TY - THES A1 - Vardapour, Romina T1 - Mutations in the DROSHA/DGCR8 microprocessor complex in high-risk blastemal Wilms tumor T1 - Mutationen des DROSHA/DGCR8 Mikroprozessor-Komplexes in blastemreichen Hochrisiko-Wilms Tumoren N2 - Wilms tumor (WT) or nephroblastoma is the most common kidney tumor in childhood. Several genetic alterations have been identified in WT over the past years. However, a clear-cut underlying genetic defect has remained elusive. Growing evidence suggests that miRNA processing genes play a major role in the formation of pediatric tumors, including WT. We and others have identified the microprocessor genes DROSHA and DGCR8 as key players in Wilms tumorigenesis. Exome sequence analysis of a cohort of blastemal-type WTs revealed the recurrent hotspot mutations DROSHA E1147K and DGCR8 E518K mapping to regions important for catalyic activity and RNA-binding. These alterations were expected to affect processing of miRNA precursors, ultimately leading to altered miRNA expression. Indeed, mutated tumor samples were characterized by distinct miRNA patterns. Notably, these mutations have been observed almost exclusively in WT, suggesting that they play a specific role in WT formation. The aim of the present work was to first examine the mutation frequency of DROSHA E1147K and DGCR8 E518K in a larger cohort of WTs, and to further characterize these microprocessor gene mutations as potential oncogenic drivers for WT formation. Screening of additional 700 WT samples by allele-specific PCR revealed a high frequency of DROSHA E1147K and DGCR8 E518K mutations, with the highest incidence found in tumors of high-risk histology. DROSHA E1147K was heterozygously expressed in all cases, which strongly implies a dominant negative effect. In contrast, DGCR8 E518K exclusively exhibited homozygous expression, suggestive for the mutation to act recessive. To functionally assess the mutations of the microprocessor complex in vitro, I generated stable HEK293T cell lines with inducible overexpression of DROSHA E1147K, and stable mouse embryonic stem cell (mESC) lines with inducible overexpression of DGCR8 E518K. To mimic the homozygous expression observed in WT, DGCR8 mESC lines were generated on a DGCR8 knockout background. Inducible overexpression of wild-type or mutant DROSHA in HEK293T cells showed that DROSHA E1147K leads to a global downregulation of miRNA expression. It has previously been shown that the knockout of DGCR8 in mESCs also results in a significant downregulation of canonical miRNAs. Inducible overexpression of wild type DGCR8 rescued this processing defect. DGCR8 E518K on the other hand, only led to a partial rescue. Differentially expressed miRNAs comprised members of the ESC cell cycle (ESCC) and let-7 miRNA families whose antagonism is known to play a pivotal role in the regulation of stem cell properties. Along with altered miRNA expression, DGCR8-E518K mESCs exhibited alterations in target gene expression potentially affecting various biological processes. We could observe decreased proliferation rates, most likely due to reduced cell viability. DGCR8-E518K seemed to be able to overcome the block of G1-S transition and to rescue the cell cycle defect in DGCR8-KO mESCs, albeit not to the full extent like DGCR8-wild-type. Moreover, DGCR8-E518K appeared to be unable to completely block epithelial-to-mesenchymal transition (EMT). Embryoid bodies (EBs) with the E518K mutation, however, were still able to silence the self-renewal program rescuing the differentiation defect in DGCR8-KO mESCs. Taken together, I could show that DROSHA E1147K and DGCR8 E518K are frequent events in WT with the highest incidence in high-risk tumor entities. Either mutation led to altered miRNA expression in vitro confirming our previous findings in tumor samples. While the DROSHA E1147K mutation resulted in a global downregulation of canonical miRNAs, DGCR8 E518K was able to retain significant activity of the microprocessor complex, suggesting that partial reduction of activity or altered specificity may be critical in Wilms tumorigenesis. Despite the significant differences found in the miRNA and mRNA profiles of DGCR8 E518K and DGCR8-wild-type mESCs, functional analysis showed that DGCR8 E518K could mostly restore important cellular functions in the knockout and only slightly differed from the wild-type situation. Further studies in a rather physiological environment, such as in a WT blastemal model system, may additionally help to better assess the subtle differences between DGCR8 E518K and DGCR8 wild-type observed in our mESC lines. Together with our findings, these model systems may thus contribute to better understand the role of these microprocessor mutations in the formation of WT. N2 - Der Wilms Tumor (WT), auch Nephroblastom genannt, ist der häufigste Nierentumor im Kindesalter. In den letzten Jahren wurden bereits mehrere genetische Veränderungen in Wilms Tumoren festgestellt. Bisher konnte jedoch keine eindeutige genetische Ursache gefunden werden. Immer mehr Erkenntnisse deuten darauf hin, dass miRNA Prozessierungsgene eine wichtige Rolle bei der Entstehung von pädiatrischen Tumoren, einschließlich von WT, spielen. Uns ist es gelungen die Mikroprozessor-Gene DROSHA und DGCR8 als entscheidende Faktoren in der WT-Entstehung zu identifizieren. Mit Hilfe der Exom-Sequenzierung einer Kohorte blastemreicher Wilms Tumoren konnten die wiederkehrenden Hotspot-Mutationen DROSHA E1147K and DGCR8 E518K gefunden werden. Diese Mutationen betreffen Regionen, die für die katalytische Aktivität und die Bindung von RNA wichtig sind. Diese Veränderungen beeinflussen vermutlich die Prozessierung von Vorläufer-miRNAs und führen letztendlich zu einer veränderten miRNA Expression. In der Tat waren mutierte Tumorproben durch auffällige Expressionsmuster gekennzeichnet. Bemerkenswerterweise wurden diese Mutationen fast ausschließlich in WT beobachtet, was darauf hindeutet, dass sie eine spezifische Rolle bei der Entstehung von WT spielen. Ziel der vorliegenden Arbeit war es, zunächst die Mutationshäufigkeit von DROSHA E1147K und DGCR8 E518K in einer größeren Kohorte von Wilms Tumoren zu untersuchen und anschließend diese Mikroprozessor-Genmutationen als mögliche onkogene Treiber für die WT-Entstehung näher zu charakterisieren. Das Screening von zusätzlichen 700 WT-Proben mittels allelspezifischer PCR ergab eine hohe Häufigkeit von DROSHA E1147K und DGCR8 E518K Mutationen. Dabei traten sie vermehrt bei Tumoren mit einer Hochrisikohistologie auf. Die DROSHA E1147K Mutation wurde in allen Fällen heterozygot exprimiert, was einen dominant-negativen Effekt impliziert. Im Gegensatz dazu zeigte die DGCR8 E518K Mutation ausschließlich eine homozygote Expression, was darauf hindeutet, dass die Mutation rezessiv wirkt. Um die Mutationen des Mikroprozessorkomplexes in vitro funktionell zu untersuchen, generierte ich stabile HEK293T-Zelllinien mit induzierbarer Überexpression von DROSHA E1147K, und stabile embryonale Mausstammzelllinien mit induzierbarer Überexpression von DGCR8 E518K. Um die in WT beobachtete homozygote Expression nachzustellen, wurden für die Erzeugung der DGCR8-Zelllinien Mausstammzellen mit einem DGCR8-Knockout verwendet. Die induzierbare Überexpression von Wildtyp oder mutiertem DROSHA in HEK293T-Zellen zeigte, dass DROSHA E1147K zu einer globalen Herunterregulierung der miRNA-Expression führt. Es wurde zuvor gezeigt, dass der Knockout von DGCR8 in Mausstammzellen ebenfalls zu einer signifikanten Herunterregulierung kanonischer miRNAs führt. Die induzierbare Überexpression von Wildtyp DGCR8 konnte diesen Prozessierungsdefekt aufheben. DGCR8 E518K führte dagegen nur zu einer partiellen Behebung des Prozessierungsdefekts. Differenziell exprimierte miRNAs umfassten hierbei Mitglieder aus der stammzellspezifischen ESCC-Familie und der let-7-miRNA-Familie, deren Antagonismus bekanntermaßen eine bedeutende Rolle bei der Regulation von Stammzelleigenschaften spielt. Zusammen mit einer veränderten miRNA-Expression zeigten DGCR8-E518K-Zellen Veränderungen in der Zielgenexpression, welche möglicherweise verschiedene biologische Prozesse beeinflussen können. Wir konnten verringerte Proliferationsraten beobachten, höchstwahrscheinlich aufgrund einer verringerten Lebensfähigkeit der Zellen. DGCR8-E518K schien in der Lage zu sein, den Block des G1-S Übergangs zu überwinden und den Zellzyklusdefekt in DGCR8-KO-Zellen zu beheben, wenn auch nicht in vollem Umfang wie Wildtyp DGCR8. Darüber hinaus schien DGCR8-E518K nicht in der Lage zu sein, die epithelial-mesenchymale Transition (EMT) vollständig blockieren zu können. Embryoid-Körper (EBs) mit der E518K Mutation konnten das Selbsterneuerungsprogramm jedoch noch unterdrücken und somit den Differenzierungsdefekt in DGCR8-KO-Zellen beheben. Zusammenfassend konnte ich zeigen, dass DROSHA E1147K und DGCR8 E518K häufige Mutationen in WT sind und dabei am häufigsten in Hochrisiko-Tumoren vorkommen. Jede dieser Mutationen führte in vitro zu einer veränderten miRNA-Expression, was unsere vorherigen Befunde in Tumorproben bestätigte. Während die DROSHA E1147K Mutation zu einer globalen Herunterregulierung kanonischer miRNAs führte, konnte die DGCR8 E518K Mutation die Aktivität des Mikroprozessorkomplexes größtenteils wiederherstellen, was darauf hindeutet, dass eine teilweise Verringerung der Aktivität oder eine veränderte Spezifität bei der WT-Entstehung kritisch sein könnte. Trotz der signifikanten Unterschiede in den miRNA- und mRNA-Profilen von DGCR8-E518K- und DGCR8 Wildtyp-Zellen, ergab die Funktionsanalyse, dass DGCR8 E518K viele wichtige Zellfunktionen im Knockout wiederherstellen konnte und sich nur geringfügig von der Wildtyp-Situation unterschied. Weitere Studien unter physiologischeren Bedingungen, wie beispielsweise in einem WT-Blastem-Modellsystem, könnten zusätzlich helfen, die in