TY - THES A1 - Hecht [geb. Wagener], Reinhard Johannes T1 - Processing and Characterization of Bulk Heterojunction Solar Cells Based on New Organic n-Type Semiconductors T1 - Prozessierung und Charakterisierung von Bulk-Heterojucktion Solarzellen auf Basis von neuen organischen n-Halbleitern N2 - This thesis established the fabrication of organic solar cells of DA dye donors and fullerene acceptors under ambient conditions in our laboratory, however, with reduced power conversion efficiencies compared to inert conditions. It was shown that moisture had the strongest impact on the stability and reproducibility of the solar cells. Therefore, utilization of robust materials, inverted device architectures and fast fabrication/characterization are recommended if processing takes place in air. Furthermore, the dyad concept was successfully explored in merocyanine dye-fullerene dyads and power conversion efficiencies of up to 1.14 % and 1.59 % were measured under ambient and inert conditions, respectively. It was determined that the major drawback in comparison to comparable BHJ devices was the inability of the dyad molecules to undergo phase separation. Finally, two series of small molecules were designed in order to obtain electron transport materials, using the acceptor-core-acceptor motive. By variation of the acceptor units especially the LUMO levels could be lowered effectively. Investigation of the compounds in organic thin film transistors helped to identify promising molecules with electron transport properties. Electron transport mobilities of up to 7.3 × 10−2 cm2 V−1 s−1 (ADA2b) and 1.39 × 10−2 cm2 V−1 s−1 (AπA1b) were measured in air for the ADA and AπA dyes, respectively. Investigation of selected molecules in organic solar cells proved that these molecules work as active layer components, even though power conversion efficiencies cannot compete with fullerene based devices yet. Thus, this thesis shows new possibilities that might help to develop and design small molecules as substitutes for fullerene acceptors. N2 - In dieser Arbeit wurde gezeigt, dass die Herstellung und Charakterisierung von organischen Solarzellen auf Basis von kleinen DA-Farbstoffen in Kombination mit Fullerenakzeptoren unter Umgebungsbedingungen möglich ist. Außerdem konnte herausgefunden werden, dass die Luftfeuchtigkeit den größten Einfluss auf die Stabilität und die Reproduzierbarkeit der organischen Solarzellen hat. Aus diesem Grund sind der Austausch labiler Komponenten, die Verwendung von invertierten Bauteilarchitekturen sowie eine zügige Herstellung und Charakterisierung bei Prozessierung an Luft zu empfehlen. In weiteren Experimenten konnte das Dyadenkonzept erfolgreich angewendet werden, sodass sich Effizienzen von 1.14 und 1.59 % unter ambienten bzw. inerten Bedingungen messen ließen. Das Unvermögen der Dyaden, separate Phasen aus Donor- und Akzeptorverbindung zu bilden, konnte als größte Schwäche der Verbindungen ausgemacht werden. Schlussendlich wurden zwei Serien von Molekülen mit der Absicht Elektronentransportmaterialien zu generieren basierend auf einem Akzeptor-Kern-Akzeptor-Strukturmotiv entworfen. Die Variation der Akzeptoren ermöglichte in der Tat eine systematische Absenkung der Grenzorbitale und insbesondere der LUMO-Niveaus. Weiterhin wurden die Verbindungen in organischen Dünnfilmtransistoren untersucht, um mehr über ihre Ladungstransporteigenschaften zu erfahren. Dabei konnten Moleküle ausgemacht werden, die zum Elektronentransport an Luft in der Lage sind. Für die besten ADA- und AπA-Farbstoffe konnten so jeweils Elektronenmobilitäten von 7.3 × 10−2 cm2 V–1 s–1 (ADA2b) und 1.39 × 10−2 cm2 V–1 s–1 (AπA1b) gemessen werden. Weitere Untersuchungen von ausgewählten Verbindungen in organischen Solarzellen, konnten beweisen, dass diese neu kreierten Moleküle im Prinzip als Aktivmaterialien funktionieren können, wenn auch die erzielten