TY - THES A1 - Hügel, Markus T1 - The control of nanomorphology in star-shaped mesogens T1 - Die Steuerung der Nanomorphologie von sternförmigen Mesogenen N2 - Stilbene-based star-shaped mesogens have been synthesized with and without fullerene guests. Thermotropic properties and the mechanism of space-filling in the mesophases of these systems have been examined. N2 - Auf Stilben basierende sternförmige Mesogene wurden mit als auch ohne Fullerengäste synthetisiert. Die thermotropen Eigenschaften und der Mechanismus der Raumfüllung in den Mesophasen dieser Systeme wurden untersucht. KW - Flüssigkristall KW - Fullerene KW - Porphyrin KW - Mesogen KW - Raumfüllung KW - Dyade KW - Nanosegregation KW - Fulleren-Netzwerk KW - Mesogen KW - Space filling KW - Dyad KW - Nanosegregation KW - fullerene network KW - Hekate Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165321 ER - TY - THES A1 - Dechant, Moritz Thomas T1 - Synthese und Struktur-Eigenschaftsbeziehungen neuer Phthalocyanin-Sternmesogene – Ein neues Design für organische, flüssigkristalline Photovoltaikmaterialien T1 - Synthesis and structure-property relationships of new phthalocyanine star mesogens - A new design for organic, liquid crystalline photovoltaic materials N2 - Es wurde eine Vielzahl neuer, flüssigkristalliner Phthalocyanin-Sternmesogene synthetisiert. Die Struktur-Eigenschaftsbeziehungen und die thermotropen Eigenschaften neuer Phthalocyanin-Sternmesogene mit Freiraum sowie von sterisch überfrachteten Verbindungen wurden insbesondere hinsichtlich der Freiraumfüllung untersucht. Diesbezüglich wurde ein neuer supramolekularer, freiraumfüllender "Klick-Prozess" zwischen einem Molekül mit Freiraum und einem sterisch überfrachteten Molekül mit vier Fullerenen beobachtet. Die photophysikalischen Eigenschaften wurden zudem insbesondere im Hinblick auf die Anwendung für die Organische Photovoltaik untersucht. N2 - A large number of new, liquid crystalline phthalocyanine star mesogens was synthesized. The structure-property relationships and the thermotropic properties of new phthalocyanine star mesogens with free space and of sterically overcrowded compounds were investigated, whereas the space-filling was of great interest. In this regard, a new supramolecular, space-filling „click-process“ between one molecule with free space and one sterically overcrowded compound with four fullerenes was observed. The photophysical properties regarding to an application for the organic photovoltaics were investigated. KW - Phthalocyanin KW - Fullerene KW - Flüssigkristalle KW - Donor-Akzeptor-Dyaden KW - Sternmesogene KW - Freiraumfüllung KW - Flüssigkristall KW - Fotovoltaik KW - Fulleren Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-238888 ER - TY - THES A1 - Gloza, Steffi T1 - Synthese und Charakterisierung von Anthracen- und Anthrachinon-substituierten sternförmigen Mesogenen T1 - Synthesis and Characterisation of Anthracene- and Anthraquinone-Substituted Star-Shaped Mesogens N2 - Im Rahmen der vorliegenden Arbeit wurden promesogene Arme sowie eine Bibliothek von Sternmesogenen mit Anthracen als Donor- und Anthrachinon als Akzeptorbaustein synthetisiert und untersucht. Ein Schwerpunkt der Arbeit lag auf der Synthese, dem Upscaling, der selektiven Schützung und weiteren Umsetzung der 2,6-substituierten Anthracen- und Anthrachinon-Chromophore zu den Armbausteinen. Besondere Herausforderungen ergaben sich nicht nur in der Entwicklung einer effizienten Synthesestrategie zur Gewinnung der Chromophore, sondern auch in der Wahl geeigneter Schutzgruppen. Die sternförmigen Verbindungen, die im Rahmen der vorliegenden Arbeit präpariert wurden, enthalten 1,3,5-Trihydroxybenzen (Phloroglucin) als Kerneinheit und sind Multiarmmesogene mit der kleinstmöglichen Zahl an Armen. Durch