinozyten erwiesen, wurden Polycarbonat Membranen anstelle von elektrogesponnenen Strukturen als Träger für den Aufbau von Mundschleimhautmodellen verwendet. Die Modelle zeigten wichtige Eigenschaften der nativen Mundschleimhaut. Es bildete sich ein mehrschichtiges, polarisiertes Epithel aus basalen Zellen, einer Stachelzellschicht, Körnerzellschicht und Hornschicht. Die Modelle entwickelten eine physikalische Barriere und exprimierten Zellmarker ähnlich der nativen Mundschleimhaut. Die Ergebnisse des ET 50 Assays und der Irritationsstudie legten dar, dass die Modelle reproduzierbar hergestellt werden können. Das elektrostatische Spinnen ermöglicht es, fibrilläre Strukturen, die der Basalmembran sehr ähnlich sind, herzustellen. Die Funktionalisierung der Fasern mit Zelladhäsionssignalen stellt eine vielversprechende Möglichkeit dar, diese Fasern so zu modifizieren, dass sie als Basalmembranen für verschiedene Anwendungen des Tissue Engineerings geeignet sind. Die biomimetischen Membranen können mit Bindungssequenzen von sehr unterschiedlichen Proteinen modifiziert werden. Darüber hinaus können sie genutzt werden, den Einfluss von isotropen und anisotropen Basalmembranen auf die Gewebebildung und den Matrixumbau systematisch in Bezug auf die biochemische Zusammensetzung und den Einfluss sowie die Bedeutung von Mono und Ko Kultur zu untersuchen. Die Mundschleimhautmodelle können für toxikologische Untersuchungen, Permeationsstudien, sowie als Krankheitsmodelle eingesetzt werden. Außerdem können sie verwendet werden, um das Irritationspotenzial von Mundhygieneprodukten und Biomaterialien einzuschätzen. KW - Tissue Engineering KW - Basalmembran KW - Skin KW - Basement membrane KW - Bipolar Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-137618 N1 - die Online-Version weicht insofern von der gedruckten Fassung ab als im Appendix die Arbeitsanweisungen aus dem Labor fehlen (diese dürfen nicht im WWW veröffentllicht sein) ER - TY - THES A1 - Memmel, Elisabeth T1 - Vom Glycochip zur lebenden Zelle - Studien zu Infektions- und Tumor-relevanten Kohlenhydrat-Erkennungsprozessen T1 - From Glycochips to Living Cells - investigating carbohydrate recognition processes relevant for infections and tumor diseases N2 - Kohlenhydrat-Protein-Wechselwirkungen sind häufig entscheidend beteiligt an verschiedenen einer Infektion oder malignen Erkrankung zugrunde liegenden molekularen Erkennungs-prozessen, die zu Adhäsion, Zell-Zell-Interaktion sowie Immunreaktion und -toleranz führen. Trotz der hohen Relevanz für Diagnostik und Therapie dieser Erkrankungen sind die betreffenden Strukturen und Mechanismen bisher nur ungenügend untersucht und verstanden. Ziel dieser stark interdisziplinär angelegten Arbeit war es daher, Methoden der Fachbereiche Chemie und Pharmazie, Biologie und Medizin, aber auch Physik zu kombinieren, um Kohlenhydraterkennungsprozesse im Detail zu untersuchen und auf dieser Basis strukturell neuartige diagnostische und therapeutische Anwendungen zu entwerfen. Die hochkomplexe Zusammensetzung einer Zelloberfläche wurde zunächst auf ihren Glycan-anteil reduziert und stark vereinfacht auf der Oberfläche sogenannter Glycochips imitiert. Die verwendeten Systeme auf Basis einer Gold- bzw. Glasoberfläche ergänzen sich optimal in ihrer Eignung für komplementäre analytische Methoden wie Massenspektrometrie sowie quantifizierbare Fluoreszenzspektroskopie. Der Übergang auf die lebende Zelloberfläche gelang mit Hilfe des Metabolic Glyco-engineering, das die kovalente Präsentation definierter Motive durch eine Cycloaddition zwischen zwei bioorthogonalen Reaktionspartnern (z.B. Azid und Alkin) ermöglicht. Auf diese Weise wurden in Zusammenarbeit mit der Arbeitsgruppe Sauer (Universität Würzburg) zunächst die Dichte und Verteilung verschiedener Oberflächenglycane auf humanen Zellen mittels hochauflösender Fluoreszenzmikroskopie (dSTORM) bestimmt. Diese Parameter zeigten im Modell des Glycochips einen entscheidenden Einfluss auf Bindungsereignisse und multivalente Erkennung und zählen auch auf natürlichen Zelloberflächen – in engem