TY - THES A1 - Franzke, Myriam T1 - Keep on track : The use of visual cues for orientation in monarch butterflies T1 - Auf Kurs bleiben : Die Nutzung visueller Hinweise zur Orientierung bei Monarchfaltern N2 - The monarch butterfly (Danaus plexippus) performs one of the most astonishing behaviors in the animal kingdom: every fall millions of these butterflies leave their breeding grounds in North Amerika and migrate more than 4.000 km southwards until they reach their overwintering habitat in Central Mexico. To maintain their migratory direction over this enormous distance, the butterflies use a time-compensated sun compass. Beside this, skylight polarization, the Earth’s magnetic field and specific mountain ranges seem to guide the butterflies as well the south. In contrast to this fascinating orientation ability, the behavior of the butterflies in their non-migratory state received less attention. Although they do not travel long distances, they still need to orient themselves to find food, mating partners or get away from competitors. The aim of the present doctoral thesis was to investigate use of visual cues for orientation in migrating as well as non-migrating monarch butterflies. For this, field experiments investigating the migration of the butterflies in Texas (USA) were combined with experiments testing the orientation performance of non-migratory butterflies in Germany. In the first project, I recorded the heading directions of tethered butterflies during their annual fall migration. In an outdoor flight simulator, the butterflies maintained a southwards direction as long as they had a view of the sun’s position. Relocating the position of the sun by 180° using a mirror, revealed that the sun is the animals’ main orientation reference. Furthermore, I demonstrated that when the sun is blocked and a green light stimulus (simulated sun) is introduced, the animals interpreted this stimulus as the ‘real’ sun. However, this cue was not sufficient to set the migratory direction when simulated as the only visual cue in indoor experiments. When I presented the butterflies a linear polarization pattern additionally to the simulated sun, the animals headed in the correct southerly direction showing that multiple skylight cues are required to guide the butterflies during their migration. In the second project, I, furthermore, demonstrated that non-migrating butterflies are able to maintain a constant direction with respect to a simulated sun. Interestingly, they ignored the spectral component of the stimulus and relied on the intensity instead. When a panoramic skyline was presented as the only orientation reference, the butterflies maintained their direction only for short time windows probably trying to stabilize their flight based on optic-flow information. Next, I investigated whether the butterflies combine celestial with local cues by simulating a sun stimulus together with a panoramic skyline. Under this conditions, the animals’ directedness was increased demonstrating that they combine multiple visual cues for spatial orientation. Following up on the observation that a sun stimulus resulted in a different behavior than the panoramic skyline, I investigated in my third project which orientation strategies the butterflies use by presenting different simulated cues to them. While a bright stripe on a dark background elicited a strong attraction of the butterflies steering in the direction of the stimulus, the inverted version of the stimulus was used for flight stabilization. In contrast to this, the butterflies maintained arbitrary directions with a high directedness with respect to a simulated sun. In an ambiguous scenery with two identical stimuli (two bright stripes, two dark stripes, or two sun stimuli) set 180° apart, a constant flight course was only achieved when two sun stimuli were displayed suggesting an involvement of the animals’ internal compass. In contrast, the butterflies used two dark stripes for flight stabilization and were alternatingly attracted by two bright stripes. This shows that monarch butterflies use stimulus-dependent orientation strategies and gives the first evidence for different neuronal pathways controlling the output behavior. N2 - Der Monarchfalter (Danaus plexippus) vollführt eine der atemberaubendsten Verhaltensweisen im Tierreich: Jeden Herbst verlassen Millionen dieser Schmetterlinge ihre Brutgebiete in Nordamerika und migrieren mehr als 4000 km südwärts bis sie ihr Überwinterungsgebiet in Zentralmexico erreichen. Um ihre Migrationsrichtung über diese enorme Distanz einzuhalten, benutzen