geeignete Schutzgruppenstrategien gelang neben den C3-symmetrischen Verbindungen die gezielte Darstellung der C2-symmetrischen und unsymmetrischen Verbindungen. Die Gesamtausbeuten der semiperfluorierten Verbindungen fallen deutlich geringer aus als die der ausschließlich mit Alkylketten dekorierten Derivate, da ihre Isolierung sehr anspruchsvoll ist. Alle Verbindungen bilden ausnahmslos kolumnare Phasen. Semiperfluorierte Ketten wurden eingeführt, um eine Trennung des Donors Anthracen und des Akzeptors Anthrachinon zu erreichen. Die Kolumnendurchmesser sind bei allen kolumnaren Mesophasen wesentlich kleiner als die Durchmesser der sternförmigen Konformere der Mesogene. Angelehnt an die früher untersuchten Oligobenzoatsterne werden Modelle mit gefalteten, E-förmigen Konformeren aufgestellt. So ist es möglich, die erforderliche Anzahl an Molekülen pro Elementarzelle in einer dichten, nanosegregierten Packung anzuordnen. Mit Absorptions- und Emissionsmessungen konnte dieses Modell bestätigt werden. In allen Donor- und Akzeptor-substituierten Verbindungen wird die Fluoreszenz durch Energietransferprozesse nach Förster und Dexter fast vollständig gelöscht. Restfluoreszenz wird in dem Bereich beobachtet, der nur noch den Transfer nach Dexter zulässt und ist für die Derivate am höchsten, die in den E-förmigen Konformeren Donor und Akzeptor am besten trennen können. Die Ergebnisse dieser Arbeit zeigen, dass Anthracen- und Anthrachinonderivate eine Vielzahl komplexer zwei- und dreidimensional hochgeordneter kolumnarer Strukturen ausbilden und damit hochinteressant sind als flüssigkristalline organische Halbleitermaterialien. N2 - As part of this work promesogenic arms and a library of star-shaped mesogens with anthracene as electron donor and anthraquinone as electron acceptor unit were synthesised and characterised. The work focused first on synthesis, upscaling, selective protection and further implementation of 2,6-substituted anthracene and anthraquinone chromophores to arm derivatives. The development of an efficient synthetic strategy, but also the selection of appropriate protecting groups was particular challenging. The star-shaped molecules prepared in this work contain 1,3,5-trihydroxybenzene (Phloroglucinol) as core unit and are multiarm mesogens with the smallest possible number of arms. In addition to the synthesis of the C3-symmetrical, suitable protecting group strategies led to selective preparation of the C2-symmetrical and unsymmetrical compounds. All over yields of semiperfluorinated compounds are significant lower compared to the alkyl chain derivatives, owing to the much more demanding work-up. The liquid crystalline properties of all star-shaped target compounds were analyzed. Without exception – all materials form columnar mesophases. Semiperfluorinated chains were used to nanosegregate the donor anthracene and the acceptor anthraquinone. Column diameters of all columnar mesophases are much smaller than the diameters of star-shaped conformers of the mesogens. According to previous investigations of oligobenzoate stars, models with folded, E-shaped conformers have been suggested. This way it is possible to arrange the required number of molecules in a dense, nanosegregated structure. This model could be confirmed by absorption und emission spectroscopy. For all donor and acceptor substituted compounds fluorescence is almost completely quenched by energy transfer processes according to Förster and Dexter. Residual fluorescence, which is only observed in the range of Dexter transfer, is highest for molecules in which donor and acceptor in the E-shaped conformer possess a high probability to be separated in the columnar stacks. The results of this work show anthracene and anthraquinone derivatives forming a