Effizienzen noch nicht mit denen von Fulleren-basierten Solarzellen konkurrieren konnten. Damit zeigt diese Arbeit neue Möglichkeiten auf, die bei der Entwicklung und dem Design von kleinen Molekülen als Alternativen zu Fullereneakzeptoren hilfreich sein können. KW - organic solar cells KW - A-D-A dyes KW - dyads KW - merocyanines KW - n-type semiconductors KW - Heterosolarzelle KW - Halbleiter KW - Merocyanine Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-161385 ER - TY - THES A1 - Muzha, Andreas T1 - Herstellung und Charakterisierung kolloidaler Lösungen diamantbasierter und verwandter Materialien T1 - Preparation and characterization of colloidal solutions of diamond-based and related materials N2 - In der vorliegenden Publikation wurden stabile kolloidale Lösungen aus CVD-Diamant, Detonationsdiamant sowie artverwandten Materialien hergestellt und charakterisiert Besonderes Augenmerk wurde bei der Zerkleinerung von CVD Diamant daraufgelegt, dass die nanoskaligen Partikel ihre materialspezifischen Eigenschaften auch bei Reduktion der Größe beibehalten. Systematisch wurde die Zerkleinerung in einer Planetenmühle analysiert. Es wurde sowohl die minimal erreichbare Partikelgröße, als auch die Menge an erzeugtem, nanoskaligem Material bewertet. Um die Vermahlung zu verbessern, wurden die Geschwindigkeit der Mühle, die Größe der Mahlkörper, die Dauer der Vermahlung, sowie die eingesetzten Lösemittel variiert. Des Weiteren konnten durch die Vermahlung unterschiedlich hergestellter CVD Diamantfilme in einer Vibrationsmühle die Einflüsse von Schichtdicke und Korngröße der Diamantkristalle untersucht werden. Durch Bearbeitung von Detonationsdiamanten und Kohlenstoffnanozwiebeln wurden stabile kolloidale Lösungen hergestellt, mit Partikelgrößen im unteren Nanometerbereich. Diese sind im alkalischen pH-Bereich stabil sein, hierfür wurde durch Luft und Säureoxidation oxidierter Detonationsdiamant und oxidierte Kohlenstoffnanozwiebeln hergestellt. Mithilfe der thermogravimetrischen Analyse und Infrarotspektroskopie wurde die hierfür optimale Temperatur und Dauer bestimmt. N2 - In the present publication, stable colloidal solutions of CVD diamond, detonation diamond and related materials were produced and characterized. During the grinding of CVD diamond, special attention was paid to ensuring that the nanoscale particles retain their material-specific properties even when their size is reduced. The grinding in a planetary mill was analyzed systematically. Both the minimum achievable particle size and the amount of nanoscale material produced were evaluated. In order to improve the grinding, the speed of the mill, the size of the grinding media, the duration of the grinding and the solvents used were varied. Furthermore, the influences of layer thickness and grain size of the diamond crystals could be investigated by grinding differently produced CVD diamond films in a vibration mill. Stable colloidal solutions were prepared from detonation diamonds and carbon nano onions, with particle sizes in the sub-nanometer range. These are stable in alkaline pH range. For this purpose oxidized detonation diamond and oxidized carbon nano onions were modified by air and acid oxidation. The optimum temperature and duration for this was determined with the aid of thermogravimetric analysis and infrared spectroscopy. KW - Diamant KW - Kolloid / Lösung KW - Detonationsdiamant KW - CVD-Diamant KW - Kohlenstoffnanozwiebel Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-296685 ER - TY - THES A1 - Gamache [geb. Rupp], Mira Theresa T1 - Ligand Design for Ru(II) Photosensitizers in Photocatalytic Hydrogen Evolution T1 - Ligandendesign für Ru(II)-Photosensibilisatoren in der photokatalytischen Wasserstoffentwicklung T1 - Conception de ligands pour les photosensibilisateurs de Ru(II) dans l'évolution photocatalytique de l'hydrogène N2 - This thesis investigates