TY - THES A1 - Ji, Changhe T1 - The role of 7SK noncoding RNA in development and function of motoneurons T1 - Die Rolle der nichtkodierenden RNA 7SK bei der Entwicklung und Funktion von Motoneuronen N2 - In mammals, a major fraction of the genome is transcribed as non-coding RNAs. An increasing amount of evidence has accumulated showing that non-coding RNAs play important roles both for normal cell function and in disease processes such as cancer or neurodegeneration. Interpreting the functions of non-coding RNAs and the molecular mechanisms through which they act is one of the most important challenges facing RNA biology today. In my Ph.D. thesis, I have been investigating the role of 7SK, one of the most abundant non-coding RNAs, in the development and function of motoneurons. 7SK is a highly structured 331 nt RNA transcribed by RNA polymerase III. It forms four stem-loop (SL) structures that serve as binding sites for different proteins. Larp7 binds to SL4 and protects the 3' end from exonucleolytic degradation. SL1 serves as a binding site for HEXIM1, which recruits the pTEFb complex composed of CDK9 and cyclin T1. pTEFb has a stimulatory role for transcription and is regulated through sequestration by 7SK. More recently, a number of heterogeneous nuclear ribonucleoproteins (hnRNPs) have been identified as 7SK interactors. One of these is hnRNP R, which has been shown to have a role in motoneuron development by regulating axon growth. Taken together, 7SK’s function involves interactions with RNA binding proteins, and different RNA binding proteins interact with different regions of 7SK, such that 7SK can be considered as a hub for recruitment and release of different proteins. The questions I have addressed during my Ph.D. are as follows: 1) which region of 7SK interacts with hnRNP R, a main interactor of 7SK? 2) What effects occur in motoneurons after the protein binding sites of 7SK are abolished? 3) Are there additional 7SK binding proteins that regulate the functions of the 7SK RNP? Using in vitro and in vivo experiments, I found that hnRNP R binds both the SL1 and SL3 region of 7SK, and also that pTEFb cannot be recruited after deleting the SL1 region but is able to bind to a 7SK mutant with deletion of SL3. In order to answer the question of how the 7SK mutations affect axon outgrowth and elongation in mouse primary motoneurons, we proceeded to conduct rescue experiments in motoneurons by using lentiviral vectors. The constructs were designed to express 7SK deletion mutants under the mouse U6 promoter and at the same time to drive expression of a 7SK shRNA from an H1 promoter for the depletion of endogenous 7SK. Using this system we found that 7SK mutants harboring deletions of either SL1 or SL3 could not rescue the axon growth defect of 7SK-depleted motoneurons suggesting that 7SK/hnRNP R complexes are integral for this process. In order to identify novel 7SK binding proteins and investigate their functions, I proceeded to conduct pull-down experiments by using a biotinylated RNA antisense oligonucleotide that targets the U17-C33 region of 7SK thereby purifying endogenous 7SK complexes. Following mass spectrometry of purified 7SK complexes, we identified a number of novel 7SK interactors. Among these is the Smn complex. Deficiency of the Smn complex causes the motoneuron disease spinal muscular atrophy (SMA) characterized by loss of lower motoneurons in the spinal cord. Smn has previously been shown to interact with hnRNP R. Accordingly, we found Smn as part of 7SK/hnRNP R complexes. These proteomics data suggest that 7SK potentially plays important roles in different signaling pathways in addition to transcription. N2 - Bei Säugetieren wird ein großer Teil des Genoms als nicht-kodierende RNAs transkribiert. Es gibt immer mehr Hinweise darauf, dass nicht-kodierende RNAs eine wichtige Rolle sowohl für die normale Zellfunktion als auch bei Krankheitsprozessen wie Krebs oder Neurodegeneration spielen. Die Interpretation der Funktionen nicht-kodierender RNAs und der molekularen Mechanismen, über die sie wirken, ist eine der wichtigsten Herausforderungen, denen die RNA-Biologie heute gegenübersteht. In meiner Promotionsarbeit habe ich die Rolle von 7SK, einer der am häufigsten vorkommenden nicht-kodierenden RNAs, bei der Entwicklung und Funktion von Motoneuronen untersucht. 