Zusammenhang mit der lateralen und temporalen Dynamik der Motive – zu den wichtigen Faktoren molekularer Erkennungsprozesse. Die gezielte Modifikation zellulärer Oberflächenglycane eignet sich aber auch selbst als Methode zur Beeinflussung molekularer Wechselwirkungsprozesse. Dies wurde anhand des humanpathogenen Bakteriums S. aureus gezeigt, dessen Adhäsion auf Epithelzellen der Blasenwand durch Metabolic Glycoengineering partiell unterdrückt werden konnte. In einem ergänzenden Projekt wurden zwei potentielle Metabolite eines konventionellen Antibiotikums – des Nitroxolins – mit bakteriostatischer sowie antiadhäsiver Wirksamkeit dargestellt. Diese dienten als Referenzsubstanzen zur Verifizierung der postulierten Struktur der Derivate, werden aber auch selbst auf ihr Wirkprofil hin untersucht. Gleichzeitig stehen sie zusammen mit der Grundverbindung zudem als Referenz für die Wirkstärke potentieller neu entwickelter Antiadhäsiva zur Verfügung. N2 - Interactions between carbohydrates and proteins often are crucial factors in the molecular recognition processes of infectious diseases or cancer, leading to adhesion and cell cell interaction, as well as immune response and immune tolerance. Despite of their high pertinence for diagnostics and successful therapeutic treatment of those diseases, the structures and mechanisms involved are still insufficiently studied and poorly understood. So it was the aim of this strongly interdisciplinary oriented dissertation, to study carbohydrate recognition processes on molecular basis and in detail by combining methods from different scientific schools like chemistry and pharmacy, biology and medicine, as well as physics. Based on the achieved results innovative diagnostic and therapeutic applications should be proposed. Initially the highly complex structural composition of a living cells’ surface was reduced to its’ glycan fraction and mimicked on the surface of so-called glycochips in a very simplified manner. Two systems, based on gold and glass surfaces respectively, were used due to their complementary applicability for different analytical methods like mass spectrometry and quantitative fluorescence spectroscopy. The step forward towards living cell surfaces was achieved by metabolic glycoengineering, a method that enables the covalent installation of defined binding motifs by performing a cycloaddition between two bioorthogonal reaction partners (e.g. azide and alkyne). In cooperation with the group of Prof. Dr. Markus Sauer (Universität Würzburg) this technique was used to determine the density and spatial distribution of different cell surface glycans on human cell lines with high resolution fluorescence microscopy (dSTORM). In the glycochip model these parameters exhibited a key value for binding processes and multivalent recognition. Even on native cell surfaces they are crucial factors of molecular recognition processes – closely related to the lateral and temporal dynamics of the structural motifs. In addition the specific modification of cell surface glycans itself can be used to manipulate molecular interaction processes. This could be shown for the human pathogenic bacterium Staphylococcus aureus by significant reduction of its adhesion potential towards epithelial cells derived from the human bladder after metabolic glycoengineering. Finally a supplementary project aimed to synthesize two prior postulated metabolites of the conventional antibiotic agent nitroxoline that shows bacteriostatic as well as antiadhesive effects. They were used as reference compounds to verify the postulated structure of the two derivatives and currently undergo further studies concerning their intrinsic mode of action. In addition to the parent molecule they also serve as reference compounds to estimate the potential of novel antiadhesives. KW - Microarray KW - Fluoreszenz KW - Adhäsion KW - MALDI-MS KW - Bioorganische Chemie KW - Kohlenhydrate KW - Glycochip KW - Galabiose KW - dSTORM KW - Nitroxolin KW - Metabolic Glycoengineering Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115825 ER -