different ligand designs for Ru(II) complexes and the activity of the complexes as photosensitizer (PS) in photocatalytic hydrogen evolution. The catalytic system typically contains a catalyst, a sacrificial electron donor (SED) and a PS, which needs to exhibit strong absorption and luminescence, as well as reversible redox behavior. Electron-withdrawing pyridine substituents on the terpyridine metal ion receptor result in an increase of excited-state lifetime and quantum yield (Φ = 74*10-5; τ = 3.8 ns) and lead to complex III-C1 exhibiting activity as PS. While the turn-over frequency (TOFmax) and turn-over number (TON) are relatively low (TOFmax = 57 mmolH2 molPS-1 min-1; TON(44 h) = 134 mmolH2 molPS-1), the catalytic system is long-lived, losing only 20% of its activity over the course of 12 days. Interestingly, the heteroleptic design in III-C1 proves to be beneficial for the performance as PS, despite III-C1 having comparable photophysical and electrochemical properties as the homoleptic complex IV-C2 (TOFmax = 35 mmolH2 molPS-1 min-1; TON(24 h) = 14 mmolH2 molPS-1). Reductive quenching of the excited PS by the SED is identified as rate-limiting step in both cases. Hence, the ligands are designed to be more electron-accepting either via N-methylation of the peripheral pyridine substituents or introduction of a pyrimidine ring in the metal ion receptor, leading to increased excited-state lifetimes (τ = 9–40 ns) and luminescence quantum yields (Φ = 40–400*10-5). However, the more electron-accepting character of the ligands also results in anodically shifted reduction potentials, leading to a lack of driving force for the electron transfer from the reduced PS to the catalyst. Hence, this electron transfer step is found to be a limiting factor to the overall performance of the PS. While higher TOFmax in hydrogen evolution experiments are observed for pyrimidine-containing PS (TOFmax = 300–715 mmolH2 molPS-1 min-1), the longevity for these systems is reduced with half-life times of 2–6 h. Expansion of the pyrimidine-containing ligands to dinuclear complexes yields a stronger absorptivity (ε = 100–135*103 L mol-1 cm-1), increased luminescence (τ = 90–125 ns, Φ = 210–350*10-5) and can also result in higher TOFmax given sufficient driving force for electron transfer to the catalyst (TOFmax = 1500 mmolH2 molPS-1 min-1). When comparing complexes with similar driving forces, stronger luminescence is reflected in a higher TOFmax. Besides thermodynamic considerations, kinetic effects and electron transfer efficiency are assumed to impact the observed activity in hydrogen evolution. In summary, this work shows that targeted ligand design can make the previously disregarded group of Ru(II) complexes with tridentate ligands attractive candidates for use as PS in photocatalytic hydrogen evolution. N2 - In dieser Arbeit werden verschiedene Liganden für Ru(II)-Komplexe und die Aktivität der Komplexe als Photosensibilisatoren (PS) in der photokatalytischen Wasserstoffentwicklung untersucht. Das katalytische System besteht typischerweise aus einem Katalysator, einem Opferelektronendonator (SED) und einem PS, welcher eine starke Absorption und Lumineszenz sowie ein reversibles Redoxverhalten aufweisen sollte. Elektronenziehende Pyridin-Substituenten am Terpyridin-Metallionenrezeptor resultieren in einer Erhöhung der Lebensdauer des angeregten Zustands sowie der Quantenausbeute (Φ = 74*10-5; τ = 3.8 ns), was dazu führt, dass Komplex III-C1 als PS aktiv ist. Während die Wechselzahl (TOFmax) und der Umsatz (TON) relativ niedrig sind (TOFmax = 57 mmolH2 molPS-1 min-1; TON(44 h) = 134 mmolH2 molPS 1), ist das katalytische System langlebig und verliert im Laufe von 12 Tagen nur 20% seiner Aktivität. Das heteroleptische Design in III-C1 erweist sich als vorteilhaft für die Leistung als PS, obwohl III-C1 vergleichbare photophysikalische und elektrochemische Eigenschaften