unseren Mausstammzelllinien beobachteten feinen Unterschiede zwischen DGCR8 E518K und DGCR8 Wildtyp besser bewerten zu können. Zusammen mit unseren Erkenntnissen könnten diese Modellsysteme somit dazu beitragen, die Rolle dieser Mikroprozessormutationen bei der WT-Entstehung besser zu verstehen. KW - Nephroblastom KW - Genmutation KW - miRNS KW - Wilms tumor KW - miRNA KW - microprocessor complex KW - DROSHA KW - DGCR8 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-231404 ER - TY - THES A1 - Gründl, Marco T1 - Biochemical characterization of the MMB-Hippo crosstalk and its physiological relevance for heart development T1 - Biochemische Charakterisierung des MMB-Hippo Signalweges und dessen physiologische Rolle in der Herzentwicklung N2 - The Myb-MuvB (MMB) complex plays an essential role in the time-dependent transcriptional activation of mitotic genes. Recently, our laboratory identified a novel crosstalk between the MMB-complex and YAP, the transcriptional coactivator of the Hippo pathway, to coregulate a subset of mitotic genes (Pattschull et al., 2019). Several genetic studies have shown that the Hippo-YAP pathway is essential to drive cardiomyocyte proliferation during cardiac development (von Gise et al., 2012; Heallen et al., 2011; Xin et al., 2011). However, the exact mechanisms of how YAP activates proliferation of cardiomyocytes is not known. This doctoral thesis addresses the physiological role of the MMB-Hippo crosstalk within the heart and characterizes the YAP-B-MYB interaction with the overall aim to identify a potent inhibitor of YAP. The results reported in this thesis indicate that complete loss of the MMB scaffold protein LIN9 in heart progenitor cells results in thinning of ventricular walls, reduced cardiomyocyte proliferation and early embryonic lethality. Moreover, genetic experiments using mice deficient in SAV1, a core component of the Hippo pathway, and LIN9-deficient mice revealed that the correct function of the MMB complex is critical for proliferation of cardiomyocytes due to Hippo-deficiency. Whole genome transcriptome profiling as well as genome wide binding studies identified a subset of Hippo-regulated cell cycle genes as direct targets of MMB. By proximity ligation assay (PLA), YAP and B-MYB were discovered to interact in embryonal cardiomyocytes. Biochemical approaches, such as co-immunoprecipitation assays, GST-pulldown assays, and µSPOT-based peptide arrays were employed to characterize the YAP-B-MYB interaction. Here, a PY motif within the N-terminus of B-MYB was found to directly interact with the YAP WW-domains. Consequently, the YAP WW-domains were important for the ability of YAP to drive proliferation in cardiomyocytes and to activate MMB target genes in differentiated C2C12 cells. The biochemical information obtained from the interaction studies was utilized to develop a novel competitive inhibitor of YAP called MY-COMP (Myb-YAP competition). In MY-COMP, the protein fragment of B-MYB containing the YAP binding domain is fused to a nuclear localization signal. Co-immunoprecipitation studies as well as PLA revealed that the YAP-B-MYB interaction is robustly blocked by expression of MY-COMP. Adenoviral overexpression of MY-COMP in embryonal cardiomyocytes suppressed entry into mitosis and blocked the pro-proliferative function of YAP. Strikingly, characterization of the cellular phenotype showed that ectopic expression of MY-COMP led to growth defects, nuclear abnormalities and polyploidization in HeLa cells. Taken together, the results of this thesis reveal the mechanism of the crosstalk between the Hippo signaling pathway and the MMB complex in the heart and form the basis for interference with the oncogenic activity of the Hippo coactivator YAP. N2 - Der Myb-MuvB Komplex spielt eine essenzielle Rolle in der transkriptionellen Aktivierung von Zellzyklusgenen. Unser Labor hat kürzlich einen bis dahin unbekannten Mechanismus zwischen dem MMB-Komplex und Hippo-YAP Signalweg, der zur Aktivierung von Mitosegenen beiträgt, identifiziert. Der Hippo-YAP Signalweg ist beteiligt an der Gewebehomöostase und am Wachstum von Organen. So reguliert der Hippo-YAP Signalweg zum Beispiel während der Herzentwicklung die Proliferation von Herzmuskelzellen. Der exakte Mechanismus wie YAP die Zellteilung von Kardiomyozyten aktiviert, ist jedoch bisher nicht bekannt. In der vorliegenden Doktorarbeit wird das Zusammenspiel zwischen dem Hippo-Signalweg und dem MMB-Komplex im Herzen untersucht. Außerdem wird die Interaktion zwischen YAP und B-MYB biochemisch charakterisiert, um einen Inhibitor zu entwickeln, der die Aktivität von YAP vermindert. Die Ergebnisse dieser Doktorarbeit zeigen, dass der Verlust der zentralen Untereinheit des MMB-Komplexes, LIN9, in Vorläuferzellen der Kardiomyozyten zu einer Reduktion der Herzwand sowie zu einer niedrigeren Proliferationsrate von Herzmuskelzellen und einer erhöhten Embryonalsterblichkeit führt. Außerdem wurde in genetischen Experimenten mit Hippo- und LIN9-defizienten Mäusen gezeigt, dass der MMB-Komplex wichtig für die Aktivierung der Proliferation in Hippo-defizienten Kardiomyozyten ist. Eine globale Analyse der Transkription und Chromatinbindung von YAP und LIN9 im Herzen zeigte, dass eine Untergruppe von Zellzyklusgenen, die nach Inaktivierung des Hippo-Signalwegs vermehrt exprimiert werden, gleichzeitig den MMB-Komplex am Promoter gebunden haben. Durch Interaktionsstudien konnte gezeigt werden, dass YAP und B-MYB in embryonalen Kardiomyozyten miteinander interagieren. Die Bindung der beiden Transkriptionsfaktoren wurde durch Co-Immunpräzipitation, GST-Pulldown-Analysen und Peptid-Arrays biochemisch untersucht. Dabei wurde gezeigt, dass ein PY-Motiv im N-terminus von B-MYB direkt an die WW-Domänen von YAP bindet. Im Umkehrschluss wurde festgestellt, dass die WW-Domänen von YAP essenziell sind, um sowohl die Proliferation in Herzmuskelzellen als auch die Expression von Mitosegenen in differenzierten C2C12 Zellen zu aktivieren. Letztendlich wurden die Ergebnisse der Interaktionsstudie genutzt, um einen neuartigen kompetitiven Inhibitor von YAP zu entwickeln. Für MY-COMP (Myb-YAP Competition) wurde der Proteinabschnitt von B-MYB, der die YAP Bindedomäne enthält, mit einer Kernlokalisierungssequenz fusioniert. Bindestudien zeigten, dass MY-COMP die Interaktion zwischen YAP und B-MYB effektiv blockiert. Eine durch Adenoviren vermittelte Überexpression von MY-COMP in embryonalen Herzmuskelzellen resultierte in einer verminderten Anzahl von mitotischen Zellen. Somit wird durch Expression von MY-COMP, die proliferative Fähigkeit von YAP vermindert. Interessanterweise wurden in HeLa Zellen, die mit MY-COMP behandelt wurden, vermehrt Abnormalitäten der Zellkerne, polyploide Zellen sowie ein Wachstumsdefizit beobachtet. Zusammengefasst verdeutlichen die Ergebnisse dieser Doktorarbeit die Bedeutung des Zusammenspiels zwischen dem MMB-Komplex und dem Hippo-YAP-Signalweg für die Herzentwicklung und bilden die Grundlage, für die effektive Inhibierung der onkogenen Eigenschaften des Hippo-Coaktivators YAP. KW - Zellzyklus KW - Heart development KW - Hippo pathway KW - Myb-MuvB complex KW - Cardiomyocyte Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-213328 ER - TY - THES A1 - Kruber, Philip T1 - Functional analysis of DROSHA and SIX1 mutations in kidney development and Wilms tumor T1 - Funktionelle Analysen von DROSHA und SIX1 Mutationen in der Nierenentwicklung und dem Wilms Tumor N2 - Wilms tumor (WT) is the most common kidney cancer in childhood. It is a genetically heterogeneous tumor and several genetic alterations have been identified in WT patients. Recurrent mutations were found in the homeo-domain of SIX1 and SIX2 in high proliferative tumors (18.1% of the blastemal-type tumors) as well as in the microprocessor genes DROSHA and DGCR8 (18.2% of the blastemal-type tumors), indicating a critical role of the SIX-SALL pathway and aberrant miRNA processing in WT formation. Underlined by the fact that a significant overlap between mutations in DROSHA and SIX1 was found, indicating a synergistic effect. To characterize the in vivo role of DROSHA and SIX mutations during kidney development and their oncogenic potential, I analyzed mouse lines with either a targeted deletion of Drosha or an inducible expression of human DROSHA or SIX1 carrying a tumor-specific E1147K or Q177R mutation, respectively. The DROSHA mutation E1147K was predicted to act in a dominant negative manner. Six2-cre mediated deletion of Drosha in nephron progenitors led to a lethal phenotype with apoptotic loss of progenitor cells and early termination of nephrogenesis. Mosaic deletions via Wt1-creERT2 resulted in a milder phenotype with viable offspring that developed proteinuria after 2-4 weeks, but no evidence of tumor formation. Activation of the DROSHA-E1147K transgene via Six2-cre, on the other hand, induced a more severe phenotype with apoptosis of progenitor cells, proteinuria and glomerular sclerosis. The severely growth-retarded mice died within the first two months. This strong phenotype was consistent with the predicted dominant-negative effect of DROSHA-E1147K. Analysis of the SIX1-Q177R mutation suggested that the mutation leads to a shift in DNA binding specificity instead of a complete loss of DNA binding. This may end up in subtle changes of the gene regulatory capacity of SIX1. Six2-cre mediated activation of SIX1-Q177R lead to a viable phenotype with no alterations or shortened life span. Yet a global activation of SIX1-Q177R mediated by Zp3-cre resulted in bilateral hydronephrosis and juvenile death of the mice. To mimic the synergistic effect of DROSHA and SIX1 mutations, I generated compound mutants in two combinations: A homozygous deletion of Drosha combined with an activation of SIX1-Q177R and a compound mutant with activation of DROSHA-E1147K and SIX1-Q177R. Each