number of complex two- and three-dimensional high-ordered columnar structures and thus are highly interesting for liquid crystalline organic semiconducting materials. KW - Flüssigkristall KW - Columnare Phase KW - Anthracenderivate KW - Anthrachinonderivate KW - Sternmesogene Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-110595 ER - TY - THES A1 - Herbst [geb. Höhne], Stefanie T1 - Liquid Crystalline Perylene Bisimide Assemblies T1 - Flüssigkristalline Perylenbisimid Strukturen N2 - Thus, the main focus of this thesis was to generate and investigate new one-dimensional LC PBI J-aggregates of an entirely new PBI organization with the transition dipole moments of the chromophores arranged parallel to the columnar axis and in slipped pi-pi stacking fashion to form highly fluorescent J-aggregates. Towards this goal, the tetra-bay substituted PBI 4c bearing free NH functional groups at the imide positions and four dendrons with branched ethylhexyl alkoxy chains at the meta-position of the phenoxy spacer (Figure 8.1a) was synthesized and compared to a literature known reference PBI 1. The mesogenic dendrons ensure LC character of the dye, which was confirmed by POM, DSC and extensive X-ray analysis. Furthermore, the sterically demanding bay-substituents prevent the cofacial assembly of the chromophores and force the dyes into a slipped pi-stacked order with the main transition dipole moments of the dyes oriented parallel to the columnar axis. X-ray analysis revealed that PBI 4c assembles into columnar triple-stranded helices consisting of side-to-side stacked molecules, which organize into a Colh phase (Figure 8.1b). FT-IR experiments of a thin film and aggregates in MCH solution confirmed the formation of H-bonds between the imide moieties. Temperature-dependent investigations furthermore proved a reversible formation of H-bonds and polarized FT-IR experiments finally gave evidence for the direction of the H-bonds along the shearing respective the columnar axis (Figure 8.1c). This was additionally verified by polarized UV-Vis absorption studies of aligned thin films. The changes in the UV-Vis absorption spectra of concentration- and temperature-dependent experiments in MCH are in agreement with the formation of J-aggregates and could be fitted to a nucleation-elongation growth mechanism. Remarkably, fluorescence spectroscopy studies revealed highly emissive aggregates in solution. These various spectroscopic techniques proved the utilization of directional noncovalent forces like hydrogen-bonding and pi-pi interactions in a cooperative manner forcing the PBI molecules in an unprecedented organization of a slipped pi-stacked arrangement with the orientation of the molecular axis and the respective transition dipole moments parallel to the columns of the LC phase. By the group of Dietrich the formation of exciton-polaritons in imprinted LC pillar microcavities as consequent use of the LC 4c was reported for the first time.In the second part of this thesis the hierarchical organization of LC PBIs into defined single-, double-, triple- and quadruple-stranded J-aggregates within crystalline and columnar LC phases, partially arranged in helical supramolecular structures in dependence of the molecular design was demonstrated. This was achieved via the preparation of a library of twelve molecules PBI 3-6(a-c) (Figure 8.2a) that was synthesized by varying the substitution position of the dendrons at the phenoxy-spacer from ortho to meta or para and by introducing an additional methyl group in ortho-position. Also the length and shape of the alkoxy chains was changed. Consequently, the impact of the sterical demand of the bay substituents concerning their phase properties, molecular arrangement and exciton coupling was investigated. POM, DSC