7SK ist eine RNA, die aus 331 Nukleotiden besteht und deren Struktur bekannt ist. Sie wird von der RNA-Polymerase III transkribiert. Sie bildet vier Stem-Loop (SL)-Strukturen, die als Bindungsstellen für verschiedene Proteine dienen. LARP7 bindet an SL4 und schützt das 3'-Ende vor exonukleolytischem Abbau. SL1 dient als Bindungsstelle für HEXIM1, das den P-TEFb-Komplex rekrutiert, der aus CDK9 und Cyclin T1 besteht. P-TEFb hat eine stimulierende Rolle für die Transkription und wird durch Sequestrierung durch 7SK reguliert. In jüngerer Zeit wurde eine Reihe von heterogenen nukleären Ribonukleoproteinen (hnRNPs) als 7SK-Interaktoren identifiziert. Eines davon ist hnRNP R, von dem gezeigt wurde, dass es eine Rolle bei der Entwicklung von Motoneuronen spielt, indem es das Axonwachstum reguliert. Durch die Interaktion mit P-TEFb und RNA-bindenden Proteinen kann 7SK als Drehscheibe für die Rekrutierung und Freisetzung verschiedener Proteine betrachtet werden. Die Fragen, mit denen ich mich während meiner Doktorarbeit beschäftigt habe, lauten wie folgt: 1) Welche Region von 7SK interagiert mit hnRNP R, einem Hauptinteraktor von 7SK? 2) Welche Effekte treten in Motoneuronen auf, wenn die Bindung von hnRNP R an 7SK inhibiert wird? 3) Gibt es zusätzliche 7SK-bindende Proteine, die die Funktionen des 7SK RNPs regulieren? Mit Hilfe von in vitro und in vivo Experimenten fand ich heraus, dass hnRNP R sowohl die SL1- als auch die SL3-Region von 7SK bindet, und dass P-TEFb nach der Deletion der SL1-Region nicht rekrutiert werden kann, aber in der Lage ist, an eine 7SK-Mutante mit Deletion von SL3 zu binden. Um die Frage zu beantworten, wie sich die 7SK-Mutationen auf Axonwachstum in primären Motoneuronen der Maus auswirken, führten wir Rettungsexperimente an Motoneuronen unter Verwendung lentiviraler Vektoren durch. Die Konstrukte wurden so konzipiert, dass sie 7SK-Deletionsmutanten durch den U6-Promotor der Maus exprimieren und gleichzeitig eine 7SK-shRNA von einem H1-Promotor für die Depletion von endogenem 7SK transkribieren. Mit diesem System fanden wir heraus, dass 7SK-Mutanten, die Deletionen von SL1 oder SL3 beherbergen, den Axon-Wachstumsdefekt von 7SK-depletierten Motoneuronen nicht retten konnten, was darauf hindeutet, dass 7SK/hnRNP R-Komplexe für diesen Prozess von Bedeutung sind. Um neue 7SK-Bindungsproteine zu identifizieren und ihre Funktionen zu untersuchen, führte ich Pulldown-Experimente durch, bei denen ich ein biotinyliertes RNA-Antisense-Oligonukleotid verwendete, das an die U17-C33-Region von 7SK bindet und dadurch Aufreinigung endogener 7SK-Komplexe erlaubt. Nach der Massenspektrometrie der gereinigten 7SK-Komplexe identifizierten wir eine Reihe neuer 7SK-Interaktoren. Einer davon ist der Smn-Komplex. Ein Mangel des Smn-Komplexes verursacht die Motoneuronerkrankung Spinale Muskelatrophie (SMA), die durch den Verlust der unteren Motoneuronen im Rückenmark gekennzeichnet ist. Es wurde bereits gezeigt, dass Smn mit hnRNP R interagiert. Dementsprechend fanden wir Smn als Teil des 7SK/hnRNP R-Komplexes. Diese Proteom-Daten deuten darauf hin, dass 7SK neben der Transkription möglicherweise auch in anderen Signalwegen wie der spliceosomalen snRNP Biogenese eine wichtige Rolle spielt. KW - Spliceosome KW - Interaction of 7SK with the Smn complex modulates snRNP production KW - 7SK KW - SMN KW - snRNP KW - Transcription KW - hnRNP Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224638 ER - TY - THES A1 - Schmitt, Dominique T1 - Initial characterization of mouse Syap1 in the nervous system: Search for interaction partners, effects of gene knockdown and knockout, and tissue distribution with focus on the adult brain T1 - Erste Charakterisierung des Maus-Syap1 im Nervensystem: Suche nach Interaktionspartnern, Auswirkungen von Gen-Knockdown und-Knockout sowie Untersuchungen über die Verteilung im Gewebe mit Fokus auf das adulte Gehirn N2 - The synapse-associated protein of 47 kDa (Sap47) in Drosophila melanogaster is the founding member of a phylogenetically conserved protein family of hitherto unknown molecular function. Sap47 is localized throughout the entire neuropil of adult and larval brains and closely associated with glutamatergic presynaptic vesicles of larval motoneurons. Flies lacking the protein are viable and fertile and do not exhibit gross structural or marked behavioral deficiencies indicating that Sap47 is dispensable for basic synaptic function, or that its function is compensated by other related proteins. Syap1 - the mammalian homologue of Sap47 - was reported to play an essential role in Akt1 phosphorylation in various non-neuronal cells by promoting the association of mTORC2 with Akt1 which is critical for the downstream signaling cascade for adipogenesis. The function of Syap1 in the vertebrate nervous system, however, is unknown so far. The present study provides a first description of the subcellular localization of mouse Syap1 in cultured motoneurons as well as in selected structures of the adult mouse nervous system and reports initial functional experiments. Preceding all descriptive experiments, commercially available Syap1 antibodies were tested for their specificity and suitability for this study. One antibody raised against the human protein was found to recognize specifically both the human and murine Syap1 protein, providing an indispensable tool for biochemical, immunocytochemical and immunohistochemical studies. In the course of this work, a Syap1 knockout mouse was established and investigated. These mice are viable and fertile and do not show obvious changes in morphology or phenotype. As observed for Sap47 in flies, Syap1 is widely distributed in the synaptic neuropil, particularly in regions rich in glutamatergic synapses but it was also detected at