die Schmetterlinge einen zeitkompensierten Sonnenkompass. Daneben scheinen polarisiertes Licht, das Erdmagnetfeld und bestimmte Gebirgsketten die Schmetterlinge nach Süden zu führen. Im Gegensatz zu dieser faszinierenden Orientierungsfähigkeit wurde dem Verhalten der Schmetterlinge in ihrem nicht-migrierendem Zustand wenig Beachtung geschenkt. Obwohl diese keine großen Distanzen zurücklegen, müssen sie sich dennoch orientieren, um Futter und Paarungspartner zu finden oder Konkurrenten zu entfliehen. Das Ziel der vorliegenden Doktorarbeit war es, die Nutzung visueller Hinweise für die Orientierung von sowohl migrierenden als auch nicht-migrierenden Monarchfaltern zu untersuchen. Dazu wurden Feldexperimente, in denen die Migration der Schmetterlinge in Texas (USA) untersucht wurden, mit Experimenten, in denen das Orientierungsvermögen von nicht-migrierenden Schmetterlingen in Deutschland getestet wurde, verknüpft. Im ersten Projekt habe ich die Flugrichtung von Schmetterlingen während der jährlichen Herbstmigration aufgezeichnet. In einem Flugsimulator im Freien hielten die Schmetterlinge eine südliche Richtung, solange sie eine freie Sicht auf die Sonne hatten. Eine Versetzung der Sonnenposition um 180° mit Hilfe eines Spiegels zeigte auf, dass die Sonne die wichtigste Orientierungsreferenz der Tiere ist. Des Weiteren konnte ich zeigen, dass die Tiere, wenn die Sonne blockiert und ein grüner Lichtstimulus (simulierte Sonne) eingeschaltet wurde, diese simulierte Sonne als "echte" Sonne interpretierten. Dieser Hinweis reichte jedoch nicht aus, um die Migrationsrichtung festzulegen, wenn er als einziger visueller Hinweis im Labor simuliert wurde. Als ich den Schmetterlingen zusätzlich zur simulierten Sonne ein lineares Polarisationsmuster präsentierte, flogen die Tiere in die richtige, südliche Richtung. Das zeigt, dass mehrere Himmelshinweise erforderlich sind, um die Schmetterlinge während ihrer Migration zu steuern. Im zweiten Projekt habe ich weiterhin gezeigt, dass nicht migrierende Schmetterlinge in der Lage sind eine konstante Richtung relativ zu einer simulierten Sonne beizubehalten. Interessanterweise ignorierten sie die spektrale Komponente des Stimulus und verließen sich stattdessen auf die Intensität. Als ein Panorama als einzige Orientierungsreferenz präsentiert wurde, hielten die Schmetterlinge ihre Richtung nur für kurze Zeitfenster und versuchten vermutlich, ihren Flug basierend auf Informationen des optischen Flusses zu stabilisieren. Als Nächstes untersuchte ich, ob die Schmetterlinge Himmelshinweise und lokale Hinweisen kombinieren, indem ich eine Sonne zusammen mit einem Panorama simulierte. Unter diesen Bedingungen war die Gerichtetheit der Flüge erhöht, was zeigt, dass die Tiere mehrere visuelle Hinweise zur räumlichen Orientierung kombinieren. Beruhend auf der Beobachtung, dass ein Sonnenstimulus zu einem anderen Verhaltensmuster führte als das Panorama, untersuchte ich in meinem dritten Projekt, welche Orientierungsstrategien die Schmetterlinge verwenden. Hierfür präsentierte ich den Tieren verschiedene simulierte Hinweise. Während ein heller Streifen auf dunklem Hintergrund eine starke Anziehungskraft auf die Schmetterlinge, die in die Richtung des Reizes flogen, ausübte, wurde die invertierte Version des Stimulus zur Flugstabilisierung verwendet. Im Gegensatz dazu hielten die Schmetterlinge beliebige Richtungen mit einer hohen Gerichtetheit relativ zu einer simulierten Sonne ein. In einer uneindeutigen Szenerie mit zwei identischen Reizen (zwei helle Streifen, zwei dunkle Streifen oder zwei Sonnenstimuli), die um 180° versetzt waren, wurde eine konstante Flugrichtung nur dann erreicht, wenn zwei Sonnenstimuli gezeigt wurden. Das deutet auf eine Beteiligung des inneren Kompasses der Tiere hin. Im Gegensatz dazu nutzten die Schmetterlinge zwei dunkle Streifen zur Flugstabilisierung und wurden abwechselnd von zwei hellen Streifen angezogen. Dies zeigt, dass Monarchfalter stimulus-abhängige Orientierungsstrategien verwenden, und liefert den ersten Nachweis für unterschiedliche neuronale Verschaltungswege, die das Verhalten steuern. KW - Monarchfalter KW - Orientierung KW - Visuelle Orientierung KW - Schmetterlinge KW - Insekten KW - visual cue Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284709 ER - TY - THES A1 - Grob, Robin T1 - The Function of Learning Walks of \({Cataglyphis Ants}\): Behavioral and Neuronal Analyses T1 - Die Funktion der Lernläufe in \(Cataglyphis\) Ameisen: eine Studie des Verhaltens und der neuronalen Auswirkungen N2 - Humans and animals alike use the sun, the moon, and the stars to