mouse model variant displayed new phenotypical alterations. Mice with Six2-cre mediated homozygous deletion of Drosha and activation of SIX1-Q177R were not viable, yet heterozygous deletion of Drosha and activation of SIX1-Q177R led to hydronephrosis, proteinuria and an early death around stage P28. Combined activation of DROSHA-E1147K and SIX1-Q177R under Six2-cre resulted in proteinuria, glomerulosclerosis and lesions inside the kidney. These mice also suffered from juvenile death. Both mouse models could confirm the predicted synergistic effect. While these results underscore the importance of a viable self-renewing progenitor pool for kidney development, there was no evidence of tumor formation. This suggests that either additional alterations in mitogenic or antiapoptotic pathways are needed for malignant transformation, or premature loss of a susceptible target cell population and early lethality prevent WT formation. N2 - Der Wilms Tumor ist der am häufigsten auftretende Nierentumor im Kindesalter. Er ist genetisch heterogen und bisher wurden bereits verschiedene genetische Mutationen in Wilms Tumor Patienten gefunden. Es konnten wiederkehrende Mutationen in der Homeo-Domäne der Gene SIX1 und SIX2 und in den Genen des Mikroprozessorkomplexes DROSHA und DGCR8 gefunden werden. Die Ergebnisse weisen darauf hin, dass einerseits die gestörte Prozessierung von miRNAs und andererseits der SIX-SALL Signalweg eine wichtige Rolle im Entstehungsprozess des Wilms Tumors spielen. Des Weiteren konnte die Analyse der blastem-reichen Tumore einen möglichen synergetischen Effekt zwischen DROSHA und SIX1 aufzeigen. Um die Bedeutung von DROSHA und SIX Mutationen für die Nierenentwicklung und für die Tumorgenese in vivo zu untersuchen, wurden in dieser Arbeit Mausmodelle mit konditioneller Deletion von DROSHA oder induzierbarer Expression der DROSHA Mutation E1147K bzw. der SIX1 Mutation Q177R analysiert. Es wurde vermutet, dass die E1147K Mutation einen dominant-negativen Effekt besitzt. Six2-cre vermittelte Deletion von DROSHA in Nierenvorläuferzellen führte zu einem letalen Phänotyp, der sich durch Apoptose von Vorläuferzellen und vorzeitigen Abbruch der Nephrogenese auszeichnete. Mosaik-Deletion mittels Wt1-creERT2 führte zu einem deutlich milderen Phänotyp. Die Nachkommen waren lebensfähig, entwickelten aber innerhalb der ersten 2-4 Wochen eine Proteinurie. Bei beiden, so erzeugten, Mauslinien konnten keine Tumorbildung feststellen werden. Aktivierung des DROSHA-E1147K Transgenes durch Six2-cre brachte einen deutlich gravierenderen Phänotyp hervor. Dieser zeichnete sich durch Apoptose von Vorläuferzellen, sowie Proteinurie und Glomerulosklerose aus. Die im Wachstum stark retardierten Mäuse starben innerhalb der ersten zwei Monate nach der Geburt. Dieser Phänotyp unterstreicht den vermuteten dominant-negativen Effekt von DROSHA-E1147K auch in vivo. Analysen der Q177R Mutation konnten zeigen, dass diese Mutation in der Homeo-Domäne des SIX1 Genes wahrscheinlich nicht zu einem kompletten Verlust der Fähigkeit, DNA zu binden, führt, sondern eher eine leichte Verschiebung der DNA Bindespezifität als Folge hat. Das könnte eine subtile Veränderung in der Fähigkeit von SIX1 Gene zu regulieren bedeuten. Six2-cre vermittelte Aktivierung des SIX1-Q177R Transgenes hatte jedoch keinen sichtbaren Effekt für den Phänotyp der Mäuse. Dennoch hatte eine globale Aktivierung des Transgenes durch Zp3-cre bilaterale Hydronephrose und einen frühzeitigen Tod der Mäuse zur Folge. Um den bereits vermuteten Synergieeffekt zwischen DROSHA-E1147K und SIX1-Q177R zu untersuchen, wurden zwei neue Mausgenotypen erzeugt. Einerseits wurde eine Mauslinie mit dem SIX1-Q177R Transgen und der Drosha Deletion, andererseits eine Mauslinie, die sowohl das SIX1-Q177R Transgen, als auch das DROSHA-E1147K Transgen besitzt, verpaart. Beide Mauslinien entwickelten jeweils neue Phänotypen. Mäuse mit Six2-cre vermittelter, homozygoter Deletion von Drosha und gleichzeitiger Aktvierung von SIX1-Q177R waren nicht lebensfähig, während Mäuse mit heterozygoter Deletion von Drosha und gleichzeitiger Aktvierung von SIX1-Q177R sehr wohl lebensfähig waren. Diese Mäuse entwickelten wiederum Hydronephrose, sowie Proteinurie und verstarben innerhalb des ersten Lebensmonats. Kombinierte Aktivierung von DROSHA-E1147K und SIX1-Q177R mittels Six2-cre führte ebenfalls zu Proteinurie. Jedoch litten die Mäuse nicht an Hydronephrose, sondern an Glomerulosklerose und Zystenbildung. Ebenfalls starben die Mäuse einen frühzeitigen Tod. Beide Mausmodelle konnten, durch die Ausprägung neuer Phänotypen, den vermuteten Synergieeffekt beweisen. Die Ergebnisse dieser Arbeit zeigen deutlich, wie wichtig ein lebensfähiger Zellpool an selbst-erneuernden Vorläuferzellen für die Nierenentwicklung ist. Dennoch konnten keine Anzeichen für eine Tumorbildung gefunden werden. Das lässt vermuten, dass weitere genetische Veränderungen z.B. in mitogenen oder anti-apoptotischen Signalwegen von Nöten sind, um eine maligne Transformation zu gewährleisten. Natürlich könnte auch der frühzeitige Verlust der verantwortlichen Zellpopulation und das frühe Absterben der Embryos ein Hindernis für die Wilms Tumorbildung sein. KW - Nephroblastom KW - micro processor complex KW - DROSHA KW - Wilms tumor KW - kidney development KW - SIX1 KW - Nephrogenese KW - Wilms-Tumor KW - microRNA KW - Genmutation Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-161418 ER - TY - THES A1 - Hoffmann, Helene T1 - Identifying regulators of tumor vascular morphology T1 - Identifizierung von Regulatoren der Tumorgefäßmorphologie N2 - In contrast to normal vessels, tumor vasculature is structurally and functionally abnormal. Tumor vessels are highly disorganized, tortuous and dilated, with uneven diameter and excessive branching. Consequently, tumor blood flow is chaotic, which leads to hypoxic and acidic regions in tumors. These conditions lower the therapeutic effectiveness and select for cancer cells that are more malignant and metastatic. The therapeutic outcome could be improved by increasing the functionality and density of the tumor vasculature. Tumor angiogenesis also shows parallels to epithelial to mesenchymal transition (EMT), a process enabling metastasis. Metastasis is a multi-step process, during which tumor cells have to invade the surrounding host tissue to reach the circulation and to be transported to distant sites. We hypothesize that the variability in the phenotype of the tumor vasculature is controlled by the differential expression of key transcription factors. Inhibiting these transcription factors might be a promising way for angiogenic intervention and vascular re-engineering. Therefore, we investigated the interdependence of tumor-, stroma- and immune cell-derived angiogenic factors, transcription factors and resulting vessel phenotypes. Additionally, we evaluated whether transcription factors that regulate EMT are promising targets for vascular remodeling. We used formalin fixed paraffin embedded samples from breast cancer patients, classified according to estrogen-, progesterone- and human epidermal growth factor receptor (HER) 2 status. Establishing various techniques (CD34 staining, laser microdissection, RNA isolation and expression profiling) we systematically analyzed tumor and stroma-derived growths factors. In addition, vascular parameters such as microvessel size, area, circularity and density were assessed. Finally the established expression profiles were correlated with the observed vessel phenotype. As the SNAI1 transcriptional repressor is a key regulator of EMT, we examined the effect of vascular knockdown of Snai1 in murine cancer models (E0771, B16-F10 and lewis lung carcinoma). Among individual mammary carcinomas, but not among subtypes, strong differences of vascular parameters were observed. Also, little difference between lobular carcinomas and ductal carcinomas was found. Vessel phenotype of Her2 enriched carcinomas was similar to that of lobular carcinomas. Vessel morphology of luminal A and B and basal-like tumors resembled each other. Expression of angiogenic factors was variable across subtypes. We discovered an inverse correlation of PDGF-B and VEGF-A with vessel area in luminal A tumors. In these tumors expression of IL12A, an inhibitor of angiogenesis, was also correlated with vessel size. Treatment of endothelial cells with growth factors revealed an increased expression of transcription factors involved in the regulation of EMT. Knockdown of Snai1 in endothelial cells of mice increased tumor growth and decreased hypoxia in the E0771 and the B16-F10 models. In the lewis lung carcinomas, tumor vascularity and biodistribution of doxorubicin were improved. Here, doxorubicin treatment in combination with the endothelial cell-specific knockdown did slow tumor growth. This shows that SNAI1 is important for a tumor's vascularization, with the significance of its role depending on the tumor model. The methods established in this work open the way for the analysis of the expression of key transcription factors in vessels of formalin fixed paraffin embedded tumors. This research enables us to find novel targets for vascular intervention and to eventually design novel targeted drugs to inhibit these targets. N2 - In Tumoren, im Vergleich zu gesundem Gewebe, sind Aufbau und Funktionsweise von Blutgefäßen abnormal. Tumorgefäße sind unorgansiert, stark gewunden und geweitet, und weisen einen ungleichmäßigen Durchmesser sowie häufige Verzweigungen auf. Die chaotische Durchblutung führt zu hypoxischen und sauren Regionen. Diese abnormale Gefäßstruktur verringert sowohl die Einbringung, als auch die Wirksamkeit von Medikamenten und fördert zudem Invasivität und Metastasierung. Die Tumorbehandlung könnte durch eine "Normalisierung" der Gefäße sowie durch die Verbesserung der Dichte der Tumorblutgefäße