perinuclear Golgi-associated sites in certain groups of neuronal somata. In motoneurons the protein is especially observed in similar perinuclear structures, partially overlapping with Golgi markers and in axons, dendrites and axonal growth cones. Biochemical and immunohistochemical analyses showed widespread Syap1 expression in the central nervous system with regionally distinct distribution patterns in cerebellum, hippocampus or olfactory bulb. Besides its expression in neurons, Syap1 is also detected in non-neuronal tissue e.g. liver, kidney and muscle tissue. In contrast, non-neuronal cells in the brain lack the typical perinuclear accumulation. First functional studies with cultured primary motoneurons on developmental, structural and functional aspects reveal no influence of Syap1 depletion on survival and morphological features such as axon length or dendritic length. Contrary to expectations, in neuronal tissues or cultured motoneurons a reduction of Akt phosphorylation at Ser473 or Thr308 was not detected after Syap1 knockdown or knockout. N2 - Das Synapsen-assoziierte Protein von 47 kDa (Sap47) in Drosophila melanogaster ist das Gründungsmitglied einer phylogenetisch konservierten Proteinfamilie von unbekannter molekularer Funktion. Sap47 ist im gesamten Neuropil des adulten und larvalen Gehirns lokalisiert und mit glutamatergen, präsynaptischen Vesikeln in larvalen Motoneuronen assoziiert. Fliegen, denen das Protein fehlt, sind lebensfähig und fruchtbar und weisen keine schwerwiegenden strukturellen oder ausgeprägten verhaltensbezogenen Defizite auf, was darauf hinweist, dass Sap47 für eine basale synaptische Funktion entbehrlich ist beziehungsweise das Fehlen seiner Funktion durch andere, eventuell verwandte Proteine, kompensiert werden kann. Über Syap1 - das Säugetierhomolog von Sap47 - wurde berichtet, dass es in verschiedenen nicht-neuronalen Zellen eine essentielle Rolle in der Akt1 Phosphorylierung spielt, indem es die Assoziation von mTORC2 und Akt1 begünstigt, welche für den nachgeschalteten Signalweg bei der Adipogenese essentiell ist. Die Funktion von Syap1 im Vertebraten-Nervensystem ist dagegen bislang unbekannt. Die vorliegende Studie liefert die Erstbeschreibung von neuronalem Syap1 über die subzelluläre Lokalisation des Proteins in kultivierten Motoneuronen sowie die Verteilung in ausgewählten Strukturen des adulten Nervensystems der Maus und beschreibt initiale funktionelle Experimente. Allen beschreibenden Experimenten voran, wurden kommerziell erhältliche Syap1 Antikörper auf ihre Spezifität und Tauglichkeit für diese Studie getestet. Einer der Antikörper, der gegen das humane Protein hergestellt wurde, erkennt spezifisch sowohl das humane, als auch das murine Syap1 Protein und stellt somit ein unentbehrliches Werkzeug für alle biochemischen, immunzytochemischen und immunhistochemischen Untersuchungen dar. Im Zuge der Arbeit wurde eine Syap1-Knockout Maus untersucht, welche vital und fruchtbar ist und keine offensichtlichen Veränderungen in ihrem morphologischen Phänotyp aufweist. Wie auch Sap47 in Fliegen, ist Syap1 im synaptischen Neuropil weit verbreitet, insbesondere in Regionen, die reich an glutamatergen Synapsen sind, aber es wurde auch in einer deutlichen, Golgi-assoziierten Akkumulation in bestimmten Gruppen neuronaler Zellkörper beobachtet. In Motoneuronen wurde das Protein besonders in ähnlichen perinukleären Strukturen detektiert, welche zum Teil mit Golgi Markern überlappen und zudem in Axonen, Dendriten und Wachstumskegeln detektiert. Wie biochemische und immunhistochemische Untersuchungen ergaben, zeigt das Syap1 Protein eine weit verbreitete Expression im zentralen Nervensystem mit Regionen-spezifischem Verteilungsmuster wie es beispielsweise im Kleinhirn, dem Hippocampus oder dem olfaktorischen Bulbus beobachtet wurde. Neben der Expression in Neuronen wurde Syap1 auch in nicht neuronalen Geweben wie der Leber, Niere und im Muskel detektiert. Nicht-neuronalen Zellen im Gehirn fehlte dagegen die typische perinukleäre Akkumulation in immunhistochemischen Färbungen. Erste funktionelle Studien mit kultivierten primären Motoneuronen über entwicklungsbezogene, strukturelle und funktionelle Gesichtspunkte ergaben keinen Einfluss einer Syap1 Depletion auf das Überleben oder morphologische Merkmale wie Axon- oder Dendritenlänge. Entgegen den Erwartungen, wurde nach Syap1 Knockdown oder Knockout in neuronalem Gewebe oder kultivierten Motoneuronen keine Reduktion in der Akt1 Phosphorylierung an Ser473 oder Thr308 detektiert. KW - Synapse KW - Nervensystem KW - Motoneuron KW - Golgi-Apparat KW - Syap1 KW - Sap47 KW - Synapse-associated protein KW - Golgi apparatus KW - Synapsen assoziiert Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147319 ER - TY - THES A1 - Moradi, Mehri T1 - Differential roles of α-, β- and γ-actin isoforms in regulation of cytoskeletal dynamics and stability during axon elongation and collateral branch formation in motoneurons T1 - Rolle der α-, β- und γ-Aktin Isoformen bei Regulation von Dynamik und Stabilität des Zytoskeletts