besitzt wie der homoleptische Komplex IV-C2 (TOFmax = 35 mmolH2 molPS-1 min-1; TON(24 h) = 14 mmolH2 molPS-1). In beiden Fällen erweist sich das reduktive Lumineszenzlöschen des angeregten PS durch den SED als geschwindigkeitsbestimmender Schritt. Daher werden die Liganden entweder durch N-Methylierung der peripheren Pyridin-Substituenten oder durch Einführung eines Pyrimidinrings in den Metallionenrezeptor elektronenziehender gestaltet, was zu erhöhten Lebensdauern des angeregten Zustands (τ = 9–40 ns) und Lumineszenzquantenausbeuten (Φ = 40–400*10-5) führt. Der stärker elektronenziehende Charakter der Liganden führt allerdings auch zu anodisch verschobenen Reduktionspotentialen, wodurch die treibende Kraft für den Elektronentransfer vom reduzierten PS zum Katalysator reduziert wird. Daher erweist sich dieser Elektronentransferschritt als ein limitierender Faktor für die Gesamtleistung des PS. Während höhere TOFmax in Wasserstoffproduktionsexperimenten für Pyrimidin-haltige PS beobachtet werden (TOFmax = 300–715 mmolH2 molPS-1 min-1), ist die Langlebigkeit für diese Systeme mit Halbwertszeiten von 2–6 h deutlich reduziert. Die Erweiterung der Pyrimidin-haltigen Liganden zu zweikernigen Komplexen führt zu einem stärkeren Absorptionsvermögen (ε = 100–135*103 L mol-1 cm-1), erhöhter Lumineszenz (τ = 90–125 ns, Φ = 210–350*10-5) und kann bei ausreichender treibender Kraft für den Elektronentransfer zum Katalysator auch zu einer höheren TOFmax führen (TOFmax = 1500 mmolH2 molPS-1 min-1). Beim Vergleich von Komplexen mit ähnlichen treibenden Kräften spiegelt sich die stärkere Lumineszenz in einem höheren TOFmax wider. Es wird angenommen, dass neben thermodynamischen Faktoren auch kinetische Effekte und die Effizienz des Elektronentransfers die beobachtete Aktivität bei der Wasserstoffentwicklung beeinflussen. Zusammenfassend zeigt diese Arbeit, dass gezieltes Ligandendesign die bisher vernachlässigte Gruppe der Ru(II)-Komplexe mit tridentaten Liganden zu attraktiven Kandidaten für den Einsatz als PS in der photokatalytischen Wasserstoffentwicklung machen kann. N2 - Cette thèse étudie la conception de différentes ligands pour les complexes de Ru(II) et leur activité comme photosensibilisateur (PS) dans l'évolution photocatalytique de l'hydrogène. Le système catalytique contient généralement un catalyseur, un donneur d'électron sacrificiel (SED) et un PS, qui doit présenter une forte absorption et luminescence et un comportement redox réversible. Les substituants pyridine attracteurs d'électrons sur le récepteur d'ions métalliques terpyridine entraînent une augmentation de la durée de vie de l'état excité et du rendement quantique (Φ = 74*10-5; τ = 3.8 ns) et permettent au complexe III-C1 de présenter une activité en tant que PS. Bien que la fréquence (TOFmax) et le nombre de cycle catalytique (TON) soient relativement faibles (TOFmax = 57 mmolH2 molPS-1 min 1; TON(44 h) = 134 mmolH2 molPS-1), le système catalytique a une longue durée de vie, ne perdant que 20% de son activité au cours de 12 jours. De manière intéressante, la conception hétérolytique dans III-C1 s'avère être bénéfique pour la performance en tant que PS, malgré des propriétés photophysiques et électrochimiques comparables à celles du complexe homoleptique IV-C2 (TOFmax = 35 mmolH2 molPS-1 min-1; TON(24 h) = 14 mmolH2 molPS-1). L'extinction réductive de la PS excitée par le SED est identifiée comme l'étape limitant la vitesse dans les deux cas. Par conséquent, les ligands sont modifiés pour être plus accepteurs d'électrons, soit par N-méthylation des substituants pyridine périphériques, soit par introduction d'un cycle pyrimidine dans le récepteur d'ion métallique, ce qui conduit à une augmentation des durées de vie des états excités (τ = 9–40 ns) et des rendements quantiques de luminescence (Φ = 40–400*10-5). Cependant, le caractère plus accepteur d'électrons des ligands