erleichtert werden, da Medikamente so leichter das Tumorzentrum erreichen. In Tumoren weist der Prozess der Angiogenese Parallelen zur epithelial-mesenchymalen Transition (EMT) auf. Die EMT spielt eine zentrale Rolle bei der Metastasierung. Hierbei handelt es sich um einen mehrstufigen Prozess, bei dem Tumorzellen in das umgebende Wirtsgewebe eindringen um den Blutkreislauf zu erreichen und so zu weiter entfernten Organen zu gelangen. Laut unserer Hypothese werden die unterschiedlichen Phenotypen der Tumorblutgefäße durch die Expression verschiedener Schlüssel-Transkriptionsfaktoren kontrolliert. Die Hemmung dieser Transkriptionsfaktoren wäre folglich eine vielversprechende Möglichkeit in die Gefäßsturktur einzugreifen und sie zu restrukturieren. Deshalb wurde die Wechselwirkungen zwischen angiogenen Faktoren, die von Tumorzellen, Stromazellen und Zellen des Immunsystems abgesondert werden und Transkriptionsfaktoren sowie den resultierenden Gefäßphenotypen untersucht. Zudem wurde evaluiert, ob Transkriptionsfaktoren, die bei der EMT von Bedeutung sind, ein therapeutisches Ziel zur Umorganisation der Gefäßstruktur darstellen könnten. Für diese Studie wurden humane, in Formalin fixierte und in Paraffin eingebette, Proben von Brustkrebspatienten verwendet. Diese Proben wurden anhand des Rezeptorstatus von Östrogen-, Progesteron- und humanem epidermalen Wachstumsfaktor-Rezeptor (HER) 2 in tumorbiologische Untergruppen eingeordnet. Die Etablierung verschiedener Techniken (CD34 Gewebefärbung, Laser-Mikrodissektion, RNA-Isolierung und Erstellung von Expressionsprofilen) ermöglichte es, systematisch Wachstumsfaktoren, die von den Tumoren und ihrem umgebenden Stroma sezerniert werden, zu analysieren. Zusätzlich untersuchten wir vaskuläre Parameter wie Gefäßgröße, -fläche, -dichte und -zirkularität. Schließlich wurden die erstellten Expressionsprofile mit den Gefäßeigenschaften korreliert. In verschiedenen murinen Krebsmodellen (E0771, B16-F10 und Lewis-Lungenkarzinom) untersuchten wir die Auswirkung der Herrunterregulierung des Transkriptionsfaktors SNAI1 in Blutgefäßen. SNAI1 spielt eine Schlüsselrolle bei der Regulierung der EMT. Es zeigte sich, dass die einzelnen Brustkrebsproben sich bezüglich der untersuchten Gefäßparameter stark voneinander unterschieden. Zwischen den Subtypen hingegen waren keine Unterschiede zu sehen. Lobuläre und duktale Karzinome unterschieden sich kaum voneinander. Der Gefäßphenotyp der HER2-positiven Proben ähnelte dem der lobulären. Des Weiteren ähnelten sich Karzinome vom Luminal A- und B-Typ so wie vom Basal-Zell-Typ in ihrer Gefäßmorphologie. Das Expressionsmuster der Wachstumsfaktoren variierte von Tumor zu Tumor und innerhalb der Subytpen. Es stellte sich heraus, dass die Expression von PDGF-B und VEGF-A im Subtyp Luminal A invers mit der Gefäßfläche korreliert ist. Außerdem war in dieser Gruppe die Expression des Angiogenese-Hemmers IL-12A direkt mit der Gefäßgröße korreliert. Die Behandlung von Endothelzellen mit Wachstumsfaktoren zeigte eine erhöhte Expression von Transkriptionsfaktoren, die an der Regulierung der EMT beteiligt sind. Die Herrunterregulierung von Snai1 in Endothelzellen im Tierversuch führte zu einer Zunahme des Tumorwachstums sowie zu einem Rückgang der Hypoxie in den Tumormodellen E0771 und B16-F10. In den Lewis-Lungenkarzinomen kam es zu einer Verbesserung der Blutgefäßmorphologie und der Verteilung von Doxorubicin im Tumorgewebe. Die Therapie mit Doxorubicin in Kombination mit der endothellzell-spezifischen Herrunterregulierung von Snai1 zeigte zudem eine stärkere Hemmung des Tumorwachstums. Die Methoden, die in dieser Arbeit etabliert wurden, ermöglichen die Analyse der Expression von Schlüssel-Transkriptionsfaktoren in den Gefäßen von Formalin fixierten und in Paraffin eingebetten Proben. Dies macht es wiederum möglich neue Angriffspunkte für die Gefäßmodulation zu finden und schlußendlich neue, darauf gerichtete Medikamente zu entwickeln. KW - Antiangiogenese KW - Angiogenese KW - Tumor KW - Transkriptionsfaktor KW - tumor angiogenesis KW - epithelial-mesenchymal transition KW - tumor vascular morphologie KW - Tumorangiogenese KW - Epithelial-mesenchymale Transition KW - Tumorgefäßmorphologie Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142348 ER - TY - THES A1 - Stritt, Simon T1 - The role of the cytoskeleton in platelet production and the pathogenesis of platelet disorders in humans and mice T1 - Die Rolle des Zytoskeletts in der Thrombopoese und der Pathogenese von Thrombozytopathien im Menschen und der Maus N2 - Platelets are continuously produced from megakaryocytes (MK) in the bone marrow by a cytoskeleton-driven process of which the molecular regulation is not fully understood. As revealed in this thesis, MK/ platelet-specific Profilin1 (Pfn1) deficiency results in micro- thrombocytopenia, a hallmark of the Wiskott-Aldrich syndrome (WAS) in humans, due to accelerated platelet turnover and premature platelet release into the bone marrow. Both Pfn1-deficient mouse platelets and platelets isolated from WAS patients contained abnormally organized and hyper-stable microtubules. These results reveal an unexpected function of Pfn1 as a regulator of microtubule organization and point to a previously unrecognized mechanism underlying the platelet formation defect in WAS patients. In contrast, Twinfilin2a (Twf2a) was established as a central regulator of platelet reactivity and turnover. Twf2a-deficient mice revealed an age-dependent macrothrombocytopenia that could be explained by a markedly decreased platelet half-life, likely due to the pronounced hyper-reactivity of \(Twf2a^{-/-}\) platelets. The latter was characterized by sustained integrin acti- vation and thrombin generation in vitro that translated into accelerated thrombus formation in vivo. To further elucidate mechanisms of integrin activation, Rap1-GTP-interacting adaptor molecule (RIAM)-null mice were generated. Despite the proposed critical role of RIAM for platelet integrin activation, no alterations in this process could be found and it was concluded that RIAM is dispensable for the activation of β1 and β3 integrins, at least in platelets. These findings change the current mechanistic understanding of platelet integrin activation. Outside-in signaling by integrins and other surface receptors was supposed to regulate MK migration, but also the temporal and spatial formation of proplatelet protrusions. In this the- sis, phospholipase D (PLD) was revealed as critical regulator of actin dynamics and podo- some formation in MKs. Hence, the unaltered platelet counts and production in \(Pld1/2^{-/-}\) mice and the absence of a premature platelet release in the bone marrow of \(Itga2^{-/-}\) mice question the role of podosomes in platelet production and raise the need to reconsider the proposed inhibitory signaling by α2β1 integrins on proplatelet formation. Non-muscle myosin IIA (NMMIIA) has been implicated as a downstream effector of the in- hibitory signals transmitted via α2β1 integrins. Besides Rho-GTPase signaling, also \(Mg^{2+}\) and transient receptor potential melastatin-like 7 (TRPM7) channel α-kinase are known regulators of NMMIIA activity. In this thesis, TRPM7 was identified as major regulator of \(Mg^{2+}\) homeostasis in MKs and platelets. Furthermore, decreased \([Mg^{2+}]_i\) led to deregulated NMMIIA activity and altered cytoskeletal dynamics that impaired thrombopoiesis and resulted in macrothrombocytopenia in humans and mice. N2 - Thrombozyten werden kontinuierlich durch einen Zytoskelett-getriebenen Prozess von Megakaryozyten (MK) im Knochenmark gebildet. Die zugrunde liegenden molekularen Me- chanismen sind jedoch weitestgehend unverstanden. In dieser Thesis konnte gezeigt werden, dass eine MK/ Thrombozyten-spezifische Profilin1 (Pfn1) Defizienz eine Mikrothrombozytopenie verursacht, die das Hauptmerkmal des Wiskott- Aldrich Syndroms (WAS) im Menschen ist. Die reduzierte Thrombozytenzahl konnte auf eine beschleunigte Entfernung der Thrombozyten aus der Zirkulation sowie deren vorzeitige Freisetzung im Knochenmark zurückgeführt werden. Sowohl Thrombozyten von Pfn1- defizienten Mäusen, als auch von Patienten mit WAS wiesen abnormal organisierte und hyper-stabile Mikrotubuli auf. Die im Rahmen dieser Thesis gewonnenen Ergebnisse zeigen eine unerwartete Funktion von Pfn1 als Regulator der Mikrotubuliorganisation und weisen auf einen bisher nicht erkannten Mechanismus hin, welcher dem Thrombozytenproduktionsde- fekt in Patienten mit WAS zugrunde liegt. Im Gegensatz hierzu konnte Twinfilin2a (Twf2a) als zentraler Regulator der Thrombozyten- reaktivität und Lebenspanne etabliert werden. Mäuse mit einer Twf2a Defizienz zeigten eine progressive Makrothrombozytopenie, die durch eine stark reduzierte Lebenspanne der Thrombozyten erklärt werden konnte. Letzteres war höchstwahrscheinlich durch eine erhöhte Empfindlichkeit von Twf2a-defizienten Thrombozyten gegenüber von aktivierenden Stimuli bedingt. Die Hyperreaktivität von Twf2a-defizienten Thrombozyten zeigte sich durch eine verlängerte Aktivierung der Integrine und erhöhter Thrombingenerierung in vitro sowie be- schleunigter Thrombusbildung in vivo. Um die Mechanismen der Integrinaktivierung besser zu charakterisieren, wurden Rap1-GTP- interacting adaptor molecule (RIAM)-null Mäuse generiert. Obwohl RIAM eine zentrale Rolle in der thrombozytären Integrinaktivierung zugeschriebenen wurde, konnten keine Defekte in diesem Prozess in RIAM-null Thrombozyten identifiziert werden. Dies führte zu der Schluss- folgerung, dass RIAM für die Aktivierung von β1 und β3 Integrinen in Thrombozyten nicht benötigt wird. Diese Erkenntnisse verändern das gegenwärtige mechanistische Verständnis der Integrinaktivierung in Thrombozyten. Die outside-in Signalgebung durch Integrine und andere Oberflächenrezeptoren reguliert die Migration sowie die