während des Axonwachstums und beim Ausbilden von axonalen Verzweigungen in Motoneuronen N2 - In highly polarized cells like neurons, cytoskeleton dynamics play a crucial role in establishing neuronal connections during development and are required for adult plasticity. Actin turnover is particularly important for neurite growth, axon path finding, branching and synaptogenesis. Motoneurons establish several thousand branches that innervate neuromuscular synapses (NMJs). Axonal branching and terminal arborization are fundamental events during the establishment of synapses in motor endplates. Branching process is triggered by the assembly of actin filaments along the axon shaft giving rise to filopodia formation. The unique contribution of the three actin isoforms, α-, β- and γ-actin, in filopodia stability and dynamics during this process is not well characterized. Here, we performed high resolution in situ hybridization and qRT-PCR and showed that in primary mouse motoneurons α-, β- and γ-actin isoforms are expressed and their transcripts are translocated into axons. Using FRAP experiments, we showed that transcripts for α-, β- and γ-actin become locally translated in axonal growth cones and translation hot spots of the axonal branch points. Using live cell imaging, we showed that shRNA depletion of α-actin reduces dynamics of axonal filopodia which correlates with reduced number of collateral branches and impairs axon elongation. Depletion of β-actin correlates with reduced dynamics of growth cone filopoida, disturbs axon elongation and impairs presynaptic differentiation. Also, depletion of γ-actin impairs axonal growth and decreases axonal filopodia dynamics. These findings implicate that actin isoforms accomplish unique functions during development of motor axons. Depletions of β- and γ-actin lead to compensatory upregulation of other two isoforms. Consistent with this, total actin levels remain unaltered and F-actin polymerization capacity is preserved. After the knockdown of either α- or γ-actin, the levels of β-actin increase in the G-actin pool indicating that polymerization and stability of β-actin filaments depend on α- or γ-actin. This study provides evidence both for unique and overlapping function of actin isoforms in motoneuron growth and differentiation. In the soma of developing motoneurons, actin isoforms act redundantly and thus could compensate for each other’s loss. In the axon, α-, β- and γ-actin accomplish specific functions, i.e. β-actin regulates axon elongation and plasticity and α- and γ-actin regulate axonal branching. Furthermore, we show that both axonal transport and local translation of α-, β- and γ-actin isoforms are impaired in Smn knockout motoneurons, indicating a role for Smn protein in RNA granule assembly and local translation of these actin isoforms in primary mouse motoneurons. N2 - In stark polaren Zellen wie den Neuronen ist die Etablierung neuronaler Netzwerke ein entscheidender Faktor bei der Entwicklung des zentralen Nervensystems und spielt für die adulte Plastizität eine wesentliche Rolle. Besonders die Aktindynamik ist wichtig für das Neuritenwachstum, die axonale Wegfindung und Verzweigung, sowie die Synaptogenese. Motoneurone bilden mehrere tausend terminale Verzweigungen aus, um neuromuskuläre Endplatten (NMJ) zu innervieren. Die axonale Verzweigung ist ein fundamentales Ereignis bei Ausbildung synaptischer Verbindungen zwischen Motoneuron und innerviertem Muskel. Die Axonverzweigung geschieht durch die Polymerisierung von Aktin entlang des Axonschafts, was zur Entstehung von Filopodien und Lamellopodien führt. Allerdings ist die genaue Funktion der drei Aktin-Isoformen (α-, β- and γ-Actin), im Zusammenhang mit der Regulation der Filopodienstabilität und deren Dynamik, noch weitestgehend unbekannt. Somit konnten wir in dieser Arbeit mit Hilfe hoch sensitiver in situ Hybridisierungs- und qRT PCR Techniken zeigen, dass in primären Mausmotoneuronen alle drei Aktinisoformen (α-, β- und γ) exprimiert, und deren Transkripte entlang des axonalen Kompartiments transportiert werden. Unsere FRAP Daten weisen darauf hin, dass α-, β- und γ-Aktin sowohl im Wachstumskegel als auch an sogenannten „Translation Hot Spots“ innerhalb axonaler Verzweigungspunkte lokal synthetisiert werden. Anhand von „Live Cell Imaging“ Experimenten konnten wir dann zeigen, dass ein α-Aktin Knockdown die Dynamik axonaler Filopodien stark reduziert, und als Folge, die Anzahl von axonalen Verzweigungen und die Axonlänge verringert ist. Hingegen geht ein β-Aktin Knockdown mit reduzierter Filopodiendynamik im Wachstumskegel und betroffener Differenzierung präsynaptischer Strukturen einher. Veränderungen des axonalen Wachstum und der Filopodiendynamik sind ebenfalls bei einem γ-Aktin Knockdown zu beobachten. Diese Daten weisen darauf hin, dass die drei Aktinisoformen unterschiedliche Funktionen bei der Entwicklung von Motoraxonen haben. Darüber hinaus zeigen unsere Daten, dass die Herunterregulation einer Aktinisoform durch eine erhöhte Expression der beiden anderen Isoformen