and X-ray studies revealed the formation of only crystalline phase for the ortho-substituted PBIs 3a-c, whereas the other derivatives generated SC or LC phases. The main focus was the series with the n-C12-alkoxy chains. For the corresponding PBIs 4-6b columnar LC phases were confirmed. Retrostructural analysis by modelling and simulations gave indications for a single stranded organization for PBI 3b, a double-stranded helix for PBI 6b, a triple-stranded helical arrangement for PBI 5b and a quadruple-stranded helix for PBI 4b (Figure 8.2b-d). For all four derivatives the same molecular orientation within the columns as for PBI 4c was proven by polarized FT-IR and UV-Vis absorption studies in aligned thin films. The organization in helices of different number of strands in the Cr and LC phases of PBI 3b, 4b, 5b and 6b offered a unique possibility to elucidate the influence of particular packing arrangements on dye aggregate interactions with light. In particular, it can be investigated how exciton coupling of the dyes’ transition dipole moments and fluorescence properties are affected. In this context, the spectroscopic properties were investigated in thin film, which revealed a strong bathochromic shift of the absorption maxima compared to the monomers in solution in dependence on the number of strands for PBIs 4-6b in contrast to PBI 3b (Figure 8.2e). The same tendency was observed for the respective aggregates in MCH solution. The spectral changes obtained during concentration- and temperature-dependent UV-Vis absorption studies verified the formation of J-aggregates in MCH solution and solid state. The respective aggregates are highly likely formed via a nucleation-elongation growth mechanism. Appliance of Kasha’s exciton theory on the supramolecular aggregates revealed different contributions of H- and J-type coupling for the oligo-stranded helices. Under these considerations, it delivered an explanation for the absorption and fluorescence properties of the assemblies and declares the “best” J-aggregate for the double stranded arrangement of PBI 6b with purely negative couplings among neighbour molecules and a quantum yield above 74 % of the aggregates in MCH solution. With this H-bonded PBI-based library approach of twelve derivatives it could be shown how molecular engineering of perylene bisimide dyes can be used to design defined, complex supramolecular assemblies with unprecedented packing patterns and concomitant intriguing spectroscopic properties. So far, the formation of defined liquid crystalline supramolecular structures of tetra-bay substituted PBIs by double H-bonding between free imide moieties and pi-pi interactions between the chromophores was demonstrated. The impact of the H-bonds on the molecular arrangement was investigated in the next part of this thesis. In this regard, PBIs 7 and 8 bearing a methyl or cyclohexyl group at the imide position (Figure 8.3a) were synthesized and compared to PBI 4c. The soft character of the solid state for PBIs 7 and 8 was confirmed by POM, DSC and X-ray analysis. The X-ray studies further revealed for both PBIs a change of the molecular assembly towards helical columnar structures of conventional pi-stacked chromophores (Figure 8.3b) when the directed H-bonds cannot contribute as noncovalent interactions to the assembly formation. Temperature-dependent UV-Vis absorption studies demonstrated the importance of H-bonding in MCH solution in the way that the formation of J-aggregates as for PBI 4c could not be observed for the imide substituted molecules. In the next step, the spectroscopic properties in thin film were investigated. For PBI 7 a J-type band and fluorescence spectra with an enlarged Stokes shift and increased fluorescence lifetime of 11.4 ns, compared