zeitliche und räumliche Bildung von proplatelets durch MKs. In dieser Thesis konnte gezeigt werden, dass Phospholipase D (PLD) ein zentraler Regulator der Aktindynamik und Podosomenbildung in MKs ist. Die normale Thrombozytenzahl und -Produktion in \(Pld1/2^{-/-}\) Mäusen sowie die fehlende vorzeitige Freisetzung von Thrombozytenim Knochenmark von \(Itga2^{-/-}\) Mäusen, stellen die Funktion von Podosomen in der Throm- bozytenproduktion in Frage. Ferner zeigen diese Ergebnisse, dass die Rolle der inhibitori- schen Signalgebung durch α2β1 Integrine in der proplatelet-Bildung noch einmal überdacht werden muss. Non-muscle myosin IIA (NMMIIA) wird als Effektorprotein im α2β1 Integrinsignalweg ange- sehen. Neben Signalen, die durch Rho-GTPasen vermittelt werden, regulieren auch \(Mg^{2+}\) und die α-Kinase des transient receptor potential melastatin-like 7 (TRPM7) Kanals die Akti- vität von NMMIIA. Im Rahmen dieser Thesis wurde TRPM7 als Hauptregulator der \(Mg^{2+}\) Homöostase in MKs und Thrombozyten identifiziert. Darüber hinaus führten erniedrigte intra- zelluläre \(Mg^{2+}\) Konzentrationen zu einer veränderten NMMIIA Aktivität und Zytoskelettdyna- mik. Diese Defekte beeinträchtigten die Thrombopoese und verursachten eine Makrothrom- bozytopenie im Menschen und der Maus. KW - Thrombozytopoese KW - Thrombozytopathie KW - Megakaryopoese KW - Zellskelett KW - Thrombozyt KW - Zytoskelett Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122662 ER - TY - THES A1 - Röschert, Isabelle T1 - Aurora-A prevents transcription-replication conflicts in MYCN-amplified neuroblastoma T1 - Aurora-A verhindert Transkriptions-Replikationskonflikte in MYCN-amplifizierten Neuroblastomen N2 - Neuroblastoma is the most abundant, solid, extracranial tumor in early childhood and the leading cause of cancer-related childhood deaths worldwide. Patients with high-risk neuroblastoma often show MYCN-amplification and elevated levels of Aurora-A. They have a low overall survival and despite multimodal therapy options a poor therapeutic prognosis. MYCN-amplified neuroblastoma cells depend on Aurora-A functionality. Aurora-A stabilizes MYCN and prevents it from proteasomal degradation by competing with the E3 ligase SCFFBXW7. Interaction between Aurora-A and MYCN can be observed only in S phase of the cell cycle and activation of Aurora-A can be induced by MYCN in vitro. These findings suggest the existence of a profound interconnection between Aurora-A and MYCN in S phase. Nevertheless, the details remain elusive and were investigated in this study. Fractionation experiments show that Aurora-A is recruited to chromatin in S phase in a MYCN-dependent manner. Albeit being unphosphorylated on the activating T288 residue, Aurora-A kinase activity was still present in S phase and several putative, novel targets were identified by phosphoproteomic analysis. Particularly, eight phosphosites dependent on MYCN-activated Aurora-A were identified. Additionally, phosphorylation of serine 10 on histone 3 was verified as a target of this complex in S phase. ChIP-sequencing experiments reveal that Aurora-A regulates transcription elongation as well as histone H3.3 variant incorporation in S phase. 4sU-sequencing as well as immunoblotting demonstrated that Aurora-A activity impacts splicing. PLA measurements between the transcription and replication machinery revealed that Aurora-A prevents the formation of transcription-replication conflicts, which activate of kinase ATR. Aurora-A inhibitors are already used to treat neuroblastoma but display dose-limiting toxicity. To further improve Aurora-A based therapies, we investigated whether low doses of Aurora-A inhibitor combined with ATR inhibitor could increase the efficacy of the treatment albeit reducing toxicity. The study shows that the combination of both drugs leads to a reduction in cell growth as well as an increase in apoptosis in MYCN-amplified neuroblastoma cells, which is not observable in MYCN non-amplified neuroblastoma cells. This new approach was also tested by a collaboration partner in vivo resulting in a decrease in tumor burden, an increase in overall survival and a cure of 25% of TH-MYCN mice. These findings indicate indeed a therapeutic window for targeting MYCN-amplified neuroblastoma. N2 - Das Neuroblastom ist der häufigste, solide, extrakranielle Tumor der frühesten Kindheit und die häufigste mit Krebs verbundene Todesursache von Kleinkindern weltweit. Patienten mit geringerer Überlebenswahrscheinlichkeit und schlechterer Therapieprognose zeigen oft eine MYCN-Amplifikation und erhöhte Mengen von Aurora-A. Aurora-A ist eine Serin/Threonin-Protein Kinase, die wichtige mitotische Prozesse reguliert. Aurora-A stabilisiert MYCN und verhindert dadurch den proteasomalen Abbau von MYCN. Die Interaktion zwischen Aurora-A und MYCN ist S Phasen-spezifisch und MYCN ist in vitro in der Lage, durch seine Bindung Aurora-A zu aktivieren. Die Funktionen und Prozesse, die von Aurora-A in der S Phase reguliert werden, sind noch nicht hinreichend untersucht und daher Gegenstand dieser Dissertation. Zell-Fraktionierungen zeigen, dass Aurora-A in der S Phase in einer MYCN-abhängigen Weise an das Chromatin gebunden ist. Phosphoproteom-Analysen mittels Massenspektrometrie identifizierten zahlreiche neue Substrate von Aurora-A, sowie acht Substrate von MYCN-aktiviertem Aurora-A. Zusätzlich konnte gezeigt werden, dass Histon 3 Serin 10 von Aurora-A in Abhängigkeit von MYCN in S Phase phosphoryliert wird. ChIP-Sequenzierungen zeigen, dass Aurora-A die Elongation der Transkription und den Einbau der Histone Variante H3.3 in S Phase beeinflusst. 4sU-Sequenzierung sowie Immunoblots zeigen einen Zusammenhang zwischen der Aktivität von Aurora-A und dem Spleißosom in der S Phase. Zusätzlich konnte mittels PLA nachgewiesen werden, dass Aurora-A die Entstehung von Transkriptions-Replikationskonflikten verhindert, die andernfalls die Kinase ATR aktivieren würden. Aurora-A Inhibitoren wurden unter anderem zur Therapie von Neuroblastomen eingesetzt, allerdings ist die Dosis des Aurora-A Inhibitors durch die hohe Toxizität limitiert, was die Effizienz der Therapie stark beeinträchtigt. Daher wurde untersucht, ob die gleichzeitige Gabe von geringeren Mengen Aurora-A Inhibitor in Kombination mit einem ATR Inhibitor zur Therapie geeignet ist. In vitro konnte gezeigt werden, dass die Kombination beider Inhibitoren das Zellwachstum reduziert und das MYCN-amplifizierte Zellen im Vergleich zu MYCN nicht-amplifizierten Zellen verstärkt durch Apoptose sterben. Durch einen Kollaborationspartner konnte die Kombination der beiden Inhibitoren an Mäusen getestet werden. Die mit der Kombination behandelten Mäuse, zeigen ein deutlich reduziertes Tumorwachstum, sowie längeres Überleben. Somit stellt diese Kombination ein therapeutisches Fenster dar und könnte zur Behandlung von Neuroblastompatienten genutzt werden. KW - Neuroblastom KW - Aurora-A KW - MYCN KW - neuroblastoma Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-243037 ER - TY - THES A1 - Brockmann, Markus T1 - Inhibition von Aurora-A als neue Therapiestrategie gegen MYCN-amplifizierte Neuroblastome T1 - Inhibition of Aurora-A as a novel therapeutic strategy against MYCN-amplified Neuroblastoma N2 - Im Neuroblastom ist die Amplifikation des MYCN-Gens, das für den Transkriptionsfaktor N-Myc kodiert, der klinisch bedeutendste Faktor für eine schlechte Prognose. Als Mitglied der onkogenen Myc-Familie induziert N-Myc die Expression von Genen, die in vielen biologischen Prozessen wie Metabolismus, Zellzyklusprogression, Zellwachstum und Apoptose eine wichtige Rolle spielen. Die Deregulation der MYCN-Expression führt zu einem charakteristischen Genexpressionsprofil und einem aggressiven Phenotyp in den Tumorzellen. In normalen neuronalen Vorläuferzellen wird N-Myc gewöhnlich sehr schnell proteasomal abgebaut. Während der Mitose wird N-Myc an Serin 62 phosphoryliert. Diese Phosphorylierung dient als Erkennungssignal für die Kinase GSK3β, die die Phosphorylierung an Threonin 58 katalysiert. Das Phosphodegron wird von Fbxw7, einer Komponente des E3-Ubiquitinligase-Komplex SCFFbxw7, erkannt. Die anschließende Ubiquitinierung induziert den proteasomalen Abbau des Proteins. Die Reduktion der N-Myc–Proteinlevel ermöglicht den neuronalen Vorläuferzellen den Austritt aus dem Zellzyklus und führt zu einer terminalen Differenzierung. In einem shRNA Screen konnte AURKA als essentielles Gen für die Proliferation MYCN-amplifizierter Neuroblastomzellen identifiziert werden. Eine Aurora-A–Depletion hatte jedoch keinen Einfluss auf das Wachstum nicht-amplifizierter Zellen. Während dieser Doktorarbeit konnte gezeigt werden, dass Aurora-A speziell den Fbxw7-vermittelten Abbau verhindert und dadurch N-Myc stabilisiert. Für die Stabilisierung ist zwar die Interaktion der beiden Proteine von entscheidender Bedeutung, überraschenderweise spielt die Kinaseaktivität von Aurora-A jedoch keine Rolle. Zwei spezifische Aurora-A–Inhibitoren, MLN8054 und MLN8237, sind allerdings in der Lage, nicht nur die Kinaseaktivität zu hemmen, sondern auch die N-Myc-Proteinlevel zu reduzieren. Beide Moleküle induzieren eine Konformationsänderung in der Kinasedomäne von Aurora-A. Diese ungewöhnliche strukturelle Veränderung hat zur Folge, dass der N-Myc/Aurora-A–Komplex dissoziiert und N-Myc mit Hilfe von Fbxw7 proteasomal abgebaut werden kann. In MYCN-amplifizierten Zellen führt diese Reduktion an N-Myc zu einem Zellzyklusarrest in der G1-Phase. Die in vitro Daten konnten in einem transgenen Maus-Modell für das MYCN-amplifizierte Neuroblastom bestätigt werden. Die Behandlung mit MLN8054 und MLN8237 führte in den Tumoren ebenfalls zu einer N-Myc-Reduktion. Darüber hinaus konnte ein prozentualer Anstieg an differenzierten Zellen, die vollständige Tumorregression in der Mehrzahl der Neuroblastome und eine gesteigerte Lebenserwartung