kompensiert wird. Dieser Kompensationsmechanismus erlaubt es, die gesamte Aktinmenge und somit die F-Aktin-Polymerisation in der Zelle aufrechtzuerhalten. Sehr interessant dabei ist die Beobachtung, dass nach einem α- oder γ-Actin Knockdown das G/F-Verhältnis verändert ist, so dass die Menge an β-Aktin im G-Aktin Pool steigt und im F-Aktin Pool abnimmt. Daher beruhen Polymerisation und Stabilität von β-Aktin auf den α-, und γ-Aktinisoformen. Zusammenfassend lässt sich sagen, dass alle drei Aktinisoformen übergreifende Funktionen während Wachstum und Differenzierung von Motoneuronen haben. Im Zellkörper von sich entwickelnden Motoneuronen übernehmen sie ähnliche Aufgaben und können sich somit gegenseitig kompensieren. Im Gegensatz dazu sind die Funktionen im axonalen Kompartiment wesentlich spezifischer. Hier reguliert β-Aktin axonales Wachstum und Plastizität, während α- und γ-Aktin eine entscheidende Rolle bei der Ausbildung axonaler Verzweigungen haben. Unsere Arbeit lässt nun Rückschlüsse über mögliche Funktionen des SMN Proteins beim Aufbau der sogenannten „RNA Granules“ und lokaler Proteinbiosynthese der verschiedenen Aktinisoformen in primären Mausmotoneuronen zu. KW - Motoneuron KW - Spinale Muskelatrophie KW - Actin KW - Actin Dynamics KW - Isomer KW - Motoneurons KW - Axon Branching KW - Spinal Muscular Atrophy Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147453 ER - TY - THES A1 - Saal, Lena T1 - Whole transcriptome profiling of compartmentalized motoneurons T1 - Globale Transkriptomanalyse von kompartimentierten Motoneuronen N2 - Spinal muscular atrophy and amyotrophic lateral sclerosis are the two most common devastating motoneuron diseases. The mechanisms leading to motoneuron degeneration are not resolved so far, although different hypotheses have been built on existing data. One possible mechanism is disturbed axonal transport of RNAs in the affected motoneurons. The underlying question of this study was therefore to characterize changes in transcript levels of distinct RNAs in cell culture models of spinal muscular atrophy and amyotrophic lateral sclerosis, especially in the axonal compartment of primary motoneurons. To investigate this in detail we first established compartmentalized cultures of Primary mouse motoneurons. Subsequently, total RNA of both compartments was extracted separately and either linearly amplified and subjected to microarray profiling or whole transcriptome amplification followed by RNA-Sequencing was performed. To make the whole transcriptome amplification method suitable for compartmentalized cultures, we adapted a double-random priming strategy. First, we applied this method for initial optimization onto serial dilutions of spinal cord RNA and later on to the compartmentalized motoneurons. Analysis of the data obtained from wildtype cultures already revealed interesting results. First, the RNA composition of axons turned out to be highly similar to the somatodendritic compartment. Second, axons seem to be particularly enriched for transcripts related to protein synthesis and energy production. In a next step we repeated the experiments by using knockdown cultures. The proteins depleted hereby are Smn, Tdp-43 and hnRNP R. Another experiment was performed by knocking down the non-coding RNA 7SK, the main interacting RNA of hnRNP R. Depletion of Smn led to a vast number of deregulated transcripts in the axonal and somatodendritic compartment. Transcripts downregulated in the axons upon Smn depletion were especially enriched for GOterms related to RNA processing and encode proteins located in neuron projections including axons and growth cones. Strinkingly, among the upregulated transcripts in the somatodendritic compartment we mainly found MHC class I transcripts suggesting a potential neuroprotective role. In contrast, although knockdown of Tdp-43 also revealed a large number of downregulated transcripts in the axonal compartment, these transcripts were mainly associated with functions in transcriptional regulation and RNA splicing. For the hnRNP R knockdown our results were again different. Here, we observed downregulated transcripts in the axonal compartment mainly associated with regulation of synaptic transmission and nerve impulses. Interestingly, a comparison between deregulated transcripts in the axonal compartment of both hnRNP R and 7SK knockdown presented a significant overlap of several transcripts suggesting some common mechanism for both knockdowns. Thus, our data indicate that a loss of disease-associated proteins involved in axonal RNA transport causes distinct transcriptome alterations in motor axons. N2 - Spinale Muskelatrophie und Amyotrophe Lateralsklerose zählen zu den beiden häufigsten und schwersten Motoneuronerkrankungen. Der zugrunde liegende Mechanismus beider Krankheiten ist bis heute nicht geklärt, dennoch werden verschiedene Theorien diskutiert. Ein möglicher Grund ist ein gestörter axonaler Transport von RNAs in den betroffenen Motoneuronen. Daraus folgernd ergab sich die zugrunde liegende Frage dieser Arbeit, ob