to PBI 4c, was obtained, suggesting the generation of excimer type emission by considering the assumed conventional stacking of rotational displaced molecules from X-ray analysis. With polarized UV-Vis absorption experiments the orientation of the molecules perpendicular to the shearing direction and subsequently to the columnar axis was confirmed. These diverse investigations clearly demonstrated the imperative of H-bonds for stable, defined, LC J-aggregates with the transition dipole moments parallel to the columnar axis. With PBIs 7 and 8 it is impressively shown how small changes in the molecular structure influence the molecular arrangement dependent on the cooperation of non-covalent interactions like H-bonding and pi-pi stacking. In the last part of this thesis the generation of two-dimensional LC arrangements is presented. Since tetra-bay substituted PBIs lead always to twisted cores preventing lamellar arrangement, here 1,7-disubstitution and the simultaneous retention of the free imide positions was chosen to generate LC lamellar phases of PBIs 9a, 9b and 10 (Figure 8.4a). This molecular design was expected to form planar perylene cores that can strongly interact by pi-pi stacking and H-bonding. POM, DSC and X-ray investigations of the compounds suggest lamellar LC phases for PBIs 9a and 9b and a soft phase for PBI 10. In this regard, the goal of the formation of LC lamellar phase of PBIs could be attained. The change from dendrons with n-C12-alkoxy chains to large fork-like mesogens like in 9b clearly changed the phase properties. PBI 9b exhibits the lowest clearing point, high phase stability, least viscosity, easy shearability at room temperature and phase transitions between lamellar and Colh phases dependent on temperature. The formation of H-bonds parallel to the layers was demonstrated by polarized FT-IR experiments for all three PBIs. Concentration-dependent UV-Vis absorption studies revealed the formation of a J-type aggregate, which seems to exhibit an overall two-dimensional structure. With STM investigations the formation of lamellar structures from drop-casted 9a and 10 solutions in 1-phenyloctane on HOPG surface could be observed. Figure 8.4b illustrates a schematic possible arrangement of the molecules in the layers (here exemplarily demonstrated for PBI 9a), which has to be further confirmed by modelling and simulations. Unfortunately, fluorescence investigations of the thin films revealed non- or only slightly emissive LC states, which make them negligible for photonic applications. Nevertheless, the synthesized and analyzed compounds might be an inspiration for further investigations on the path to two-dimensional exciton transport for photonic devices. N2 - Das Hauptaugenmerk dieser Arbeit war daher darauf gerichtet, eindimensionale flüssigkristalline J-Aggregate zu erzeugen und zu untersuchen, die eine vollkommen neue Anordnung von Perylenbisimiden aufweisen und deren Übergangsdipolmomente parallel zur Säulenachse ausgerichtet sind. Um stark fluoreszierende J-Aggregate zu bilden, sollen die Moleküle zudem in einer zueinander verschobenen pi-pi-Stapelung angeordnet sein. Um dieses Ziel zu erreichen, wurde zunächst das vierfach bucht-substituierte PBI 4c synthetisiert und mit dem literaturbekannten Referenzmolekül (PBI 1) verglichen. Das PBI 4c weist dabei freie NH-Gruppen in den Imidpositionen und vier verästelte Substituenten in der meta-Position der Phenoxygruppe auf (Abbildung 1a). Die Substituenten bestehen dabei aus jeweils drei verzweigten Ethylhexyl-Alkoxyketten. Diese mesogenen Substituenten stellen den flüssigkristallinen Charakter des Farbstoffmoleküls sicher, was durch POM, DSC und umfassende Röntgenstrukturuntersuchungen bestätigt werden konnte. Weiterhin verhindern die sterisch