beobachtet werden. Insgesamt zeigen die in vitro und in vivo Daten, dass die spezifischen Aurora-A–Inhibitoren ein hohes therapeutisches Potential gegen das MYCN-amplifizierte Neuroblastom besitzen. N2 - Amplification of MYCN, encoding the transcription factor N-Myc, is one of the strongest clinical predictors of poor prognosis in neuroblastoma. As a member of the oncogenic Myc family, N-Myc activates genes that are involved in several biological processes like metabolism, cell cycle progression, cell growth and apoptosis. Deregulation of MYCN expression leads to a distinct gene expression profile and an aggressive phenotype in neuroblastoma cells. In normal neuronal progenitor cells, N-Myc is rapidly degraded by the ubiquitin-proteasome system. N-Myc degradation is controlled by two phospho-sites. During mitosis, Cyclin B/Cdk1 phosphorylates N-Myc at serine 62, which primes the protein for a second phosphorylation at threonine 58 via GSK3β. This phospho-degron provides a recognition site for Fbxw7, an F-box protein of the E3-Ligase complex SCFFbxw7, leading to destabilisation of the N-Myc protein. Mitotic degradation of the N-Myc protein allows progenitor cells to exit the cell cycle and enables terminal differentiation. Our group had previously identified AURKA as a gene that is required for cell growth in MYCN-amplified neuroblastoma cells but not essential for cells lacking MYCN. Here, we show that Aurora-A counteracts the Fbxw7-mediated degradation, and that the interaction between Aurora-A and N-Myc is cruical for N-Myc stabilization. Surprisingly, Aurora-A stabilizes the transcription factor in a kinase-independent manner. Interestingly, two Aurora-A-Inhibitors, MLN8054 and MLN8237, inhibit the kinase activity but also destabilize the N-Myc protein. These inhibitors induce an unusual conformation of the kinase domain and resulting in the dissociation of the N-Myc/Aurora-A complex. We demonstrate that the disruption of the complex promotes Fbxw7-mediated degradation of N-Myc. Inhibitor treatment in neuroblastoma cells leads to a cell cycle arrest in G1-phase. In a transgenic mouse model of MYCN-driven neuroblastoma, treatment causes downregulation of N-Myc protein levels, differentiation of the tumor cells and complete tumor regression in the majority of tumors. Consistent with the tumor reduction, treatment with MLN8054 and MLN8234 results in an extension of survival of the transgenic mice. Collectively, these results demonstrate that the Aurora-A–Inhibitors MLN8054 and MLN8237 are potential therapeutics against MYCN-amplified Neuroblastoma. KW - N-Myc KW - Neuroblastoma KW - Therapie KW - Neuroblastom KW - MYCN-amplified KW - Therapy KW - Aurora-A Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-135951 ER - TY - THES A1 - Weber, David T1 - Hey target gene regulation in embryonic stem cells and cardiomyocytes T1 - Regulation von Hey Zielgenen in embryonalen Stammzellen und Kardiomyozyten N2 - The Notch signaling pathway is crucial for mammalian heart development. It controls cell-fate decisions, coordinates patterning processes and regulates proliferation and differentiation. Critical Notch effectors are Hey bHLH transcription factors (TF) that are expressed in atrial (Hey1) and ventricular (Hey2) cardiomyocytes (CM) and in the developing endocardium (Hey1/2/L). The importance of Hey proteins for cardiac development is demonstrated by knockout (KO) mice, which suffer from lethal cardiac defects, such as ventricular septum defects (VSD), valve defects and cardiomyopathy. Despite this clear functional relevance, little is known about Hey downstream targets in the heart and the molecular mechanism by which they are regulated. Here, I use a cell culture system with inducible Hey1, Hey2 or HeyL expression to study Hey target gene regulation in HEK293 cells, in murine embryonic stem cells (ESC) and in ESC derived CM. In HEK293 cells, I could show that genome wide binding sites largely overlap between all three Hey proteins, but HeyL has many additional binding sites that are not bound by Hey1 or Hey2. Shared binding sites are located close to transcription start sites (TSS) where Hey proteins preferentially bind to canonical E boxes, although more loosely defined modes of binding exist. Additional sites only bound by HeyL are more scattered across the genome. The ability of HeyL to bind these sites depends on the C-terminal part of the protein. Although there are genes which are differently regulated by HeyL, it is unclear whether this regulation results from binding of additional sites by HeyL. Additionally, Hey target gene regulation was studied in ESC and differentiated CM, which are more relevant for the observed cardiac phenotypes. ESC derived CM contract in culture and are positive for typical cardiac markers by qRT PCR and staining. According to these markers differentiation is unaffected by prolonged Hey1 or Hey2 overexpression. Regulated genes are largely redundant between Hey1 and Hey2. These are mainly other TF involved in e.g. developmental processes, apoptosis, cell migration and cell cycle. Many target genes are cell type specifically regulated causing a shift in Hey repression of genes involved in cell migration in ESC to repression of genes involved in cell cycle in CM. The number of Hey binding sites is reduced in CM and HEK293 cells compared to ESC, most likely due to more regions of dense chromatin in differentiated cells. Binding sites are enriched at the proximal promoters of down-regulated genes, compared to up-or non-regulated genes. This indicates that up-regulation primarily results from indirect effects, while down-regulation is the direct results of Hey binding to target promoters. The extent of repression generally correlates with the amount of Hey binding and subsequent recruitment of histone deacetylases (Hdac) to target promoters resulting in histone H3 deacetylation. However, in CM the repressive effect of Hey binding on a subset of genes can be annulled, likely due to binding of cardiac specific activators like Srf, Nkx2-5 and Gata4. These factors seem not to interfere with Hey binding in CM, but they recruit histone acetylases such as p300 that may counteract Hey mediated histone H3 deacetylation. Such a scenario explains differential regulation of Hey target genes between ESC and CM resulting in gene and cell-type specific regulation. N2 - Der Notch Signalweg ist essenziell für die Herzentwicklung in Säugetieren. Er kontrolliert Zell-differenzierung, koordiniert Musterbildungsprozesse und reguliert Proliferation und Differenzierung. Kritische Notch Effektoren sind Hey bHLH Transkriptionsfaktoren, welche im Herzen in atrialen (Hey1) und ventrikulären (Hey2) Kardiomyozyten und dem sich entwickelnden Endokardium (Hey1/2/L) exprimiert werden. Die Bedeutung von Hey Proteinen während der Herzentwicklung wird an Hand von verschiedenen KO Mäusen ersichtlich, welche letale Herzdefekte, wie ventrikuläre Septumdefekte, Herzklappendefekte und Kardiomyopathien, entwickeln. Trotz dieser klaren funktionalen Relevanz ist wenig über Hey Zielgene im Herzen und den molekularen Mechanismus bekannt, über den diese reguliert werden. Hier wurde ein Zellkultursystem mit induzierbarer Expression von Hey1, Hey2 oder HeyL verwendet, um Hey Zielgene in HEK293, murinen embryonalen Stammzellen und in differenzierten Kardiomyozyten zu studieren. In HEK293 Zellen konnte ich zeigen, dass die Bindestellen im Genom weitestgehend zwischen allen drei Hey Proteinen überlappen, HeyL jedoch viele zusätzliche Bindestellen aufweist, welche weder von Hey1 noch Hey2 gebunden werden. Gemeinsame Bindestellen befinden sich nahe Transkriptionsstartstellen, präferentiell an kanonische E boxen. Die nur von HeyL gebunden Bindestellen sind mehr über das Genom verteilt. Dabei ist die Fähigkeit von HeyL diese Stellen zu binden vom C-terminalen Teil abhängig. Obwohl es Gene gibt, die unterschiedlich von HeyL reguliert werden, ist es auf Grund der sehr viel größeren Anzahl an HeyL Bindestellen unklar, ob diese Regulation das Resultat von zusätzlicher HeyL Bindung ist. Zusätzlich wurde die Regulation von Hey Zielgenen in embryonalen Stammzellen und differenzierten Kardiomyozyten untersucht, da diese Zellen für die beobachteten kardialen Phänotypen relevanter sind. Differenzierte Kardiomyozyten kontrahieren in Kultur und sind positiv für typische kardiale Marker an Hand von qRT-PCR und Färbungen. Nach diesen Markern ist die Differenzierung durch kontinuierliche Überexpression von Hey1 oder Hey2 unverändert. Die Hey1 und Hey2 regulierten Gene sind weitestgehend redundant. Viele Zielgene sind andere Transkriptionsfaktoren, die zum Beispiel an Entwicklungsprozessen, Apoptose, Zellmigration und dem Zellzyklus beteiligt sind. Diese werden oft Zelltyp spezifisch reguliert, was zur Folge hat, dass in embryonalen Stammzellen auch an der Zellmigration beteiligte Gene reprimiert werden, während es in Kardiomyozyten vor allem Gene sind, die den Zellzyklus betreffen. Die Zahl der Hey Bindestellen ist in Kardiomyozyten und HEK293 Zellen verglichen mit embryonalen Stammzellen reduziert, höchstwahrscheinlich da differenzierte Zellen weniger offenes Chromatin besitzen. Die Bindestellen sind in reprimierten Genen verglichen mit induzierten oder nicht regulierten Genen angereichert. Dies deutet an, dass eine Induktion meist durch indirekte Effekte zu Stande kommt, während eine Repression das direkte Ergebnis der Hey Bindung an Zielpromotoren ist. Die Stärke der Repression korreliert dabei generell mit der Menge an Promoter gebundenem Hey Protein, welches Histon-Deacetylasen rekrutiert und zu einer Reduktion der Histon H3 Acetylierung führt. In Kardiomoyzyten wird der repressive Effekt von Hey für bestimmte Gene unterbunden, wahrscheinlich durch Bindung herzspezifischer Aktivatoren, wie Srf, Nkx2 5 und Gata4. Diese Faktoren scheinen nicht die