entraîne également des potentiels de réduction décalés anodiquement, ce qui conduit à un manque de force motrice pour le transfert d'électrons du PS réduit au catalyseur. Ainsi, cette étape de transfert d'électrons s'avère être un facteur limitant de la performance globale du PS. Alors que des TOFmax plus élevés dans les expériences d'évolution de l'hydrogène sont observés pour les PS contenant le motif pyrimidine (TOFmax = 300–715 mmolH2 molPS-1 min-1), la longévité de ces systèmes est réduite avec des temps de demi-vie de 2–6 h. L'expansion des ligands contenant le motif pyrimidine en complexes dinucléaires conduit à une absorptivité plus forte (ε = 100–135*103 L mol-1 cm-1), une luminescence accrue (τ = 90–125 ns, Φ = 210–350*10-5) et peut également entraîner un TOFmax plus élevé si la force motrice est suffisante pour le transfert d'électrons vers le catalyseur (1500 mmolH2 molPS-1 min-1). En comparant des complexes avec des forces motrices similaires, une luminescence plus forte se traduit par un TOFmax plus élevé. Outre les considérations thermodynamiques, les effets cinétiques et l'efficacité du transfert d'électrons sont supposés avoir un impact sur l'activité observée dans l'évolution de l'hydrogène. En résumé, ce travail montre que la conception ciblée de ligands peut faire du groupe précédemment négligé des complexes de Ru(II) avec des ligands tridentés des candidats attrayants pour une utilisation comme PS dans l'évolution photocatalytique de l'hydrogène. KW - Fotokatalyse KW - Wasserstofferzeugung KW - Rutheniumkomplexe KW - Photosensibilisator KW - Artificial photosynthesis KW - Ligand design Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246766 N1 - This thesis was conducted as cotutelle-de-thèse between the Universität Würzburg and the Université de Montréal (Canada). ER - TY - THES A1 - Roos, Markus T1 - Synthesis, Photophysics and Photocatalysis of [FeFe] Complex Containing Dyads and Bimolecular Systems T1 - Synthese, Photophysik und Photokatalyse von [FeFe]-Komplex enthaltenden Dyaden und bimolekularen Systemen N2 - In the course of this work, a total of three photocatalytically active dyads for proton reduction could be synthesized together with the associated individual components. Two of them, D1 and D2, comprised a [Ru(bpy)3]2+ photosensitizer and D3 an [Ir(ppy)2bpy]+ photosensitizer. A Ppyr3-substituted propyldithiolate [FeFe] complex was used as catalyst in all systems. The absorption spectroscopic and electrochemical investigations showed that an inner-dyadic electronic coupling is effectively prevented in the dyads due to conjugation blockers within the bridging units used. The photocatalytic investigations exhibited that all dyad containing two-component systems (2CS) showed a significantly worse performance than the corresponding bimolecular three-component systems (3CS). Transient absorption spectroscopy showed that the 2CS behave very similarly to the associated multicomponent systems during photocatalysis. The electron that was intended for the intramolecular transfer from the photosensitizer unit to the catalyst unit within the dyads remains at the photosensitizer for a relatively long time, analogous to the 3CS and despite the covalently bound catalyst. It is therefore assumed that this intramolecular electron transfer is likely to be hindered as a result of the weak electronic coupling caused by the bridge units used. Instead, the system bypasses this through an intermolecular transfer to other dyad molecules in the immediate vicinity. In addition, with the help of emission quenching experiments and electrochemical investigations, it could be clearly concluded that all investigated systems proceed via the reductive quenching mechanism during photocatalysis. N2 - Im Rahmen dieser Arbeit konnten insgesamt drei photokatalytisch aktive Dyaden zur Protonenreduktion zusammen mit den zugehörigen Einzelkomponenten