anspruchsvollen Buchtsubstituenten eine cofaciale Anordnung der Chromophore und zwingen die Farbstoffmoleküle in zueinander verschobene, pi-gestapelte Packungsstrukturen, in denen die Übergangsdipolmomente der Perylenbisimide parallel zur Säulenachse angeordnet sind. Die Analyse der Röntgenstrukturuntersuchungen zeigt die Bildung säulenartiger, drei-strängiger Helices, die sich aus vertikal gestapelten Molekülen zusammensetzen und sich letztendlich in einer hexagonalen flüssigkristallinen Phase anordnen (Abbildung 1b). FT-IR-Experimente dünner Schichten und der Aggregate in MCH-Lösungen bestätigen, dass zwischen den Imidgruppen in der flüssigkristalline Phase und der Aggregate in Lösung die gleiche Art von Wasserstoffbrückenbindungen existiert. Durch polarisierte FT-IR-Experimente und temperaturabhängige Untersuchungen konnte weiterhin gezeigt werden, dass die Wasserstoffbrückenbindungen in diesen Systemen zum Einen entlang der Scherrichtung und der Säulenachse ausgerichtet sind und deren Bildung zum Anderen reversibel ist. Die Ausrichtung wurde zusätzlich durch polarisierte UV-Vis-Absorptionsuntersuchungen an gerichteten Dünnschichten bestätigt. Die spektralen Änderungen in konzentrations- und temperaturabhängigen UV-Vis-Absorptionsstudien in MCH stimmen mit der Bildung von J-Aggregaten überein. Die Daten konnten durch Ausgleichskurven einem kooperativen (Kernbildungs-Verlängerungs-) Mechanismus zugeordnet werden. Bemerkenswerterweise zeigten Fluoreszenzuntersuchungen, dass die Aggregate in Lösung sehr stark emittieren. Die verwendeten spektroskopischen Untersuchungsmethoden beweisen die strukturellen Einflussmöglichkeiten über gerichtete, nicht-kovalente Kräfte wie Wasserstoff-brückenbindungen und pi-pi-Wechselwirkungen in einem kooperativen Zusammenspiel zur gezielten Bildung einer bisher unbekannten Molekülanordnung in Flüssigkristallen. In dieser neuen Struktur sind die Moleküle zueinander verschoben pi-gestapelt und mit der Molekülachse und dem entsprechenden Übergangsdipolmomentes parallel zur Säulenachse ausgerichtet. Unter Verwendung von PBI 4c konnten unsere Kooperationspartner in der Technischen Physik der Universität Würzburg in der Folge erstmalig über die Bildung von Exziton-Polaritonen in aufgedruckten, flüssigkristallinen Säulenmikrokavitäten berichten.[175] Im zweiten Teil dieser Arbeit wird gezeigt, wie sich durch molekulares Design definierte ein-, zwei-, drei- und viersträngige J-Aggregate innerhalb kristalliner oder kolumnarer flüssigkristalliner Phasen bilden. Diese Aggregate bilden hierarchisch aufgebaute, supramolekulare Strukturen, die sich zu einem großen Teil in Helices organisieren. Hierfür wurden Verbindungen für eine Bibliothek, bestehend aus zwölf Molekülen PBI 3-6(a-c) (Abbildung 2a), synthetisiert, indem die Position der verästelten Substituenten an den Phenoxygruppen zwischen ortho, meta und para variiert wurde. Zusätzlich wurde noch eine Methylgruppe in ortho-Position eingeführt sowie sowohl die Länge als auch die Art der Alkoxyketten geändert. Anschließend wurde der Einfluss des sterischen Anspruchs der Buchtsubstituenten in Bezug auf die Eigenschaften der Phasen, der Molekülanordnung und der Exzitonenkopplung untersucht. POM, DSC and Röntgenstrukturanalysen bestätigten, dass die ortho-substituierten PBIs 3a-c nur kristalline Phasen ausbildeten, wohingegen die anderen Derivate sowohl weichkristalline als auch flüssigkristalline Phasen generierten. Der Fokus lag dabei auf der Untersuchung der Serie mit n-C12-Alkoxyketten und ergab die Bildung säulenartiger, flüssigkristalliner Phasen für alle drei PBIs 4-6b. Das Erstellen von Aggregatmodellen unter Verwendung der röntgenkristallografischen Daten und die Simulation von Röntgenbeugungsbildern mit Hilfe dieser Modelle ergaben eindeutig die