Veränderungen in den Transkriptleveln bestimmter RNAs unter krankheitsähnlichen Bedingungen vor allem im axonalen Kompartiment von primären Maus-Motoneuronen beobachtet werden können. Um die Fragestellung genauer zu untersuchen, etablierten wir zuerst kompartimentierte Kulturen von primären Motoneuronen. Darauffolgend haben wir die totale RNA aus beiden Kompartimenten separat extrahiert und entweder diese linear amplifiziert und zur Microarrayanalyse gegeben oder wir führten eine Amplifikation des kompletten Transkriptoms mit anschließender RNA-Sequenzierung durch. Um die Amplifikation des kompletten Transkriptoms auch für die kompartimentierten Kulturen geeignet zu machen, verwendeten wir eine doublerandom priming Strategie und haben diese entsprechend angepasst. Zuerst wendeten wir die Methode an Serienverdünnungen von RNA aus dem Rückenmark an, um die Methode zu optimisieren. Später benutzten wir die Methode ebenfalls für kompartimentierte Motoneurone. Schon die Analyse der Wildtyp-Daten lieferte interessante Ergebnisse. Erstens, die Zusammensetzung der RNA in Axonen war höchst ähnlich zu der im somatodendritischen Kompartiment. Zweitens, in Axonen scheinen speziell Transkripte angereichert zu sein, welche mit Proteinsynthese und Energieproduktion in Verbindung stehen. In einem nächsten Schritt wurden dann die Experimente unter Verwendung von Knockdown-Kulturen wiederholt. Die Proteine, die dabei vermindert wurden waren Smn, Tdp-43 und hnRNP R. Ein weiteres Experiment wurde durchgeführt indem die nicht-codierende RNA 7SK verringert wurde. Die Depletion von Smn führte zu einer hohen Anzahl an deregulierten Transkripten sowohl im axonalen, als auch im somatodendritischen Kompartiment. Transkripte, die im axonalen Kompartiment nach Smn Depletion verringert waren, waren überwiegend für GOTerms angereichert, welche mit RNA Prozessierung in Verbindung stehen oder welche Proteine codieren, die in neuronalen Fortsätzen, einschließlich Axon und Wachstumskegel lokalisiert sind. Bemerkenswert ist, dass wir unter den hochregulierten Transkripten im somatodendritischen Kompartiment überwiegend MHC Klasse I Transkripte gefunden haben. Dies könnte eine mögliche neuroprotektive Rolle dieser Transkripte annehmen lassen. Im Gegensatz zu den Ergebnissen beim Smn Knockdown fanden wir beim Tdp-43 Knockdown ebenfalls eine große Anzahl an herunterregulierten Transkripten im axonalen Kompartiment, diese sind allerdings überwiegend mit Funktionen in der Transkriptionsregulierung und beim RNA Splicing assoziiert. Die Ergebnisse des hnRNP R Knockdowns waren ebenfalls unterschiedlich. Bei diesem fanden wir die herunteregulierten Transkripte im axonalen Kompartiment überwiegend mit einer Regulierung der synaptischen Übertragung sowie mit Nervenimpulsen assoziiert. Interessanterweise zeigte ein Vergleich der deregulierten Transkripte sowohl im axonalen Kompartiment vom hnRNP R Knockdown, als auch vom 7SK Knockdown eine signifikante Übereinstimmung mehrerer Transkripte. Dies lässt einen teilweise gemeinsamen Mechanismus für beide Genprodukte vermuten. Somit deuten unsere Daten darauf hin, dass ein Verlust von krankheitsassoziierten Proteinen, die eine Rolle beim axonalen RNA-Transport spielen, zu verschiedenen Transkriptomveränderungen in Axonen von Motoneuronen führt. KW - Axon KW - Motoneuron KW - Spinale Muskelatrophie KW - amyotrophic lateral sclerosis Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-140006 ER - TY - THES A1 - Ghanawi, Hanaa T1 - Loss of full-length hnRNP R isoform impairs DNA damage response in motoneurons by inhibiting Yb1 recruitment to Chromatin T1 - Der Verlust der hnRNP R Volllängen-Isoform beeinträchtigt die DNA-Reparaturmechanismen in Motoneuronen durch die verminderte Rekrutierung von Yb1 zu Chromatin N2 - Motoneurons are highly compartmentalized cells with very long extensions that separate their nerve terminals from cell bodies. To maintain their extensive morphological complexity and protect their cellular integrity from neurotoxic stresses, neurons rely on the functions of RNA-binding proteins. One such protein is hnRNP R, a multifunctional protein with a plethora of roles related to RNA metabolism that comes into play in the nervous system. hnRNP R is localized mainly in the nucleus but also exists in the cytoplasm and axons of motoneurons. Increasing in vitro evidence indicates a potential function of hnRNP R in the development and maintenance of motoneurons by regulating axon growth and axonal RNA transport. Additionally, hnRNP R interacts with several proteins involved in motoneuron diseases. Hnrnpr pre-mRNA undergoes alternative splicing to produce transcripts encoding two protein isoforms: a full-length protein (hnRNP R-FL) and a shorter form lacking the N-terminal acidic domain (hnRNP R-ΔN). While the neuronal defects produced by total hnRNP R depletion have been investigated before, the contribution of individual isoforms towards such functions has remained mostly unknown. In this study, we showed that while both isoforms are expressed across multiple tissues, the full-length