guide their ways. However, the position of celestial cues changes depending on daytime, season, and place on earth. To use these celestial cues for reliable navigation, the rotation of the sky has to be compensated. While humans invented complicated mechanisms like the Antikythera mechanism to keep track of celestial movements, animals can only rely on their brains. The desert ant Cataglyphis is a prime example of an animal using celestial cues for navigation. Using the sun and the related skylight polarization pattern as a compass, and a step integrator for distance measurements, it can determine a vector always pointing homewards. This mechanism is called path integration. Since the sun’s position and, therefore, also the polarization pattern changes throughout the day, Cataglyphis have to correct this movement. If they did not compensate for time, the ants’ compass would direct them in different directions in the morning and the evening. Thus, the ants have to learn the solar ephemeris before their far-reaching foraging trips. To do so, Cataglyphis ants perform a well-structured learning-walk behavior during the transition phase from indoor worker to outdoor forager. While walking in small loops around the nest entrance, the ants repeatedly stop their forward movements to perform turns. These can be small walked circles (voltes) or tight turns about the ants’ body axes (pirouettes). During pirouettes, the ants gaze back to their nest entrance during stopping phases. These look backs provide a behavioral read-out for the state of the path integrator. The ants “tell” the observer where they think their nest is, by looking back to it. Pirouettes are only performed by Cataglyphis ants inhabiting an environment with a prominent visual panorama. This indicates, that pirouettes are performed to learn the visual panorama. Voltes, on the other hand, might be used for calibrating the celestial compass of the ants. In my doctoral thesis, I employed a wide range of state-of-the-art techniques from different disciplines in biology to gain a deeper understanding of how navigational information is acquired, memorized, used, and calibrated during the transition phase from interior worker to outdoor forager. I could show, that celestial orientation cues that provide the main compass during foraging, do not guide the ants during the look-backbehavior of initial learning walks. Instead Cataglyphis nodus relies on the earth’s magnetic field as a compass during this early learning phase. While not guiding the ants during their first walks outside of the nest, excluding the ants from perceiving the natural polarization pattern of the skylight has significant consequences on learning-related plasticity in the ants’ brain. Only if the ants are able to perform their learning-walk behavior under a skylight polarization pattern that changes throughout the day, plastic neuronal changes in high-order integration centers are induced. Especially the mushroom bogy collar, a center for learning and memory, and the central complex, a center for orientation and motor control, showed an increase in volume after learning walks. This underlines the importance of learning walks for calibrating the celestial compass. The magnetic compass might provide the necessary stable reference system for the ants to calibrate their celestial compass and learn the position of landmark information. In the ant brain, visual information from the polarization-sensitive ocelli converge in tight apposition with neuronal afferents of the mechanosensitive Johnston’s organ in the ant’s antennae. This makes the ants’ antennae an interesting candidate for studying the sensory bases of compass calibration in Cataglyphis ants. The brain of the desert navigators is well adapted to successfully accomplish their navigational needs. Females (gynes and workers) have voluminous mushroom bodies, and the synaptic complexity to store large amount of view-based navigational information, which they acquire during initial learning walks. The male Cataglyphis brain is better suited for innate behaviors that support finding a mate. The results of my thesis show that the well adapted brain of C. nodus ants undergoes massive structural changes during leaning walks, dependent on a changing celestial polarization pattern. This underlies the essential role of learning walks in the calibration of orientation systems in desert ants. N2 - Die Gestirne helfen nicht nur Menschen uns zurecht zu finden, sondern auch Tiere können Sonne, Mond und Sterne für Navigation nutzen. Dabei gilt es aber zu beachten, dass die