Bildung einer einsträngigen Molekülanordnung für PBI 3b, eine Doppelstranghelix für PBI 6b, eine dreisträngige, helikale Anordnung für PBI 5b und einer viersträngigen Helix von PBI 4b (Abbildung 2b-d). Polarisierte FT-IR und UV-Vis Absorptionsexperimente bewiesen für alle vier Derivate die gleiche molekulare Orientierung in gerichteten dünnen Schichten wie bereits für PBI 4c. Die aus den Röntgenmessungen hergeleiteten Anordnungen in Helices bestehend aus einer unterschiedlichen Anzahl von Strängen in kristallinen und flüssigkristallinen Phasen von PBI 3-6b eröffneten eine einzigartige Möglichkeit, den Einfluss der molekularen Packung auf die Wechselwirkungen der Farbstoffaggregate mit Licht aufzuklären. Im Besonderen sollte dabei der Einfluss in Bezug auf die Exzitonenkopplung der Übergangsdipolmomente der Farbstoffmoleküle in UV-Vis-Absorptionsspektren und Fluoreszenzeigenschaften untersucht werden. In diesem Zusammenhang wurden die spektroskopischen Eigenschaften der Derivate in Dünnschichten untersucht. Mit Ausnahme von PBI 3b wurde eine stark bathochrome Verschiebung der Absorptionsmaxima in Abhängigkeit der Anzahl der Stränge im Vergleich zu den Absorptionsmaxima der entsprechenden Monomere in Lösung beobachtet (Abbildung 2e). Die gleiche Tendenz konnte auch für die entsprechenden Aggregate in Lösung beobachtet werden. Die festgestellten spektralen Änderungen in konzentrations- und temperatur-abhängigen Absorptionsstudien in MCH-Lösungen bestätigten die Bildung von J-Aggregaten sowohl in Lösung als auch in der Festphase. Die Anwendung von Kashas Exzitonentheorie auf die supramolekularen Aggregate zeigte, dass H- und J-Kopplungen in unterschiedlichen Teilen bei den mehrsträngigen Helices auftreten. Diese Ergebnisse lieferten auch eine Erklärung für die Absorptions- und Fluoreszenzeigenschaften der Aggregate und ergaben, dass die doppelsträngige Helix von PBI 6b mit einer Fluoreszenzquantenausbeute von über 74 % das „beste“ J-Aggregat aller getesteten Derivate bildet, da in diesem nur Anteile reiner J-Kopplungen („negativer“ Kopplungen) zwischen benachbarten Molekülen auftreten. Durch den Ansatz einer Bibliothek von zwölf über Wasserstoffbrücken verbundener PBIs konnte gezeigt werden, inwieweit der zielgerichtete strukturelle Aufbau von PBI-Farbstoffmolekülen genutzt werden kann, um definierte, hochkomplexe Strukturen mit einer bisher unbekannten molekularen Anordnung und gleichzeitig sehr interessanten spektroskopischen Eigenschaften zu erzeugen. Bis hier wurde gezeigt, wie definierte, flüssigkristalline, supramolekulare Strukturen von vierfach buchtsubstituierten PBIs durch das Zusammenwirken von Wasserstoffbrücken-bindungen zwischen den Imidpositionen und pi-pi-Wechselwirkungen zwischen den Chromophoren gebildet werden können. Der Einfluss der Wasserstoffbrückenbindungen sollte dabei im nächsten Teil näher untersucht werden. Diesbezüglich wurden PBI 7 und 8 synthetisiert, die entsprechend jeweils Methyl- oder Cyclohexylgruppen in den Imidpositionen tragen (Abbildung 3a). Anschließend wurden diese mit PBI 4c verglichen. POM, DSC und Röntgenstrukturuntersuchungen bestätigten die Bildung einer weichen Phase für PBI 7 und 8. Weiterhin ergaben die Röntgenbeugungsexperimente für beide PBIs eine Änderung der molekularen Anordnung zu helikalen, säulenartigen Aggregaten, in denen die Chromophore pi-gestapelt organisiert sind (Abbildung 3b), wenn die Wasserstoffbrückenbindungen nicht mehr als Wechselwirkungen zur Aggregatbildung beitragen können. Temperaturabhängige UV-Vis-Absorptionsstudien verdeutlichten die Relevanz der Wasserstoffbrückenbindungen in MCH-Lösungen für die Bildung von stabilen J-Aggregaten. Anders als für PBI 4c konnte die Ausbildung von J-Aggregaten in Lösung für die beiden anderen Derivate nicht beobachtet