isoform is particularly abundant in the nervous system. We generated a mouse model for selective knockout of the full-length hnRNP R isoform (Hnrnprtm1a/tm1a) and found that the hnRNP R-∆N isoform remains expressed in these mice and is upregulated in a compensatory post-transcriptional process. We found that the truncated isoform is sufficient to support subcellular RNA transport related to axon growth in primary motoneurons. However, Hnrnprtm1a/tm1a mice show defects in DNA damage repair after exposure to γ-irradiation and etoposide. Knock down of both hnRNP R isoforms showed a similar extent of DNA damage as for motoneurons depleted of just full-length hnRNP R. Rescue experiments showed that expression of full-length hnRNP R but not of hnRNP R-ΔN can restore DNA damage repair when endogenous hnRNP R is depleted. By performing subcellular fractionation, we found that hnRNP R associates with chromatin independently from its association with pre-mRNA. Interestingly, we show that hnRNP R interacts with phosphorylated histone H2AX (γ-H2AX), following DNA damage. Proteomics analysis identifies the multifunctional protein Y-box binding protein 1 (Yb1) as one of the top interacting partners of hnRNP R. Similar to loss of full-length hnRNP R, DNA damage repair was impaired upon knockdown of Yb1 in motoneurons. Finally, we show that following exposure to γ-irradiation, Yb1 is recruited to the chromatin where it interacts with γ-H2AX, a mechanism that is dependent on the full-length hnRNP R. Taken together, this study describes a novel function of the full-length isoform of hnRNP R in maintaining the genomic integrity of motoneurons and provides new mechanistic insights into its function in DNA damage response. N2 - Motoneurone sind stark polarisierte Zellen mit langen Ausläufern, die den Zellkörper vonden Nervenendungen separieren. Um diese hoch komplexe Morphologie aufrechtzuerhalten und den Schutz vor neurotoxischen Stressoren zu gewährleisten, sind Motoneurone auf die Funktion von RNA-bindenden Proteinen angewiesen. Zu dieser Gruppe Proteinen zählt hnRNP R, welches eine Vielzahl an Funktionen beim RNA Metabolismus in sich vereint. hnRNP R ist größtenteils im Zellkern lokalisiert, ist aber auch im Zytoplasma und in den Axonen zu detektieren. Ergebnisse aus Studien deuten darauf hin, dass hnRNP R durch Regulation des axonalen Transport von mRNA Axonenwachstum und die Entwicklung und Polarität von Motoneuronen unterstützt. Darüberhinaus interagiert hnRNP R mit verschiedenen Proteinen, die mit Pathomechanismen von Motoneuronenerkrankungen in Verbindung gebracht werden. Durch alternatives Spleißen der Hnrnpr prä-mRNA entstehen unterschiedliche Transkripte, die für zwei Proteine kodieren: eine Volllängen Isoform und eine trunkierte Isoform ohne N- Terminale Domäne (hnRNP R- ΔN). Die neuronalen Defekte, die durch den vollständigen Verlust von hnRNP R hervorgerufen werden, wurden bereits untersucht, jedoch ist die zelluläre Rolle der verschiedenen Isoformen unbekannt. In der vorliegenden Arbeit wurde gezeigt, dass die unterschiedlichen hnRNP R Isoformen in unterschiedlichen Geweben exprimiert werden, wobei die Volllängen Isoform vor allem in Nervensystem zu finden ist. Um die Funktionen der beiden Isoformen genauer zu untersuchen, wurde ein Mausmodell mit selektivem Knockout der Volllängen hnRNP R Isoform (Hnrnprtm1a/tm1a) hergestellt. Die Ergebnisse zeigen, dass durch selektiven Verlust des Volllängen Proteins, die Expression der hnRNP R- ΔN Isoform (post-transkriptionell) erhöht ist und völlig ausreicht, um den axonalen Transport von RNAs für das Axonenwachstum und in primären Motoneuronen zu gewährleisten. Allerdings, weisen Volllängen hnRNP R-defiziente Motoneurone Defekte bei der DNA-Reparatur nach Röntgen-Bestrahlung auf. Mittels subzellulärer Fraktionierungen konnten wir zeigen, dass hnRNP R, unabhängig von seiner Bindung an prä-mRNAs, mit Chromatin interagiert. Des Weiteren zeigten unsere Ergebnisse, dass hnRNP R nach Bestrahlung mit der phosphorylierten Form von Histon H2AX (γ-H2AX) interagiert. Mit Hilfe von Proteom- Analysen konnten wir das Y-Box-Bindungsprotein 1 (Yb1) als hnRNP R Interaktionspartner identifizieren. Ebenso wie der Verlust von hnRNP R, führt der Verlust von Yb1 in primären Motoneuronen zur Beeinträchtigung der DNA-Reparatur nach Bestrahlung. Weiterführende Untersuchungen haben ergeben, dass Yb1 nach Bestrahlung zu Chromatin rekrutiert wird und dass dieser Mechanismus vom Volllängen hnRNP R anhängig ist. Zusammengefasst liefern unsere Daten neue Erkenntnisse über DNA-Reparaturmechanismen und deuten darauf hin, dass hnRNP R neben den weitreichenden Funktionen beim RNA Metabolismus auch für die Aufrechterhaltung der genomischen Integrität verantwortlich ist. KW - hnRNP R KW - Yb1 KW - DNA damage KW - motoneurons Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258492 ER - TY - THES A1 - Deng, Chunchu T1 - Dynamic remodeling of endoplasmic reticulum and ribosomes in axon terminals of wildtype and Spinal Muscular Atrophy motoneurons T1 - Dynamische Reorganization des