Himmelskörper ihre Position abhängig von der Tageszeit, den Jahreszeiten und dem Standort auf der Erde verändern. Um anhand von Himmelseigenschaften erfolgreich navigieren zu können, ist es deshalb unerlässlich diese Himmelsrotation zu kennen und für sie zu kompensieren. Menschen haben dafür bereits in der Antike komplizierte Maschinen wie den Antikythera Mechanismus entwickelt, Tiere dagegen brauchen nur ihr Gehirn. Wüstenameisen der Galtung Cataglyphis sind kleine Meisternavigatoren. Sie benutzen einen Himmelskompass, basierend auf der Sonne und dem mit ihr assoziierten Polarisationsmuster des Himmels, und einen Schrittintegrator, um einen Vektor zu bestimmen, der immer genau zu ihrem Ausgangspunkt zurück zeigt. Dieser Orientierungsmechanismus heißt Wegintegration. Da sich allerdings die Position der Sonne am Himmel und damit auch das Polarisationsmuster des Himmels über den Tag verändern, muss Cataglyphis für diese Veränderung kompensieren. Würde sie das nicht tun, würde ihr Kompass morgens in eine ganz andere Richtung als abends zeigen. Deshalb müssen Ameisen den Sonnenverlauf erlernen bevor sie zu ihren weitläufigen Futtersuchläufen aufbrechen. Cataglyphis führt dazu ein strukturiertes Lernlaufverhalten durch während des Übergangs von Innendiensttier zu Sammlerinnen. Dabei laufen die Ameisen in kleinen Schlaufen um ihren Nesteingang und stoppen ihre Vorwärtsbewegung mehrmalig, um Drehungen durchzuführen. Diese Drehungen sind entweder kleine gelaufene Kreise (Volten) oder Drehungen um die eigene Achse (Pirouetten). Nur Cataglyphis, die Gegenden mit einem reichhaltigen visuellen Panorama bewohnen, führen Pirouetten aus bei denen sie zurück zu ihrem Nesteingang schauen. Dies legt nahe, dass während Pirouetten das Panorama gelernt wird. Während Volten wird wohl der Himmelskompass kalibriert. Die Rückdrehungen während ihrer Lernläufe geben die einmalige Möglichkeit, die Ameise zu „fragen“ wo sie denkt, dass ihr Nest sei und damit ihren Wegintegrator auszulesen. In meiner Doktorarbeit kombinierte ich viele biologischen Methoden unterschiedlicher Disziplinen um zu untersuchen wie die Ameisen ihre Navigationssysteme während der ersten Läufe außerhalb des Nestes erlernen, speichern, kalibrieren und später nutzen. Ich konnte zeigen, dass Himmelsinformationen, die bei Sammlerinnen als wichtigster 4 Kompass dienen, nicht für die Orientierung der Rückblicke während Lernläufen dienen. Stattdessen nutzten naive Cataglyphis nodus das Erdmagnetfeld als Kompass. Obwohl Himmelsinformationen nicht als Kompass während der Lernläufe genutzt werden, spielen sie eine essentielle Rolle für neuroplastische Veränderungen im Gehirn der Ameisen. Nur wenn Ameisen ihre Lernläufe unter einem Polaristaionsmuster, das sich über den Tag hinweg verändert, ausführen, kommt es zu plastischen Veränderungen in neuronalen Integrationszentren. Besonders die Pilzkörper, Zentren für Lernen und Gedächtnis, und der Zentralkomplex, Zentrum für Orientierung und Bewegungssteuerung, nehmen im Volumen nach Lernläufen zu. Lernläufe spielen also eine wichtige Rolle für die Kalibrierung der Navigationsinformationen. Das Erdmagnetfeld könnte das für die Kalibierung notwendige erdgebundene, stabile Referenzsystem bieten, an dem die Himmelsbewegung gelernt wird. Im Ameisengehirn laufen visuelle Informationen von den polarisatiossensitiven Ocelli mit Afferenzen des mechanosensitiven Johnstonschen Organ aus der Antenne zusammen. Die Antenne könnte daher eine wichtiges Organ für die Kalibrierung der Orientierungssysteme sein. Das kleine Gehirn der Ameisen ist bestens an ihre Anforderungen als große Navigatoren angepasst. Weibliche C. nodus (Arbeiterinnen und Königinnen) besitzen große Pilzkörper mit einer Anzahl an Synapsen, die es ihnen erlaubt eine Vielzahl von Umgebungsbildern zu speichern, die sie während ihrer initialen Lernläufe lernen müssen. Das männliche Cataglyphis-Gehirn ist besser auf angeborene Orientierungsstrategien angepasst, die ihm helfen einen Geschlechtspartner zu finden. Die Ergebnisse meiner Doktorarbeit zeigen, dass das an die navigatorischen Herausforderungen angepasste Gehirn von C. nodus signifikante neuronale Veränderungen in Abhängigkeit eines sich veränderten Polaristaionsmusters während der Lernläufe erfährt. Dies zeigt die essentielle Rolle der Lernläufe in der Kalibrierung der Navigationssysteme von Wüstenameisen. KW - Cataglyphis KW - Kompass KW - Navigation KW - Nahrungserwerb KW - Neuroethologie KW - Neuroethology KW - Polyethism KW - Learning Walk KW - Geomagnetic Field KW - Learning & Memory Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-290173 ER -