Bindung von Hey zu beeinflussen, aber sie rekrutieren Acetylasen wie p300, welche Hey vermittelter Histon H3 Deacetylierung entgegenwirken. Dieses Model erklärt die unterschiedliche Regulation von Hey Zielgenen zwischen embryonalen Stammzellen und Kardiomyozyten. KW - Transkriptionsfaktor KW - Gen notch KW - Gene regulation KW - Notch signalling KW - Hey proteins KW - Genregulation KW - Notch Signalweg KW - Hey Proteine Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-101663 ER - TY - THES A1 - Hein, Melanie T1 - Functional analysis of angiogenic factors in tumor cells and endothelia T1 - Funktionelle Analyse angiogener Faktoren in Tumorzellen und Endothelien N2 - Tumor angiogenesis is essential for the growth of solid tumors as their proliferation and survival is dependent on consistent oxygen and nutrient supply. Anti-angiogenic treatments represent a therapeutic strategy to inhibit tumor growth by preventing the formation of new blood vessels leading to starvation of the tumor. One of the best characterized anti angiogenic therapeutics is the monoclonal antibody bevacizumab (Avastin), which targets and neutralizes VEGF leading to disruption of the VEGF signaling pathway. Until today, bevacizumab has found its way into clinical practice and has gained approval for treatment of different types of cancer including colorectal cancer, non-small cell lung cancer, breast cancer and renal cell carcinoma. Signaling of VEGF is mediated through VEGF receptors, mainly VEGFR2, which are primarily located on the cell surface of endothelial cells. However, there has been evidence that expression of VEGF receptors can also be found on tumor cells themselves raising the possibility of autocrine and/or paracrine signaling loops. Thus, tumor cells could also benefit from VEGF signaling, which would promote tumor growth. The aim of this study was to investigate if bevacizumab has a direct effect on tumor cells in vitro. To this end, tumor cell lines from the NCI-60 panel derived from four different tumor types were treated with bevacizumab and angiogenic gene and protein expression as well as biological outputs including proliferation, migration and apoptosis were investigated. Most of the experiments were performed under hypoxia to mimic the in vivo state of tumors. Overall, there was a limited measurable effect of bevacizumab on treated tumor cell lines according to gene and protein expression changes as well as biological functions when compared to endothelial controls. Minor changes in terms of proliferation or gene regulation were evident in a single tumor cell line after VEGF-A blockade by bevacizumab, which partially demonstrated a direct effect on tumor cells. However, the overall analysis revealed that tumor cell lines are not intrinsically affected in an adverse manner by bevacizumab treatment. Besides the functional analysis of tumor cells, embryonic stem cell derived endothelial cells were characterized to delineate vascular Hey gene functions. Hey and Hes proteins are the best characterized downstream effectors of the evolutionary conserved Notch signaling pathway, which mainly act as transcriptional repressors regulating downstream target genes. Hey proteins play a crucial role in embryonic development as loss of Hey1 and Hey2 in mice in vivo leads to a severe vascular phenotype resulting in early embryonic lethality. The major aim of this part of the thesis was to identify vascular Hey target genes using embryonic stem cell derived endothelial cells utilizing a directed endothelial differentiation approach, as ES cells and their differentiation ability provide a powerful in vitro system to study developmental processes. To this end, Hey deficient and Hey wildtype embryonic stem cells were stably transfected with an antibiotic selection marker driven by an endothelial specific promoter, which allows selection for endothelial cells. ESC-derived endothelial cells exhibited typical endothelial characteristics as shown by marker gene expression, immunofluorescent staining and tube formation ability. In a second step, Hey deficient ES cells were stably transfected with doxycycline inducible Flag-tagged Hey1 and Hey2 transgenes to re-express Hey proteins in the respective cell line. RNA-Sequencing of Hey deficient and Hey overexpressing ES cells as well as ESC-derived endothelial cells revealed many Hey downstream target genes in ES cells and fewer target genes in endothelial cells. Hey1 and Hey2 more or less redundantly regulate target genes in ES cells, but some genes were regulated by Hey2 alone. According to Gene Ontology term analysis, Hey target genes are mainly involved in embryonic development and transcriptional regulation. However, the response of ESC-derived endothelial cells in regulating Hey downstream target genes was rather limited when compared to ES cells, which could be due to lower transgene expression in endothelial cells. The limited response also raises the possibility that target gene regulation in endothelial cells is not only dependent on Hey gene functions alone and thus loss or overexpression of Hey genes in this in vitro setting does not influence target gene regulation. N2 - Tumorangiogenese ist essential für das Wachstum von Tumoren, da ihr Überleben und ihre Proliferation von einer dauerhaften Versorgung mit Sauerstoff und Nährstoffen abhängig sind. Anti-angiogene Therapeutika inhibieren das Wachstum von Tumoren, indem sie die Bildung von neuen Blutgefäßen unterbinden, was zu einem „Verhungern“ des Tumors führt. Zu den am besten untersuchten anti-angiogenen Therapeutika gehört der monoklonale Antikörper Bevacizumab (Avastin), welcher den Wachstumsfaktor VEGF bindet und neutralisiert, was schließlich zu einer Unterbrechung des VEGF-Signalweges führt. Bevacizumab wird aktuell zur Behandlung verschiedener Tumortypen, unter anderem Colonkarzinom, nicht kleinzelliges Lungenkarzinom, Brustkrebs und Nierenzellkarzinom in der Praxis angewandt. VEGF bindet an VEGFR2 und andere VEGF-Rezeptoren, welche primär an der Oberfläche von Endothelzellen lokalisiert sind. Dennoch gibt es Hinweise, dass die Expression von VEGF-Rezeptoren nicht ausschließlich auf Endothelzellen begrenzt ist, sondern auch auf Tumorzellen nachgewiesen werden konnte. Die tumorale Expression von VEGF-Rezeptoren ermöglicht eine direkte autokrine und/oder parakrine Stimulation von Tumorzellen. Tumorzellen könnten dadurch selbst vom VEGF-Signalweg profitieren, was das Tumorwachstum fördern würde. Das Ziel dieser Arbeit war es, zu untersuchen, ob Bevacizumab in vitro einen direkten Einfluss auf Tumorzellen ausübt. Dazu wurden verschiedene Tumorzelllinien von vier unterschiedlichen Tumortypen aus der NCI-60 Sammlung mit Bevacizumab behandelt und anschließend die Gen- und Proteinexpression von angiogenen Markern sowie biologische Funktionen wie Proliferation, Migration und Apoptose untersucht. Die Experimente wurden hauptsächlich unter Hypoxie durchgeführt, um den in vivo Status von Tumoren nachzuahmen. Insgesamt war ein direkter Effekt von Bevacizumab auf Tumorzellen im Vergleich zu Endothelzellen nicht nachweisbar. Gen- und Proteinexpression sowie biologische Funktionen waren in Tumorzellen nach Bevacizumab Behandlung bis auf wenige Ausnahmen unverändert. Geringe Veränderungen in der Proliferationsrate sowie in der Genregulation nach Inhibition von VEGF durch Bevacizumab konnten jeweils in einer einzelnen Zelllinie nachgewiesen werden, wodurch zumindest teilweise eine direkte Wirkung von Bevacizumab auf Tumorzellen gezeigt werden konnte. Dennoch zeigt die umfassende Analyse der verschiedenen Tumorzellen, dass die Bevacizumab-Behandlung sich insgesamt nicht negativ auf Tumorzellen auswirkt und diese nicht intrinsisch beeinflusst werden. Neben der funktionellen Analyse von Tumorzellen wurden Endothelzellen, die aus embryonalen Stammzellen gewonnen wurden, charakterisiert, um anhand derer die Rolle der Hey Gene in der vaskulären Entwicklung näher zu bestimmen. Hey und Hes Proteine sind die am besten charakterisierten nachgeschalteten Effektoren des evolutionär konservierten Notch-Signalweges. Als Transkriptionsfaktoren sind Hey Proteine an der Regulation von Zielgenen beteiligt, wobei sie meist als transkriptionelle Repressoren fungieren. Hey Proteine spielen eine sehr wichtige Rolle während der Embryonalentwicklung, da der gemeinsame Verlust von Hey1 und Hey2 in Mäusen in vivo einen vaskulären Phenotyp hervorruft, der in sehr früher embryonaler Letalität endet. Das Hauptziel dieser Arbeit war es, vaskuläre Hey Zielgene mit Hilfe von Endothelzellen, die aus embryonalen Stammzellen differenziert wurden, zu identifizieren. Die Fähigkeit embryonaler Stammzellen verschiedene Zelltypen zu bilden, liefert dabei ein wertvolles in vitro System, um entwicklungsbiologische Prozesse zu analysieren. Dazu wurden Hey-defiziente und Hey-Wildtyp embryonale Stammzellen mit einem antibiotischen Selektionsmarker versehen, dessen Expression von einem Endothel spezifischen Promoter kontrolliert wird und daher die Selektion von Endothelzellen erlaubt. Die differenzierten Endothelzellen wiesen typische endotheliale Charakteristika auf, was durch Markergen-Expression, Immunfluoreszenzfärbungen und der Bildung netzwerkähnlicher Strukturen gezeigt werden konnte. In einem zweiten Schritt wurden Doxyzyklin-induzierbare Flag-markierte Hey1 bzw. Hey2 Konstrukte stabil in Hey-defiziente Zellen integriert, um Hey1 bzw. Hey2 kontrollierbar zu re-exprimieren. Die Zielgensuche mittels RNA-Seq Analyse lieferte viele Hey Zielgene in embryonalen Stammzellen, jedoch weitaus weniger Zielgene in ausdifferenzierten Endothelzellen. Zusammengefasst zeigten Hey1 und Hey2 eine redundante Regulation von Zielgenen in embryonalen Stammzellen, wobei einige wenige Gene alleine durch Hey2 reguliert wurden. Die Gen-Ontologie Analyse zeigte, dass diese Zielgene hauptsächlich an der embryonalen