werden. Im nächsten Schritt wurden die spektroskopischen Eigenschaften in Dünnschichten untersucht. Für PBI 7 konnte eine J-artige Bande und ein Fluoreszenzspektrum mit einer besonders großen Stokesverschiebung und einer sehr langen Fluoreszenzlebensdauer im Vergleich zu den Daten von PBI 4c detektiert werden. Unter Beachtung der molekularen Anordnung von konventionell gestapelten, zueinander verdrehten Molekülen, die aus Röntgenstrukturanalysen hergeleitet wurde, deuten diese Ergebnisse auf die Erzeugung einer excimerartigen Emission hin. Die Anordnung der Moleküle senkrecht zur Scherrichtung und demzufolge auch senkrecht zur Säulenachse wurde mittels polarisierter UV-Vis-Absorptionsmessungen untermauert. Diese unterschiedlichen Untersuchungsmethoden deuten gemeinsam darauf hin, wie zwingend erforderlich Wasserstoffbrückenbindungen für die Bildung definierter, flüssigkristalliner J-Aggregate sind, in denen die Übergangsdipolmomente der Chromophore parallel zur Säulenachse ausgerichtet sind. Mit der Synthese von PBI 7 und 8 konnte eindrucksvoll gezeigt werden, wie bereits kleine Änderungen in der Molekülstruktur einen großen Einfluss auf die Aggregatstruktur haben können, wenn diese vom Zusammenwirken verschiedener nichtkovalenter Wechselwirkungen wie Wasserstoffbrückenbindungen und pi-pi Wechselwirkungen abhängig ist. Der letzte Teil dieser Arbeit handelt von der Bildung zweidimensionaler flüssigkristalliner Anordnungen. Da vierfach buchtsubstituierte PBIs immer eine Verdrehung des Kernes hervorrufen und damit die Bildung lamellarer Strukturen verhindern, wurde hier der Ansatz der Reduzierung auf eine 1,7-Zweifachsubstitution unter gleichzeitiger Beibehaltung der freien Imidgruppen gewählt. Von diesem molekularen Design wurde erwartet, dass die planaren Perylenkerne über pi-pi-Wechselwirkungen und Wasserstoffbrückenbindungen stark miteinander wechselwirken und somit zweidimensionale Aggregate bilden können. POM, DSC und Röntgenstrukturanalysen bestätigen die Bildung lamellarer flüssigkristalliner Phasen von PBI 9a und 9b (Abbildung 4a) und einer weichen Phase von PBI 10. Der Austausch der Substituenten, die n-C12-Alkoxyketten tragen, durch gabelartige Mesogene, wie bei PBI 9b, bewirkt deutliche Änderungen der Phaseneigenschaften. PBI 9b weist den niedrigsten Klärpunkt, die höchste Phasenstabilität, die geringste Viskosität, leichte Scherbarkeit bei Raumtemperatur und interessante Phasenübergänge zwischen lamellaren und säulenartig hexagonalen Phasen in Abhängigkeit der Temperatur auf. Die Bildung von Wasserstoffbrückenbindungen parallel zu den Schichten konnte mit polarisierten FT-IR-Experimenten für alle drei Derivate gezeigt werden. Konzentrationsabhängige UV-Vis-Absorptionsuntersuchungen bestätigten die Ausbildung eines J-artigen Aggregates in MCH-Lösung, welches eine zweidimensionale Struktur aufzuweisen scheint. Mittels STM-Untersuchungen konnten lamellare Strukturen von PBI 9a und 10 Schichten in 1-Phenyloktan auf hochgeordnetem pyrolytischem Graphit beobachtet werden. Abbildung 4b veranschaulicht die Anordnung der Moleküle in den Schichten, in diesem Fall exemplarisch für PBI 9a gezeigt. Leider haben Fluoreszenzuntersuchungen gezeigt, dass die Dünnschichten keine oder eine nur sehr geringe Emission aufweisen und somit nicht für photonische Anwendungen geeignet sind. Nichtsdestotrotz könnten diese Verbindungen Inspirationen für weitere Untersuchungen sein und Ansatzpunkte liefern, das Ziel eines zweidimensionalen Exzitonentransportes für photonische Anwendungen zu erreichen. KW - Flüssigkristall KW - Perylenderivate KW - Liquid Crystal KW - Perylene Bisimide KW - J-Aggregate KW - Flüssigkristall KW - Liquid Crystals KW - Perylene Bisimides KW - Perylenbisimide Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164857 ER -