endoplasmatischen Retikulums und der Ribosomen in Axonterminalen von Wildtyp- und Spinaler Muskelatrophie Motoneuronen N2 - In highly polarized neurons, endoplasmic reticulum (ER) forms a dynamic and continuous network in axons that plays important roles in lipid synthesis, Ca2+ homeostasis and the maintenance of synapses. However, the mechanisms underlying the regulation of axonal ER dynamics and its function in regulation of local translation still remain elusive. In the course of my thesis, I investigated the fast dynamic movements of ER and ribosomes in the growth cone of wildtype motoneurons as well as motoneurons from a mouse model of Spinal Muscular Atrophy (SMA), in response to Brain-derived neurotrophic factor (BDNF) stimulation. Live cell imaging data show that ER extends into axonal growth cone filopodia along actin filaments and disruption of actin cytoskeleton by cytochalasin D treatment impairs the dynamic movement of ER in the axonal filopodia. In contrast to filopodia, ER movements in the growth cone core seem to depend on coordinated actions of the actin and microtubule cytoskeleton. Myosin VI is especially required for ER movements into filopodia and drebrin A mediates actin/microtubule coordinated ER dynamics. Furthermore, we found that BDNF/TrkB signaling induces assembly of 80S ribosomes in growth cones on a time scale of seconds. Activated ribosomes relocate to the presynaptic ER and undergo local translation. These findings describe the dynamic interaction between ER and ribosomes during local translation and identify a novel potential function for the presynaptic ER in intra-axonal synthesis of transmembrane proteins such as the α-1β subunit of N-type Ca2+ channels in motoneurons. In addition, we demonstrate that in Smn-deficient motoneurons, ER dynamic movements are impaired in axonal growth cones that seems to be due to impaired actin cytoskeleton. Interestingly, ribosomes fail to undergo rapid structural changes in Smn-deficient growth cones and do not associate to ER in response to BDNF. Thus, aberrant ER dynamics and ribosome response to extracellular stimuli could affect axonal growth and presynaptic function and maintenance, thereby contributing to the pathology of SMA. N2 - Das Endoplasmatische Retikulum (ER) bildet ein dynamisches und kontinuierliches Netzwerk in Axonen von stark polarisierten Neuronen und spielt dabei eine wichtige Rolle in der Lipidsynthese, dem Ca2+ Homöostase und der Aufrechterhaltung von Synapsen. Allerding sind die Mechanismen, die der Regulierung der axonalen ER-Dynamik und seiner Funktion bei der dynamischen Regulierung der lokalen Translation zugrunde liegen, nicht vollständig aufgeklärt. Im Rahmen meiner Dissertation habe ich die schnellen dynamischen Bewegungen des ERs und Ribosomen in Wachstumskegeln von Wildtyp- und Smn-defizienten Motoneuronen als Reaktion auf einen kurzen Puls von Brain-derived neurotrophic factor (BDNF) untersucht. Daten der Bildgebung lebender Zellen zeigen, dass sich das ER in axonalen Filopodien des Wachstumskegels entlang von Aktin-Filamenten ausbreitet. Die Beeinträchtigung des Aktin-Zytoskeletts mittels Cytochalasin D Behandlung führt zu einer Einschränkung der dynamischen Bewegung des ERs in den axonalen Filopodien. Im Gegensatz zu den Filopodien scheinen die Bewegungen des ERs in Wachstumskegeln von einem koordinierten Zusammenspiel des Aktin- und Mikrotubuli- Zytoskeletts zu beruhen. Myosin VI ist insbesondere für die ER-Bewegungen in Filopodien erforderlich, während Drebrin A die Aktin/Mikrotubuli koordinierte ER-Dynamik vermittelt. Darüber hinaus zeigte sich, dass das BDNF/TrkB Signal die Bildung von 80S-Ribosomen in Wachstumskegeln in Sekundenschnelle auslöst. Aktivierte Ribosomen verlagern sich in das präsynaptische ER und vollziehen eine lokale Translation. Diese Ergebnisse beschreiben die dynamische Interaktion zwischen ER und Ribosomen während der lokalen Translation und zeigen eine neuartige potentielle Funktion des präsynaptischen ER bei der intra-axonalen Synthese von Transmembranproteinen wie die α-1β Untereinheit der N-Typ Ca2+ Kanäle in Motoneuronen auf. Darüber hinaus zeigen wir, dass in Smn-defizienten Motoneuronen die dynamischen ER-Bewegungen in axonalen Wachstumskegeln beeinträchtigt sind, was mit einer gestörten Polymerisation von Aktinfilamenten zusammenzuhängen scheint. Interessanterweise erfahren Ribosomen in Smn-defizienten Wachstumskegeln keine schnellen strukturellen Veränderungen und assoziieren nicht mit dem ER als Reaktion auf BDNF. Somit könnten eine abweichende ER-Dynamik und die Reaktion der Ribosomen auf extrazelluläre Reize das axonale Wachstum und die präsynaptische Funktion und Aufrechterhaltung beeinträchtigen und damit zur Pathologie von SMA beitragen. KW - Motoneuron KW - Endoplasmatisches Retikulum KW - Ribosom KW - Brain-derived neurotrophic factor KW - Spinale Muskelatrophie KW - ER dynamics in axon terminals KW - Dynamics of ribosome assembly KW - BDNF stimulation KW - Spinal Muscular Atrophy Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-264954 ER -