synthetisiert werden. Zwei von ihnen, D1 und D2, umfassten einen [Ru(bpy)3]2+-Photosensibilisator und D3 einen [Ir(ppy)2bpy]+-Photosensibilisator. Als Katalysator wurde in allen Systemen ein Ppyr3-substituierter Propyldithiolat-[FeFe]-Komplex verwendet. Die absorptionsspektroskopischen und elektrochemischen Untersuchungen zeigten, dass eine innerdyadische elektronische Kopplung aufgrund von Konjugationsblockern innerhalb der verwendeten Brückeneinheiten wirksam verhindert wird. Die photokatalytischen Untersuchungen zeigten, dass alle dyadenhaltigen Zweikomponentensysteme (2CS) eine signifikant schlechtere Leistung zeigten als die entsprechenden bimolekularen Dreikomponentensysteme (3CS). Mithilfe der transienten Absorptionsspektroskopie konnte gezeigt werden, dass sich die 2CS während der Photokatalyse sehr ähnlich wie die zugehörigen Mehrkomponentensysteme verhalten. Das Elektron, das für den intramolekularen Transfer von der Photosensibilisatoreinheit zur Katalysatoreinheit innerhalb der Dyaden vorgesehen war, verbleibt analog zu den 3CS und trotz des kovalent gebundenen Katalysators relativ lange am Photosensibilisator. Es wird daher angenommen, dass dieser intramolekulare Elektronentransfer wahrscheinlich aufgrund der schwachen elektronischen Kopplung, die durch die verwendeten Brückeneinheiten verursacht wird, behindert wird. Stattdessen umgeht das System dies durch einen intermolekularen Transfer zu anderen Dyadenmolekülen in unmittelbarer Nähe. Darüber hinaus konnte mithilfe von Emissionslöschungsexperimenten und elektrochemischen Untersuchungen eindeutig darauf geschlossen werden, dass alle untersuchten Systeme während der Photokatalyse über den reduktiven Löschmechanismus ablaufen. KW - Fotokatalyse KW - Elektronentransfer KW - proton reduction KW - [FeFe] hydrogenase mimic KW - dyad KW - ruthenium photosensitizer KW - iridium photosensitizer KW - Protonenreduktion KW - [FeFe]-Hydrogenase Imitator KW - Dyade KW - Ruthenium-Photosensibilisator KW - Iridium-Photosensibilisator Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-234537 ER - TY - THES A1 - Rang, Maximilian T1 - Metallähnliche Reaktivität \(in\) \(situ\) erzeugter Borylene T1 - Metallomimetic reactivity of transiently generated borylenes N2 - Einfach Lewis-Basen stabilisierte Borylene wurden durch Reduktion in situ hergestellt und in Gegenwart von Kohlenstoffmonoxid oder Distickstoff umgesetzt. Die entstandenen Verbindungen wurden mittels NMR-, ESR-, UV/Vis- und IR-Spektroskopie sowie Einkristallröntgenstrukturanalyse charakterisiert. Im Zuge dessen konnten für die erhaltenen Spezies Eigenschaften ermittelt werden, die denen analoger Übergangsmetallkomplexe ähneln. Ferner konnten die zugrundeliegenden mechanistischen Vorgänge der Reaktionen durch gezielte Variation der Reaktionsparameter aufgeklärt werden. Zudem wurden Redoxverhalten und Reaktivitäten der isolierten Produkte in weiterführenden Studien näher untersucht. N2 - Mono(Lewis base)-stabilized borylenes were transiently generated by reduction and converted in the presence of carbon monoxide or dinitrogen. The resulting compounds were characterized by means of NMR, EPR, UV-vis and IR spectroscopy as well as X-ray diffraction analysis. The properties determined for the isolated species in the course of these investigations closely resemble those of analogous transition metal complexes. Furthermore, it was possible to elucidate the mechanistic processes underlying the reactions through systematic alteration of the reaction parameters. Additionally, the redox behaviour and reactivities of the isolated products were examined more closely. KW - Bor KW - Distickstoff KW - Kohlenstoffmonoxid KW - Borylene KW - niedervalente Borverbindungen KW - Distickstoff Aktivierung KW - Distickstoff Spaltung KW - Borylencarbonyle KW - Kohlenmonoxid KW - cAAC Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-240465 ER -