Entwicklung und der transkriptionellen Regulation von anderen Genen beteiligt sind. Dennoch war die Anzahl der Hey regulierten Gene in Endothelzellen weitaus geringer als in embryonalen Stammzellen. Das könnte auf eine geringere Transgen-Expression in Endothelzellen im Vergleich zu embryonalen Stammzellen zurückzuführen sein. Die weitaus geringere Anzahl an Hey Zielgenen in Endothelzellen lässt außerdem vermuten, dass die Regulation von Zielgenen in Endothelzellen nicht ausschließlich von der Funktion der Hey Gene abhängig ist. Die Regulation von Hey Zielgenen in Endothelien wurde durch den Verlust bzw. die Überexpression von Hey1 und Hey2 in dem angewandten in vitro System nur geringfügig beeinflusst. KW - Krebs KW - Angiogenese KW - Cancer KW - Angiogenesis KW - Bevacizumab KW - Monoklonaler Antikörper KW - Antiangiogenese Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-93863 ER - TY - THES A1 - Lüffe, Teresa Magdalena T1 - Behavioral and pharmacological validation of genetic zebrafish models for ADHD T1 - Pharmakologische und verhaltensbasierte Validierung genetischer Zebrafischmodelle für ADHS N2 - Attention-deficit/hyperactivity disorder (ADHD) is the most prevalent neurodevelopmental disorder described in psychiatry today. ADHD arises during early childhood and is characterized by an age-inappropriate level of inattention, hyperactivity, impulsivity, and partially emotional dysregulation. Besides, substantial psychiatric comorbidity further broadens the symptomatic spectrum. Despite advances in ADHD research by genetic- and imaging studies, the etiopathogenesis of ADHD remains largely unclear. Twin studies suggest a heritability of 70-80 % that, based on genome-wide investigations, is assumed to be polygenic and a mixed composite of small and large, common and rare genetic variants. In recent years the number of genetic risk candidates is continuously increased. However, for most, a biological link to neuropathology and symptomatology of the patient is still missing. Uncovering this link is vital for a better understanding of the disorder, the identification of new treatment targets, and therefore the development of a more targeted and possibly personalized therapy. The present thesis addresses the issue for the ADHD risk candidates GRM8, FOXP2, and GAD1. By establishing loss of function zebrafish models, using CRISPR/Cas9 derived mutagenesis and antisense oligonucleotides, and studying them for morphological, functional, and behavioral alterations, it provides novel insights into the candidate's contribution to neuropathology and ADHD associated phenotypes. Using locomotor activity as behavioral read-out, the present work identified a genetic and functional implication of Grm8a, Grm8b, Foxp2, and Gad1b in ADHD associated hyperactivity. Further, it provides substantial evidence that the function of Grm8a, Grm8b, Foxp2, and Gad1b in activity regulation involves GABAergic signaling. Preliminary indications suggest that the three candidates interfere with GABAergic signaling in the ventral forebrain/striatum. However, according to present and previous data, via different biological mechanisms such as GABA synthesis, transmitter release regulation, synapse formation and/or transcriptional regulation of synaptic components. Intriguingly, this work further demonstrates that the activity regulating circuit, affected upon Foxp2 and Gad1b loss of function, is involved in the therapeutic effect mechanism of methylphenidate. Altogether, the present thesis identified altered GABAergic signaling in activity regulating circuits in, presumably, the ventral forebrain as neuropathological underpinning of ADHD associated hyperactivity. Further, it demonstrates altered GABAergic signaling as mechanistic link between the genetic disruption of Grm8a, Grm8b, Foxp2, and Gad1b and ADHD symptomatology like hyperactivity. Thus, this thesis highlights GABAergic signaling in activity regulating circuits and, in this context, Grm8a, Grm8b, Foxp2, and Gad1b as exciting targets for future investigations on ADHD etiopathogenesis and the development of novel therapeutic interventions for ADHD related hyperactivity. Additionally, thigmotaxis measurements suggest Grm8a, Grm8b, and Gad1b as interesting candidates for prospective studies on comorbid anxiety in ADHD. Furthermore, expression analysis in foxp2 mutants demonstrates Foxp2 as regulator of ADHD associated gene sets and neurodevelopmental disorder (NDD) overarching genetic and functional networks with possible implications for ADHD polygenicity and comorbidity. Finally, with the characterization of gene expression patterns and the generation and validation of genetic zebrafish models for Grm8a, Grm8b, Foxp2, and Gad1b, the present thesis laid the groundwork for future research efforts, for instance, the identification of the functional circuit(s) and biological mechanism(s) by which Grm8a, Grm8b, Foxp2, and Gad1b loss of function interfere with GABAergic signaling and ultimately induce hyperactivity. N2 - Aufmerksamkeitsdefizit-/Hyperaktivitätsstörung (ADHS) ist mit einer weltweiten Prävalenz von rund 5 % die am häufigsten vorkommende Neuroentwicklungsstörung. Das Krankheitsbild, das zumeist im Kindesalter auftritt und bis ins Erwachsenenalter bestehen kann, zeigt sich im Wesentlichen durch eine Beeinträchtigung der Aufmerksamkeit, der Aktivität, der Impuls-kontrolle und zum Teil durch emotionale Dysregulation. Darüber hinaus führt das vermehrte Auftreten von psychischen Begleiterkrankungen (so genannte Komorbiditäten) zu einer komplexen Symptomatik vieler Betroffener, die über die klassischen Merkmale von ADHS hinausgeht. Während das Krankheitsbild vielfach beschrieben wurde, ist die Ätiopathogenese trotz intensiver wissenschaftlicher Bemühungen bis heute weitestgehend ungeklärt. Zwillingsstudien weisen darauf hin, dass ADHS zu 70-80 % erblich bedingt ist. Aufgrund mehrerer Genom-Studien wird vermutet, dass es sich dabei um eine polygene Vererbbarkeit handelt und sowohl kleine (SNPs), verhältnismäßig häufig auftretende, als auch große (CNVs) verhältnismäßig seltene Genpolymorphismen beteiligt sind. Die Anzahl der potenziellen Risikogene für ADHS ist in den letzten Jahren kontinuierlich gestiegen, jedoch ist es nach wie vor unklar, inwiefern und durch welche biologischen Prozesse die meisten zur Neuropathologie und Symptomatik von ADHS Patienten beitragen. Diese Prozesse zu identifizieren ist von zentraler Bedeutung für ein besseres Verständnis der Erkrankung, der Identifizierung neuer Angriffsziele und somit, der Entwicklung gezielterer und möglicherweise personalisierter Behandlungsmöglichkeiten. Die vorliegende Arbeit befasst sich mit diesen Prozessen am Beispiel der potenziellen Risikogene GRM8, FOXP2 und GAD1. Durch die Etablierung und Validierung entsprechender (geneti-scher) Knockout und Knockdown Zebrafischmodelle und der anschließenden Untersuchung auf Verhaltens-, morphologische und funktionelle Veränderungen liefert die vorliegende Dissertation wichtige Erkenntnisse über die funktionelle Relevanz der einzelnen Kandidaten für die Neuropathologie und die Symptomatik von ADHS. Beispielsweise zeigen die erfassten Aktivitätsdaten von Knockdown und Knockout Larven, dass Grm8a, Grm8b, Foxp2 und Gad1b an der Regulation von Bewegungsaktivität beteiligt sind und dass dies, die korrekte Funktion GABAerger Prozesse bedarf. Des Weiteren liefert die Arbeit Hinweise, dass der Effekt im Subpallium/Striatum verankert ist. Jedoch ist aufgrund vorliegender und bereits publizierter Daten anzunehmen, dass im Falle der einzelnen Kandidaten, zum Teil unterschiedliche Me-chanismen wie die Transmittersynthese, die Transmitterfreisetzung, die Synapsenbildung und die Expression synaptischer Komponenten betroffen sind. Interessanterweise scheinen die durch die Kandidaten betroffenen Signalwege außerdem, laut erhobener Daten, am Wirkmechanismus von Methylphenidat beteiligt zu sein. Kurzum, die vorliegende Dissertation identifiziert die Beeinträchtigung GABAerger Signalübertragung eines, mutmaßlich subpallialen/striatalen aktivitäts-regulierenden neuronalen Netzwerks als neurobiologische Grundlage ADHS-assoziierter Hyperaktivität. Gleichzeitig präsentiert die Arbeit diese Prozesse als funktionelles Bindeglied zwischen der genetischen Veränderung von GRM8, FOXP2 und GAD1 und Hyperaktivität in ADHS. Folglich sind die entwicklungs- und neurobiologischen Mechanismen rund um die GABAerge Übertragung in diesem Netzwerk, und in diesem Zusammenhang die Funktion von Grm8a, (Grm8b), Foxp2 und Gad1b, spannende Ziele für zukünftige Projekte zur Erforschung der Ätiopathogenese und der Entwicklung neuer Therapien von Hyperakti-vität in ADHS. Neben der Rolle in ADHS-assoziierter Hyperaktivität, präsentieren die erhobenen Verhaltensdaten Grm8a, Grm8b und Gad1b außerdem, als interessante Kandidaten für die Erforschung komorbider Angststörung in ADHS. Foxp2 dagegen, wurde mit Hilfe einer Genexpressionsanalyse als Regulator zahlreicher ADHS Risikogene und Entwicklungsstörungs-übergreifenden genetischen und funktionellen Netzwerken, mit möglicher Relevanz für die Polygenie und Komorbidität von ADHS, identifiziert. Im Allgemeinen schafft die vorliegende Dissertation mit der Bestimmung der Genexpressionsmuster und Etablierung und Validierung der (genetischen) Zebrafischmodelle für Grm8a, Grm8b, Foxp2 und Gad1b die Grundlage, diese und weitere Aspekte in zukünftigen Forschungsprojekten zu untersuchen. Beispielsweise die Identifizierung der Netzwerke und Mechanismen, mit dessen Hilfe Grm8a, (Grm8b), Foxp2 und Gad1b in die GABAerge Signalübertragung eingreifen und so letztlich die Aktivität beeinflussen. KW - ADHD KW - Zebrafish KW - FOXP2 KW - GRM8 KW - GAD1 KW - Genetic etiology KW - Animal model KW - Thigmotaxis KW - Locomotor activity KW - Hyperactivity Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257168 ER -